LI Bocheng, WU Qifeng, ZHANG Jinlin, et al. Fungal and bacterial contribution to soil N2O production in Phyllostachys edulis and broadleaf forest ecosystems[J]. Journal of Zhejiang A&F University, 2014, 31(6): 919-925. DOI: 10.11833/j.issn.2095-0756.2014.06.014
Citation: ZHOU Ju, TONG Hongtuo, WANG Congcong, et al. Process scheme of flat-pressure with hollow particleboard[J]. Journal of Zhejiang A&F University, 2015, 32(5): 770-775. DOI: 10.11833/j.issn.2095-0756.2015.05.017

Process scheme of flat-pressure with hollow particleboard

DOI: 10.11833/j.issn.2095-0756.2015.05.017
  • Received Date: 2014-07-06
  • Rev Recd Date: 2015-03-24
  • Publish Date: 2015-10-20
  • Due to the existing defects with extrusion hollow particleboard, such as low longitudinal strength, demand for wood shavings. In order to improve these defects, we study used different specifications for shavings, entity density, and hollow hole distance input factor, along with flat-pressure, to make 30 mm hollow particleboard. Tests were performed on hollow particleboard and analysis of their main physical and mechanical performance was conducted. Results showed that in contrast to extruded hollow particleboard, the mechanical performance was greatly improved with flat-pressure hollow particleboard. In the test range: 1) the mechanical performance of the board made by rod-shaped wood shavings was best. 2) The higher the entity density, the higher number of the longitudinal MOR; the MOR of hollow particleboard with an entity density of 0.70 gcm-3 was nearly 3 times that of the entity density of 0.50 gcm-3. 3) The greater the hollow hole distance, the higher number of the longitudinal MOR. When the wood shavings were rod-shaped, the entity density was 0.70 gcm-3, and the hollow hole distance was 20 mm, then the MOR of the hollow particleboard was 8.24 MPa.[Ch, 5 fig. 3 tab. 9 ref.]
  • [1] SUN Haiyan, WANG Yurong.  Formation, characterization and change of ultrastructure in wood cell wall . Journal of Zhejiang A&F University, 2019, 36(2): 386-393. doi: 10.11833/j.issn.2095-0756.2019.02.021
    [2] XUE Ziqiao, WANG Xuehua, ZHOU Yaqin, CHEN Mengqi, HUANG Qiongtao.  Physical and mechanical properties of low thermo-vacuum treated wood . Journal of Zhejiang A&F University, 2019, 36(1): 177-182. doi: 10.11833/j.issn.2095-0756.2019.01.022
    [3] LI Weiguang, ZHANG Zhankuan.  Modeling the cutting force in wood sawing with different radial clearance angles based on a response surface methodology . Journal of Zhejiang A&F University, 2018, 35(3): 524-528. doi: 10.11833/j.issn.2095-0756.2018.03.018
    [4] XIA Yu, NIU Shuaihong, LI Yanjun, XIA Li, MA Junmin, WANG Li, YU Xiaohong.  Physical and mechanical properties of Phyllostachys iridescins under normal pressure and heat temperature . Journal of Zhejiang A&F University, 2018, 35(4): 765-770. doi: 10.11833/j.issn.2095-0756.2018.04.023
    [5] HU Mengxiao, HANG Yun, HUANG Huahong, ZHANG Shenglong, TONG Zaikang, LOU Xiongzhen.  A near infrared prediction model and variation analysis of wood crystallinity in Cunninghamia lanceolata . Journal of Zhejiang A&F University, 2017, 34(2): 361-368. doi: 10.11833/j.issn.2095-0756.2017.02.022
    [6] ZHOU Zhu, YIN Jianxin, ZHOU Suyin, ZHOU Houkui.  Knot detection on coniferous wood surfaces based on near infrared spectroscopy . Journal of Zhejiang A&F University, 2017, 34(3): 520-527. doi: 10.11833/j.issn.2095-0756.2017.03.018
    [7] FANG Yiming, LIN Lujun, LU Zhixiong, FENG Hailin.  An air-coupled ultrasonic imaging system for non-destructive wood testing . Journal of Zhejiang A&F University, 2017, 34(2): 355-360. doi: 10.11833/j.issn.2095-0756.2017.02.021
    [8] FENG Chen, TONG Hongtuo, WANG Haoqing, LIU Changjie, QIAN Jun.  Surface coating technology for medium density fiberboard . Journal of Zhejiang A&F University, 2017, 34(5): 915-920. doi: 10.11833/j.issn.2095-0756.2017.05.019
    [9] NI Qianqian, QI Hengnian, ZHOU Zhu, WANG Hangjun.  Identifying Dalbergia spp. wood with hyperspectral imaging technology . Journal of Zhejiang A&F University, 2016, 33(3): 489-494. doi: 10.11833/j.issn.2095-0756.2016.03.017
    [10] WANG Zhe, SUN Bailing, LIU Junliang, CHAI Yubo, CAO Jinzhen.  Chemical property changes of vacuum heat-treated Larix kaempferi wood . Journal of Zhejiang A&F University, 2016, 33(6): 1052-1057. doi: 10.11833/j.issn.2095-0756.2016.06.018
    [11] GAO Shan, WANG Lihai, YANG Donghui, XU Wenhao.  Probe-wood contact and gauge pressure with Sylvatest-Duo for precision ultrasonic measurements of wood . Journal of Zhejiang A&F University, 2016, 33(5): 875-880. doi: 10.11833/j.issn.2095-0756.2016.05.021
    [12] GUAN Cheng, ZHOU Lujing, ZHANG Houjiang, LIN Wei.  Measuring modulus of elasticity of full-size wood composite panels using vibration method . Journal of Zhejiang A&F University, 2016, 33(6): 1067-1072. doi: 10.11833/j.issn.2095-0756.2016.06.020
    [13] WU Zhigang, LEI Hong, DU Guanben, WANG Hui, XI Xuedong, CAO Ming, SHEN Gaoli, XIONG Wen.  Particle board with soy protein-based adhesives . Journal of Zhejiang A&F University, 2016, 33(1): 172-176. doi: 10.11833/j.issn.2095-0756.2016.01.023
    [14] AN Xin, QIN Daochun, JIN Xiaobei, LI Yuyao.  Enhancing mold-resistance of laminated bamboo curtain lumber using three non-native bamboo species . Journal of Zhejiang A&F University, 2015, 32(3): 404-409. doi: 10.11833/j.issn.2095-0756.2015.03.011
    [15] LUO Jingyi, FU Weirui, PAN Chengyuan.  Identification of wood-rotting fungi and their decay capability in six wood species . Journal of Zhejiang A&F University, 2015, 32(1): 1-10. doi: 10.11833/j.issn.2095-0756.2015.01.001
    [16] ZHANG Lei, CHANG Xiaoya, WU Jing, WANG Mingzhi.  Fire-retardant properties of an intumescent fire retardant coating for wood using 4A zeolite . Journal of Zhejiang A&F University, 2015, 32(1): 156-161. doi: 10.11833/j.issn.2095-0756.2015.01.023
    [17] ZHOU Zhu, FANG Yiming, YIN Jianxin, ZHOU Suyin, LUO Ruisen, ZHENG Jian.  Review of nondestructive detection of wood and wood products based on hyperspectral imaging technology . Journal of Zhejiang A&F University, 2015, 32(3): 458-466. doi: 10.11833/j.issn.2095-0756.2015.03.020
    [18] GUO Dongqiang, YE Lu, ZHOU Wei, LIU Yuan, CHEN Jianbo, LU Cuixiang, XIANG Dongyun.  Wood fiber features for two provenances of Eucalyptus dunnii . Journal of Zhejiang A&F University, 2014, 31(4): 502-507. doi: 10.11833/j.issn.2095-0756.2014.04.002
    [19] PHAM Tuong Lam, WANG Xinzhou, DENG Yuhe, DONG Geping, TRAN Minh Toi, CAO Quoc An.  Characteristics of recycled poplar cement formwork fiber and its fiberboard manufacturing . Journal of Zhejiang A&F University, 2014, 31(6): 940-946. doi: 10.11833/j.issn.2095-0756.2014.06.017
    [20] WANG Congcong, QIAN Jun.  Quality of pieces for bamboo curtain plywood using MOR and MOE . Journal of Zhejiang A&F University, 2014, 31(5): 758-763. doi: 10.11833/j.issn.2095-0756.2014.05.015
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.8 %FULLTEXT: 19.8 %META: 79.1 %META: 79.1 %PDF: 1.1 %PDF: 1.1 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.7 %其他: 8.7 %其他: 0.8 %其他: 0.8 %Austell: 0.1 %Austell: 0.1 %Austin: 0.0 %Austin: 0.0 %Baden: 0.0 %Baden: 0.0 %Bruderheim: 0.0 %Bruderheim: 0.0 %Canada: 0.1 %Canada: 0.1 %Canton: 0.3 %Canton: 0.3 %Carrboro: 0.1 %Carrboro: 0.1 %Cassopolis: 0.0 %Cassopolis: 0.0 %China: 1.1 %China: 1.1 %Clemmons: 0.1 %Clemmons: 0.1 %Elizabeth City: 0.1 %Elizabeth City: 0.1 %Grove City: 0.0 %Grove City: 0.0 %Gwynn Oak: 0.1 %Gwynn Oak: 0.1 %Jamaica Plain: 0.0 %Jamaica Plain: 0.0 %Lawrence: 0.0 %Lawrence: 0.0 %Lewisburg: 0.1 %Lewisburg: 0.1 %Lithonia: 0.0 %Lithonia: 0.0 %Malvern: 0.3 %Malvern: 0.3 %Mexico: 0.1 %Mexico: 0.1 %Perth Amboy: 0.0 %Perth Amboy: 0.0 %Pulaski: 0.1 %Pulaski: 0.1 %Rochester: 0.2 %Rochester: 0.2 %Russian Federation: 0.0 %Russian Federation: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Slovakia (SLOVAK Republic): 0.0 %Slovakia (SLOVAK Republic): 0.0 %Slovenia: 0.0 %Slovenia: 0.0 %State College: 0.0 %State College: 0.0 %Twinsburg: 0.1 %Twinsburg: 0.1 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.8 %United States: 0.8 %Valencia: 0.1 %Valencia: 0.1 %Wixom: 0.1 %Wixom: 0.1 %[]: 0.6 %[]: 0.6 %上海: 0.5 %上海: 0.5 %东莞: 0.1 %东莞: 0.1 %临汾: 0.0 %临汾: 0.0 %九江: 0.0 %九江: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %代顿: 0.0 %代顿: 0.0 %休斯敦: 0.2 %休斯敦: 0.2 %休斯顿: 0.1 %休斯顿: 0.1 %佛罗里达: 0.1 %佛罗里达: 0.1 %俄亥俄: 0.0 %俄亥俄: 0.0 %克拉克斯维尔: 0.0 %克拉克斯维尔: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.1 %兰州: 0.1 %剑桥: 0.0 %剑桥: 0.0 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %加利福尼亚州: 0.3 %加利福尼亚州: 0.3 %北京: 15.5 %北京: 15.5 %北伯根: 0.0 %北伯根: 0.0 %匹兹堡: 0.1 %匹兹堡: 0.1 %华盛顿: 0.0 %华盛顿: 0.0 %南京: 0.0 %南京: 0.0 %南宁: 0.1 %南宁: 0.1 %南里奥格兰德州: 0.1 %南里奥格兰德州: 0.1 %博伊西: 0.1 %博伊西: 0.1 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %卡瑞: 0.1 %卡瑞: 0.1 %卡罗尔顿: 0.1 %卡罗尔顿: 0.1 %台州: 0.1 %台州: 0.1 %吉达: 0.0 %吉达: 0.0 %哈密尔顿: 0.0 %哈密尔顿: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %圣何塞: 0.0 %圣何塞: 0.0 %圣保罗: 0.1 %圣保罗: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %圣路易斯: 0.1 %圣路易斯: 0.1 %埃克塞特: 0.0 %埃克塞特: 0.0 %堪萨斯城: 0.0 %堪萨斯城: 0.0 %士嘉堡: 0.1 %士嘉堡: 0.1 %大连: 0.0 %大连: 0.0 %天津: 0.2 %天津: 0.2 %奥兰多: 0.0 %奥兰多: 0.0 %奥马哈: 0.1 %奥马哈: 0.1 %孟菲斯: 0.0 %孟菲斯: 0.0 %密蘇里城: 0.8 %密蘇里城: 0.8 %巴利亚多利德: 0.0 %巴利亚多利德: 0.0 %布劳利: 0.1 %布劳利: 0.1 %布鲁克林区: 0.0 %布鲁克林区: 0.0 %帕西帕尼-特洛伊希尔斯: 0.0 %帕西帕尼-特洛伊希尔斯: 0.0 %广州: 0.2 %广州: 0.2 %开罗: 0.1 %开罗: 0.1 %弗吉: 0.0 %弗吉: 0.0 %张家口: 0.3 %张家口: 0.3 %成都: 0.0 %成都: 0.0 %扬州: 0.2 %扬州: 0.2 %拉斯维加斯: 0.1 %拉斯维加斯: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.0 %无锡: 0.0 %晋城: 0.0 %晋城: 0.0 %曼彻斯特: 0.1 %曼彻斯特: 0.1 %朝阳: 0.1 %朝阳: 0.1 %本那比: 0.1 %本那比: 0.1 %杭州: 1.1 %杭州: 1.1 %杰克逊: 0.1 %杰克逊: 0.1 %松原: 0.0 %松原: 0.0 %查尔斯顿: 0.1 %查尔斯顿: 0.1 %格里利: 0.1 %格里利: 0.1 %森尼韦尔: 0.5 %森尼韦尔: 0.5 %: 0.1 %: 0.1 %武汉: 0.2 %武汉: 0.2 %泽西: 0.0 %泽西: 0.0 %济南: 0.0 %济南: 0.0 %深圳: 0.2 %深圳: 0.2 %温哥华: 0.1 %温哥华: 0.1 %温州: 0.2 %温州: 0.2 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.3 %潍坊: 0.3 %烟台: 0.0 %烟台: 0.0 %瑟普赖斯: 0.1 %瑟普赖斯: 0.1 %盐湖城: 0.1 %盐湖城: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %穆列塔: 0.1 %穆列塔: 0.1 %纽卡斯尔: 0.1 %纽卡斯尔: 0.1 %纽瓦克: 0.0 %纽瓦克: 0.0 %纽约: 0.2 %纽约: 0.2 %绍曾德奥克斯: 0.1 %绍曾德奥克斯: 0.1 %绥化: 0.1 %绥化: 0.1 %美国密歇根: 0.0 %美国密歇根: 0.0 %美国德克萨斯梅斯基特: 0.0 %美国德克萨斯梅斯基特: 0.0 %芒廷维尤: 4.7 %芒廷维尤: 4.7 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %萨斯卡通: 0.0 %萨斯卡通: 0.0 %萨默维尔: 0.1 %萨默维尔: 0.1 %蒙哥马利: 0.2 %蒙哥马利: 0.2 %西宁: 51.6 %西宁: 51.6 %西安: 0.0 %西安: 0.0 %西棕榈滩: 0.0 %西棕榈滩: 0.0 %贝克斯菲尔德: 0.0 %贝克斯菲尔德: 0.0 %贵阳: 0.0 %贵阳: 0.0 %赫米特: 0.0 %赫米特: 0.0 %运城: 0.4 %运城: 0.4 %通化: 0.0 %通化: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %都伯林: 0.3 %都伯林: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.0 %长治: 0.0 %门尼菲: 0.1 %门尼菲: 0.1 %门罗: 0.1 %门罗: 0.1 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.0 %阿什本: 0.0 %阿伦敦: 0.1 %阿伦敦: 0.1 %阿尔默洛: 0.1 %阿尔默洛: 0.1 %阿布奎基: 0.1 %阿布奎基: 0.1 %青岛: 0.1 %青岛: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %魁北克: 0.1 %魁北克: 0.1 %黔西南: 0.0 %黔西南: 0.0 %其他其他AustellAustinBadenBruderheimCanadaCantonCarrboroCassopolisChinaClemmonsElizabeth CityGrove CityGwynn OakJamaica PlainLawrenceLewisburgLithoniaMalvernMexicoPerth AmboyPulaskiRochesterRussian FederationSeattleSlovakia (SLOVAK Republic)SloveniaState CollegeTwinsburgUnited KingdomUnited StatesValenciaWixom[]上海东莞临汾九江亚特兰大代顿休斯敦休斯顿佛罗里达俄亥俄克拉克斯维尔六安兰州剑桥加利福尼亚加利福尼亚州北京北伯根匹兹堡华盛顿南京南宁南里奥格兰德州博伊西博阿努瓦卡瑞卡罗尔顿台州吉达哈密尔顿哈尔滨哥伦布嘉兴圣何塞圣保罗圣安东尼奥圣路易斯埃克塞特堪萨斯城士嘉堡大连天津奥兰多奥马哈孟菲斯密蘇里城巴利亚多利德布劳利布鲁克林区帕西帕尼-特洛伊希尔斯广州开罗弗吉张家口成都扬州拉斯维加斯新加坡无锡晋城曼彻斯特朝阳本那比杭州杰克逊松原查尔斯顿格里利森尼韦尔武汉泽西济南深圳温哥华温州漯河潍坊烟台瑟普赖斯盐湖城石家庄福州穆列塔纽卡斯尔纽瓦克纽约绍曾德奥克斯绥化美国密歇根美国德克萨斯梅斯基特芒廷维尤芝加哥苏州萨斯卡通萨默维尔蒙哥马利西宁西安西棕榈滩贝克斯菲尔德贵阳赫米特运城通化邯郸郑州都伯林长沙长治门尼菲门罗阳泉阿什本阿伦敦阿尔默洛阿布奎基青岛马鞍山魁北克黔西南Highcharts.com
  • Cited by

    Periodical cited type(3)

    1. 张蕾,雷馥歌,宿振浩,杨佳诺,张悦,郭忠玲,韩旭. 长白山阔叶红松林土壤真菌和细菌N_2O排放对施氮和降水变化的响应. 生态学杂志. 2025(02): 417-424 .
    2. 余雅迪,张茜,王皓,白健,赖晓琴,罗来聪,王书丽,张令. 土壤二氧化碳及氧化亚氮排放对毛竹扩张的响应及机制. 浙江农林大学学报. 2024(03): 659-668 . 本站查看
    3. Lei Zhang,Junqiang Zheng,Xu Han,Junhui Zhang,Chengxu Li,Shicong Geng,Shijie Han. The effect of soil moisture on the response by fungi and bacteria to nitrogen additions for N_2O production. Journal of Forestry Research. 2021(05): 2037-2045 .

    Other cited types(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(1836) PDF downloads(533) Cited by(4)

Related
Proportional views

Process scheme of flat-pressure with hollow particleboard

doi: 10.11833/j.issn.2095-0756.2015.05.017

Abstract: Due to the existing defects with extrusion hollow particleboard, such as low longitudinal strength, demand for wood shavings. In order to improve these defects, we study used different specifications for shavings, entity density, and hollow hole distance input factor, along with flat-pressure, to make 30 mm hollow particleboard. Tests were performed on hollow particleboard and analysis of their main physical and mechanical performance was conducted. Results showed that in contrast to extruded hollow particleboard, the mechanical performance was greatly improved with flat-pressure hollow particleboard. In the test range: 1) the mechanical performance of the board made by rod-shaped wood shavings was best. 2) The higher the entity density, the higher number of the longitudinal MOR; the MOR of hollow particleboard with an entity density of 0.70 gcm-3 was nearly 3 times that of the entity density of 0.50 gcm-3. 3) The greater the hollow hole distance, the higher number of the longitudinal MOR. When the wood shavings were rod-shaped, the entity density was 0.70 gcm-3, and the hollow hole distance was 20 mm, then the MOR of the hollow particleboard was 8.24 MPa.[Ch, 5 fig. 3 tab. 9 ref.]

LI Bocheng, WU Qifeng, ZHANG Jinlin, et al. Fungal and bacterial contribution to soil N2O production in Phyllostachys edulis and broadleaf forest ecosystems[J]. Journal of Zhejiang A&F University, 2014, 31(6): 919-925. DOI: 10.11833/j.issn.2095-0756.2014.06.014
Citation: ZHOU Ju, TONG Hongtuo, WANG Congcong, et al. Process scheme of flat-pressure with hollow particleboard[J]. Journal of Zhejiang A&F University, 2015, 32(5): 770-775. DOI: 10.11833/j.issn.2095-0756.2015.05.017

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return