WANG Qi, LIU Huahong, WANG Bin, et al. Component analysis of volatile organic compounds from branches and leaves in seven Acer species[J]. Journal of Zhejiang A&F University, 2016, 33(3): 524-530. DOI: 10.11833/j.issn.2095-0756.2016.03.022
Citation: WANG Qi, LIU Huahong, WANG Bin, et al. Component analysis of volatile organic compounds from branches and leaves in seven Acer species[J]. Journal of Zhejiang A&F University, 2016, 33(3): 524-530. DOI: 10.11833/j.issn.2095-0756.2016.03.022

Component analysis of volatile organic compounds from branches and leaves in seven Acer species

DOI: 10.11833/j.issn.2095-0756.2016.03.022
  • Received Date: 2015-01-24
  • Rev Recd Date: 2015-12-10
  • Publish Date: 2016-06-01
  • To analyze the volatile organic compounds (VOCs) released in Acer spp., VOCs from the branches and leaves of Acer ginnala, Acer palmatum, Acer buergerianum, Acer cinnamomifolium, Acer yangjuechi, Acer pubinerve, and Acer davidii were collected and analyzed by the dynamic headspace air-circulation method and thermal desorption system/gas chromatograhpy/mass spectrum (TDS-GC-MS). Results showed that the species of VOCs and their relative proportions varied significantly with species of Acer spp., A. ginnala and A. davidii released 17 and 20 kinds of VOCs, respectively, most of which were esters, aldehydes, and alcohols, such as 3-hexen-1-ol acetate, decanal, (Z)-3-hexen-1-ol, and nonanal. A. palmatum, A. buergerianum, and A. pubinerve released 15, 19, and 23 kinds, respectively, most of which were terpenes, esters, and aldehydes, such as ocimene, 3-hexen-1-ol acetate, (Z)-decanal, longifolene, and nonanal. A. cinnamomifolium released 24 kinds of VOCs, most of which were terpenes, such as ocimene, α-pinene, 3-carene, β-pinene, and terpinene. A. yangjuechi released 25 kinds, most of which were terpenes, aldehydes, and alcohols, such as decanal, longifolene, 2-ethyl-1-hexanol, caryophyllene, and nonanal. Thus, the health function of VOCs from these Acer species could be utilized in healthcare gardens. [Ch, 3 fig. 1 tab. 29 ref.]
  • [1] WU Qinjiao, SONG Yandong, TAO Shijie, WANG Li, ZHOU Ruyi, CHEN Wu, PAN Xinhe, ZHOU Yufeng, ZHOU Guomo.  VOCs release characteristics of 5 typical stands in Baiyun National Forest Park and their relationship with environmental factors . Journal of Zhejiang A&F University, 2023, 40(5): 930-939. doi: 10.11833/j.issn.2095-0756.20220676
    [2] TAO Shijie, SONG Yandong, WU Qinjiao, WANG Li, ZHOU Ruyi, WU Dian, ZHOU Yufeng, ZHOU Guomo.  Characteristics of volatile organic compounds release in Phyllostachys edulis forests and their relationship with environmental factors . Journal of Zhejiang A&F University, 2023, 40(5): 940-950. doi: 10.11833/j.issn.2095-0756.20230249
    [3] HU Shujing, ZHANG Rumin.  Roles of volatile organic compounds in plant adaptation to stress and physiological ecology . Journal of Zhejiang A&F University, 2022, 39(6): 1378-1387. doi: 10.11833/j.issn.2095-0756.20220180
    [4] FENG Rui, HUANG Chengchen, GAO Han, ZHENG Huijun, SHEN Yamei, LUO Kun.  Decoding VOCs and PM10 for Hangzhou in the post-G20 period . Journal of Zhejiang A&F University, 2019, 36(4): 810-817. doi: 10.11833/j.issn.2095-0756.2019.04.022
    [5] JIANG Dongyue, LI Yonghong, SHEN Xin.  Components and variations of volatile organic compounds released from leaves and flowers of Ruta graveolens . Journal of Zhejiang A&F University, 2018, 35(3): 572-580. doi: 10.11833/j.issn.2095-0756.2018.03.025
    [6] CAI Zhoufei, CHEN Yaqi, XU Xinlu, WANG Xiaodong, WANG Junyu, ZHANG Rumin, GAO Yan.  Changes of volatile organic compounds released during flowering in four Osmanthus fragrans cultivar groups . Journal of Zhejiang A&F University, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [7] MAO Yongcheng, LIU Lu, WANG Xiaode.  Effect of drought stress on physiological characteristics of three plants of Aceraceae . Journal of Zhejiang A&F University, 2016, 33(1): 60-64. doi: 10.11833/j.issn.2095-0756.2016.01.008
    [8] LIU Qing, TONG Senmiao, MA Jianyi.  Volatile compounds from bamboo vinegar with HS-SPME and GC-MS . Journal of Zhejiang A&F University, 2014, 31(2): 308-314. doi: 10.11833/j.issn.2095-0756.2014.02.022
    [9] WANG Qi, WANG Dan, ZHANG Rumin, GAO Yan.  Changes in constituents and contents of volatile organic compounds in Wisteria floribunda at three flowering stages . Journal of Zhejiang A&F University, 2014, 31(4): 647-653. doi: 10.11833/j.issn.2095-0756.2014.04.023
    [10] LIU Fang, XU Gaiping, WU Xingbo, DING Qianqian, ZHENG Jie, ZHANG Rumin, GAO Yan.  Effect of drought stress and re-watering on emissions of volatile organic compounds from Rosmarinus officinalis . Journal of Zhejiang A&F University, 2014, 31(2): 264-271. doi: 10.11833/j.issn.2095-0756.2014.02.015
    [11] FAN Er-qi, WANG Yun-hua, GUO Ye, YU Chun-lian, LIN Xin-chun.  Chemical components of essential oils from leaves of six Magnoliaceae species using GC-MS . Journal of Zhejiang A&F University, 2012, 29(2): 307-312. doi: 10.11833/j.issn.2095-0756.2012.02.023
    [12] ZHANG Jie, GUO Jin-xing, ZHANG Ru-zhong, WANG Xing-xing, ZHANG Xiao-ling, LIU Lin, HOU Ping, ZHANG Ru-min.  Changes in volatile organic compounds (VOCs) during storage for Myrica rubra‘Dongkui’ . Journal of Zhejiang A&F University, 2012, 29(1): 143-150. doi: 10.11833/j.issn.2095-0756.2012.01.024
    [13] MA Nan, ZHOU Shuai, LIN Fu-ping, GAO Yan, ZHANG Ru-min.  Volatile organic compounds of five hedgerow plants in Hangzhou . Journal of Zhejiang A&F University, 2012, 29(1): 137-142. doi: 10.11833/j.issn.2095-0756.2012.01.023
    [14] FENG Qing, GAO Qun-ying, ZHANG Ru-min, GAO Yan, HOU Ping.  Constituent analysis of volatile organic compounds in three Liliaceae . Journal of Zhejiang A&F University, 2011, 28(3): 513-518. doi: 10.11833/j.issn.2095-0756.2011.03.026
    [15] LIU Ying-kun, CAI Sha-yi, YU Wei-wu, LENG Hua-nan, GUI Ren-yi.  Organic acid exudates from roots of Phyllostachys pubescens with aluminum stress . Journal of Zhejiang A&F University, 2011, 28(4): 533-537. doi: 10.11833/j.issn.2095-0756.2011.04.002
    [16] GAO Qun-ying, GAO Yan, ZHANG Ru-min, DU Ming-li, LI Gang.  Aromatic composition in three plant species using TDS-GC/MS . Journal of Zhejiang A&F University, 2011, 28(2): 326-332. doi: 10.11833/j.issn.2095-0756.2011.02.025
    [17] ZHOU Shuai, MA Nan, LIN Fu-ping, ZHANG Ru-min, GAO Yan.  Diurnal variation of volatile organic compounds emitted from Cinnamomum camphora flowers . Journal of Zhejiang A&F University, 2011, 28(6): 986-991. doi: 10.11833/j.issn.2095-0756.2011.06.025
    [18] ZUO Zhao-jiang, ZHANG Ru-min, ZHU Jin-hu, WEN Guo-sheng, HOU Ping, GAO Yan.  Effects of volatile organic compounds (VOCs) from Artemisia frigida on germination and growth of four plant types . Journal of Zhejiang A&F University, 2009, 26(1): 76-82.
    [19] MA Dan-dan, LI Gen-you, SHI Bai-lin, YE Xi-yang.  Lillium concolor var. pulchellum: a new geographical distribution plant in Zhejiang . Journal of Zhejiang A&F University, 2007, 24(1): 119-120.
    [20] LI Gen-you, JIN Shui-hu, AI Jian-guo.  Species , characteristics and control measures of injurious plants in Zhejiang Province . Journal of Zhejiang A&F University, 2006, 23(6): 614-624.
  • [1]
    DUDAREVA N, PICHERSKY E. Biochemical and molecular genetic aspects of floral scents [J]. Plant Physiol, 2000, 122(3): 627-634.
    [2]
    DIXON R A. Natural products and plant disease resistance [J]. Nature, 2001, 411(6839): 843-847.
    [3]
    ZUO Zhaojiang, ZHANG Rumin, WANG Yong, et al. Analysis of main volatile organic compounds and study of aboveground structures in Artemisia frigid [J]. Chin J Plant Ecol, 2010, 34(4): 462-468.
    [4]
    PICHERSKY E, GERSHENZON J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense [J]. Curr Opin Plant Biol, 2002, 5(3): 237-243.
    [5]
    BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions:"talking trees" in the genomics era [J]. Science, 2006, 311(5762): 812-815.
    [6]
    SINGSAAS E L, LERDAU M, WINTER, K., et al. Isoprene increases thermotolerance of isoprene-emitting species [J]. Plant Physiol, 1997, 115(4): 1413-1420.
    [7]
    LORETO F, VELIKOVA V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes [J]. Plant Physiol, 2001, 127(4): 1781-1787.
    [8]
    LORETO F, PINELLI P, MANES F, et al. Impact of ozone on monoterpene emissions and evidence for an isoprenelike antioxidant action of monoterpenes emitted by Quercus ilex leaves [J]. Tree Physiol, 2004, 24(4): 361-367.
    [9]
    CALFAPIETRA C, FARES S, MANES F, et al. Role of biogenic volatile organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review [J]. Environ Pollut, 2013, 183: 71-80.
    [10]
    ZHENG Hua, JIN Youju, ZHOU Jinxing, et al. A preliminary study on human brain waves influenced by volatiles released from living Sorbaria kirilowii (Regel)Maxim. in different seasons [J]. For Res, 2003, 16(3): 328-334.
    [11]
    GAO Yan, JIN Youju, LI Haidong, et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species [J]. J Integr Plant Biol, 2005, 47(4): 499-507.
    [12]
    LEE J, PARK B J, TSUNTESUGU Y, et al. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects [J]. Public Health, 2011, 125(2): 93-100.
    [13]
    LI Juan, WANG Cheng, PENG Zhenhua, et al. The diuranal variation and influence factors of VOC of Platycladus orientalis in spring [J]. For Res, 2011, 24(1): 82-90.
    [14]
    XU Tingzhi. Phytogeography of the family Aceraceae [J]. Acta Bot Yunnan, 1996, 18(1): 43-50.
    [15]
    BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants [J]. Science, 1983, 221(4607): 277-279.
    [16]
    ZHANG Fengjuan, JIN Youju, CHEN Huajun, et al. The selectivity mechanism of Anoplophora glabripennison four different species of maples [J]. Acta Ecol Sin, 2006, 26(3): 870-877.
    [17]
    ZHANG Fengjuan, JIN Youju, Comparison of volatiles from Anoplophora glabripennis(Motsch.) and methyl jasmonate (MeJA)-applied Acer mono Maxim to identify wound signal transduction pathways [J]. Acta Ecol Sin, 2007, 27(7): 2990-2996.
    [18]
    ZHANG Fengjuan, LI Jiquan, XU Xingyou, et al. The volatiles of two greening tree species and the antimicrobial activity [J]. Acta Hortic Sin, 2007, 34(4): 973-978.
    [19]
    SONG Xiuhua, LI Chuanrong, XU Jingwei, et al. The analysis of volatile organic compounds and seasonal differences emitted from leaves of Acer truncatum [J]. Acta Hortic Sin, 2014, 41(5): 915-924.
    [20]
    LI Jianguang, JIN Youju, LUO Youqing, et al. Leaf volatiles from host tree Acer negundo: Diurnal rhythm and behavior responses of Anoplophora glabripennis to volatiles in field [J]. Acta Bot Sin, 2003, 45(2): 177-182.
    [21]
    BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils-a review [J]. Food Chem Toxicol, 2008, 46(2): 446-475.
    [22]
    GHELARDINI C, GALEOTTI N, MANNELLI L D C, et al. Local anaesthetic activity of β-caryophyllene [J]. Il Farmaco, 2001, 56(5): 387-389.
    [23]
    da SILVA S L, FIGUEIREDO P, YANO T. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves [J]. Eur J Pharmacol, 2007, 576(1): 180-188.
    [24]
    ORHAN I, KÜPELI E, ASLAN M, et al. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. [J]. J Ethnopharmacol, 2006, 105(1): 235-240.
    [25]
    OCETE M A, RISCO S, ZARZUELO A, et al. Pharmacological activity of the essential oil of Bupleurum gibraltaricum: anti-inflammatory activity and effects on isolated rat uteri [J]. J Ethnopharmacol, 1989, 25(3): 305-313.
    [26]
    LIAPI C, ANIFANDIS G, ANIFANTIS G, et al. Antinociceptive properties of 1, 8-Cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents [J]. Planta Med, 2007, 73(12): 1247-1254.
    [27]
    SINGH G, SINGH O P, de LAMPASONA M P, et al. Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil [J]. Flavour Frag J, 2003, 18(1): 62-65.
    [28]
    SAAB A M, TUNDIS R, LOIZZO M R, et al. Antioxidant and antiproliferative activity of Laurus nobilis L.(Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells [J]. Nat Prod Res, 2012, 26(18): 1741-1745.
    [29]
    GRASSMANN J, HIPPELI S, SPITZENBERGER R, et al. The monoterpene terpinolene from the oil of Pinus mugo L. in concert with α-tocopherol and β-carotene effectively prevents oxidation of LDL [J]. Phytomedicine, 2005, 12(6): 416-423.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0400.511.522.5Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.9 %FULLTEXT: 24.9 %META: 73.9 %META: 73.9 %PDF: 1.2 %PDF: 1.2 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 0.5 %其他: 0.5 %China: 0.6 %China: 0.6 %France: 0.1 %France: 0.1 %Korea Republic of: 0.6 %Korea Republic of: 0.6 %Malvern: 0.1 %Malvern: 0.1 %Spain: 0.1 %Spain: 0.1 %United States: 0.2 %United States: 0.2 %Yagisawa: 0.1 %Yagisawa: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.2 %上海: 1.2 %东京: 0.1 %东京: 0.1 %丽水: 0.1 %丽水: 0.1 %兰辛: 0.1 %兰辛: 0.1 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %北京: 20.4 %北京: 20.4 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南宁: 0.1 %南宁: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %合肥: 0.1 %合肥: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %定西: 0.1 %定西: 0.1 %宣城: 0.1 %宣城: 0.1 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 1.3 %张家口: 1.3 %扬州: 0.6 %扬州: 0.6 %斯泰伦博斯: 0.1 %斯泰伦博斯: 0.1 %昆明: 0.1 %昆明: 0.1 %普罗维登斯: 0.1 %普罗维登斯: 0.1 %杭州: 2.0 %杭州: 2.0 %武汉: 0.2 %武汉: 0.2 %汉中: 0.1 %汉中: 0.1 %汕头: 0.1 %汕头: 0.1 %洛阳: 0.1 %洛阳: 0.1 %深圳: 0.2 %深圳: 0.2 %温州: 0.4 %温州: 0.4 %温特黑文: 0.1 %温特黑文: 0.1 %漯河: 0.8 %漯河: 0.8 %潍坊: 0.5 %潍坊: 0.5 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.6 %福州: 0.6 %纽卡斯尔: 0.1 %纽卡斯尔: 0.1 %芒廷维尤: 11.8 %芒廷维尤: 11.8 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %葵涌: 0.1 %葵涌: 0.1 %西宁: 46.4 %西宁: 46.4 %诺沃克: 0.1 %诺沃克: 0.1 %运城: 0.2 %运城: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.6 %郑州: 0.6 %锡林郭勒盟: 0.2 %锡林郭勒盟: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %首尔: 0.1 %首尔: 0.1 %其他其他ChinaFranceKorea Republic ofMalvernSpainUnited StatesYagisawa[]上海东京丽水兰辛凤凰城加利福尼亚北京十堰南京南宁南通厦门合肥哈尔滨哥伦布天津太原定西宣城常州广州张家口扬州斯泰伦博斯昆明普罗维登斯杭州武汉汉中汕头洛阳深圳温州温特黑文漯河潍坊盐城石家庄福州纽卡斯尔芒廷维尤芝加哥苏州葵涌西宁诺沃克运城邯郸郑州锡林郭勒盟长沙长治阳泉青岛首尔Highcharts.com
  • Cited by

    Periodical cited type(4)

    1. 穆莹,张梦璐,白云海,张睿鹂,郑健,窦德泉. 基于EST-SSR标记的青榨槭天然种群遗传多样性分析. 植物资源与环境学报. 2022(02): 57-63 .
    2. 王永臻,唐凌凌,潘森,范曙峰,张珏,郑纪伟,教忠意. 槭属植物主要研究概述. 江苏林业科技. 2018(04): 45-49 .
    3. 杨建飞,宁莉萍,杨了,王杰,钱钰滢,陈颐萱. 黑壳楠木材构造特征及挥发性有机物成分. 浙江农林大学学报. 2018(05): 927-934 . 本站查看
    4. 贾梅,金荷仙,王声菲. 园林植物挥发物及其在康复景观中对人体健康影响的研究进展. 中国园林. 2016(12): 26-31 .

    Other cited types(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(1)

Article views(2650) PDF downloads(402) Cited by(17)

Related
Proportional views

Component analysis of volatile organic compounds from branches and leaves in seven Acer species

doi: 10.11833/j.issn.2095-0756.2016.03.022

Abstract: To analyze the volatile organic compounds (VOCs) released in Acer spp., VOCs from the branches and leaves of Acer ginnala, Acer palmatum, Acer buergerianum, Acer cinnamomifolium, Acer yangjuechi, Acer pubinerve, and Acer davidii were collected and analyzed by the dynamic headspace air-circulation method and thermal desorption system/gas chromatograhpy/mass spectrum (TDS-GC-MS). Results showed that the species of VOCs and their relative proportions varied significantly with species of Acer spp., A. ginnala and A. davidii released 17 and 20 kinds of VOCs, respectively, most of which were esters, aldehydes, and alcohols, such as 3-hexen-1-ol acetate, decanal, (Z)-3-hexen-1-ol, and nonanal. A. palmatum, A. buergerianum, and A. pubinerve released 15, 19, and 23 kinds, respectively, most of which were terpenes, esters, and aldehydes, such as ocimene, 3-hexen-1-ol acetate, (Z)-decanal, longifolene, and nonanal. A. cinnamomifolium released 24 kinds of VOCs, most of which were terpenes, such as ocimene, α-pinene, 3-carene, β-pinene, and terpinene. A. yangjuechi released 25 kinds, most of which were terpenes, aldehydes, and alcohols, such as decanal, longifolene, 2-ethyl-1-hexanol, caryophyllene, and nonanal. Thus, the health function of VOCs from these Acer species could be utilized in healthcare gardens. [Ch, 3 fig. 1 tab. 29 ref.]

WANG Qi, LIU Huahong, WANG Bin, et al. Component analysis of volatile organic compounds from branches and leaves in seven Acer species[J]. Journal of Zhejiang A&F University, 2016, 33(3): 524-530. DOI: 10.11833/j.issn.2095-0756.2016.03.022
Citation: WANG Qi, LIU Huahong, WANG Bin, et al. Component analysis of volatile organic compounds from branches and leaves in seven Acer species[J]. Journal of Zhejiang A&F University, 2016, 33(3): 524-530. DOI: 10.11833/j.issn.2095-0756.2016.03.022
  • 植物通过次生代谢释放的挥发性有机化合物(volatile organic compounds,VOCs)主要包括萜烯类、苯丙酸类/苯环型和脂肪酸衍生物[1-2]。这些VOCs是植物生长[3]、发育[4]和繁衍[5]以及抵抗不利条件[6-8]的重要手段,在人居环境中影响空气质量[9]和人体健康[10-12]。随着核磁共振和色谱等分析技术的发展,对园林树木释放VOCs的研究逐渐增多。目前,国内研究集中在油松Pinus tabuliformis,侧柏Platycladus orientalis等针叶树上[11, 13],而对阔叶树较缺乏系统研究。槭树Acer spp.隶属槭树科Aceraceae槭树属Acer阔叶乔木或灌木,主产于北温带地区,是温带落叶阔叶林、针阔混交林以及亚热带山地森林的建群种和重要组成,也是针叶林的伴生种,中国槭树种类世界最多,许多槭树为优良荒山绿化和园林造景树种[14]。糖槭A.saccharum,五角枫A.mono,元宝枫A.truncatum,复叶槭A.negundo和挪威槭A.platanoides等释放的VOCs具有信号传导[15]、抑制昆虫[16-17]和真菌[18]的作用,关于其他槭树释放VOCs尚未见报道。因此,本研究以槭树为试验材料,采用活体植株动态顶空气体循环采集法与热脱附/气相色谱/质谱(TDS-GC-MS)联用技术测定不同槭树释放VOCs,旨在探索槭树释放VOCs组分与规律,为进一步研究植物VOCs对环境质量的影响以及植物配置提供依据。

  • 以浙江农林大学东湖校区7种不同槭树苦茶槭Acer ginnala,鸡爪槭A.palmatum,三角槭A.buergerianum,樟叶槭A.cinnamomifolium,羊角槭A.yangjuechi,毛脉槭A.pubinerve和青榨槭A.davidii为材料。采集健康无损伤,树龄15 a左右植株枝叶释放VOCs。

  • 于2013年7月10-20日上午10:00-11:00,采用动态顶空气体循环法[11]采集7种槭树枝叶释放VOCs。选择生长一致的叶片,采集叶片40片·次-1,3次重复。采气袋容积为0.1 m3,采气时间30 min,气体流量0.1 m3·min-1

  • VOCs分析采用TDS-GC-MS联用技术,仪器及参数设置条件参考文献[11]。TDS(德国GERSTEL公司TD3型)工作条件:系统载气压力20 kPa,进样口温度250 ℃,脱附温度250 ℃,10 min,冷阱温度-100 ℃,保持3 min,冷阱进样时温度骤然升至260 ℃。GC(7890A,Agilent安捷伦科技有限公司)工作条件:色谱柱为30.00 m×250.00 μm×0.25 μm的HP-5 MS柱;程序升温;初始温度40 ℃,4 min后以6 ℃·min-1的速率升至250 ℃,保持3 min后以10 ℃·min-1的速率升至270 ℃,保持5 min。MS(5975C,Agilent安捷伦科技有限公司)工作条件:电离方式为EI,电子能量为70 eV,质量范围为4.67×10-27~75.02×10-27,接口温度280 ℃,离子源温度230 ℃,四级杆温度150 ℃。

  • 采用NIST 2008谱图库兼顾色谱保留时间,同时结合手工检索确定VOCs成分,利用峰面积归一化法测定各组分的百分含量,数据处理采用Origin 8软件。

  • 槭树科7种植物释放的VOCs通过TDS-GC-MS分析(图 1),扣除本底空气中的杂质后,共鉴定出48种化合物(表 1)。其中苦茶槭鉴定出17种化合物,主要是酯类、醛类和醇类,包括乙酸叶醇酯(63.0%),癸醛(6.5%)和2-乙基-1-己醇(5.6%)等10种化合物,占VOCs总量的89.7%;鸡爪槭检测出15种化合物,主要是酯类、萜类和醇类,包括乙酸叶醇酯(49.6%),长叶烯(9.7%),2-乙基-1-己醇(11.7%)等11种化合物,占VOCs总量的85.5%;三角槭检测出19种化合物,主要是萜类、醛类和酯类,包括罗勒烯(20.3%),长叶烯(10.6%),乙酸叶醇酯(13.0%),癸醛(11.3%)和壬醛(9.2%)等14种化合物,占VOCs总量的84.9%;樟叶槭检测出24种化合物,主要为罗勒烯(24.4%),α-蒎烯(15.6%)和3-蒈烯(11.9%)等18种萜类化合物,占VOCs总量的96.6%;羊角槭检测出25种化合物,主要是萜类、醛类和醇类,包括长叶烯(12.0%),石竹烯(10.1%),癸醛(14.9%),壬醛(8.6%)和2-乙基-1-己醇(11.8%)等17种化合物,占VOCs总量的81.1%;毛脉槭检测出23种化合物,主要为萜类和酯类,包括罗勒烯(11.4%),长叶烯(8.9%)和乙酸叶醇酯(18.3%)等18种化合物,占VOCs总量的79.0%;青榨槭检测出20种化合物,主要是醇类、酯类和醛类,包括乙酸叶醇酯(23.7%),癸醛(15.0%),壬醛(10.1%),(Z)-3-己烯-1-醇(11.1%)和2-乙基-1-己醇(7.7%)等11种化合物,占VOCs总量的80.9%。

    Figure 1.  Total ion current of volatile organic compounds released from branches and leaves in 7 Acer species

    挥发性有机化合物分子式峰面积Ax106
    苦茶槭鸡爪槭三角槭樟叶槭羊角槭毛脉槭青榨槭
    萜类
    3-蒈烯 3-gareneC10H16---330.39 ± 0.053.42 ± 0.03--
    α-蒎烯 α-pineneC10H162.90 ± 0.121.80 ± 0.371.08 ± 2.15433.87 ± 4.329.67 ± 1.013.17 ± 0.313.03 ± 1.76
    β-蒎烯 β-pineneC10H16---299.27 ± 1.1814.72 ± 0.019.88 ± 0.19-
    罗勒烯 ocimeneC10H16-2.36 ± 0.9732.55 ± 0.02679.70 ± 1.642.88 ± 0.2526.91 ± 0.89-
    反式罗勒烯 trans-ocimeneC10H16---102.86 ± 1.21-2.57 ± 0.01-
    别罗勒烯 Allo-ocimeneC10H16---39.87 ± 2.54---
    D-柠檬烯 D-limoneneC10H16---20.36 ± 0.23-7.36 ± 2.3414.49 ± 2.67
    松油烯terpineneC10H16---257.16 ± 9.18---
    焦烯 pyroneneC10H16---91.93 ± 8.496.83 ± 0.15--
    环葑烯 cyclofencheneC10H16---217.38 ± 6.37---
    萜品油烯terpinoleneC10H16---147.15 ± 9.81---
    香芹醇carveolC10H16O2.07 ± 0.01--9.22 ± 0.12-13.80 ± 0.84-
    1,4-按树脑 1,4-cineoleC10H18O---11.15 ± 1.67---
    萜品醇terpineolC10H16O---4.24 ± 5.02---
    卡达烯cadaleneC15H18-----4.66 ± 0.24-
    罗汉柏烯thujopseneC15H24-1.84 ± 0.99-----
    长叶环烯longicycleneC15H242.16 ± 0.692.83 ± 1.004.63 ± 2.174.37 ± 0.346.99 ± 1.273.26 ± 0.043.20 ± 0.56
    长叶烯 longifoleneC15H246.77 ± 2.52 13.74 ± 2.3517.04 ± 1.1621.40 ± 2.0244.23 ± 5.64 21.13 ± 2.7015.09 ± 0.02
    雪松烯cedreneC15H242.41 ± 1.333.01 ± 0.183.81 ± 0.464.92 ± 1.109.00 ± 1.265.25 ± 0.433.02 ± 2.39
    石竹烯 caryophylleneC15H241.95 ± 0.902.87 ± 0.458.97 ± 3.0015.99 ± 1.8037.01 ± 2.0110.09 ± 1.083.65 ± 1.22
    可巴烯 copaeneC15H24--3.50 ± 0.42--4.12 ± 0.58-
    荜澄茄烯 cadineneC15H24--2.47 ± 0.06--12.71 ± 0.11-
    衣兰油烯 muuroleneC15H24-----2.71 ± 0.13-
    法尼醇 farnesolC15H26O-----2.46 ± 0.60-
    醇类
    (Z)-3-己烯-1-醇 3-hexen- 1- ol,(Z)-C16H12O------32.73 ± 1.48
    2- 乙基-1-己醇 1-hexanol,2-ethyl -C8H18O11.84 ± 0.2116.55 ± 0.5010.74 ± 5.32 43.21 ± 0.0218.94 ± 0.6122.65 ± 6.54
    (E)-2-壬烯-1-醇 2-nonen- 1-ol,(E)- C9H180----3.50 ± 0.43-3.15 ± 0.49
    3,7-二甲基-1-辛醇1- octano, 3,7-dimethyl-C10H22O5.10 ± 0.042.17 ± 0.15 2.64 ± 0.173.00 ± 3.567.65 ± 0.03
    1-癸醇 1-decanolC10H22O2.95 ± 0.07---4.84 ± 0.20-3.81 ± 0.01
    反式-2-十二烯-1-醇trans- 2-dodecen-1-olC12H24O3.51 ± 2.161.65 ± 0.675.74 ± 0.999.82 ± 0.0616.83 ± 1.234.84 ± 0.5010.03 ± 0.95
    酯类
    甲酸乙酷formic acid,vinyl esterC3H4O24.23 ± 0.332.55 ± 0.02 -----
    乙酸叶醇酯 3-hexen-1-ol,acetateC8H14O2133.57 ± 5.6670.21 ± 8.8920.91 ± 1.29 15.37 ± 7.6143.37 ± 5.4069.83 ± 4.12
    乙酸己酯 acetic acid,hexyl esterC8H16O22.67 ± 0.252.12 ± 0.03 2.65 ± 0.11
    水杨酸甲酯 methyl salicylateC8H8O3- -3.39 ± 0.06----
    异丁酸叶醇酯hexenyl isobutanoateC10H18O2--2.92 ± 1.83----
    醋酸-2-乙基己酯acetic acid, 2-ethylhexyl esterC10H20O22.68 ± 0.09---15.70 ± 0.3311.05 ± 1.2110.06 ± 0.16
    乙酸龙脑酯bornyl acetateC12H20O2----4.10 ± 1.00--
    醛类
    2.4- 己二烯醛 2.4- hexadienalC6H8O------4.62 ± 0.11
    壬醛 nonanal>C9H18O10.04 ± 1.177.53 ± 1.9414.74 ± 3.2532.67 ± 2.5831.49 ± 3.4111.03 ± 2.7529.63 ± 3.06
    枯茗醛 cuminaldehyde>C10H20O---3.98 ± 0.05---
    癸醛 decanalC10H20O13.76 ± 1.356.00 ± 1.7918.18 ± 2.3127.37 ± 6.0054.87 ± 5.1412.03± 3.7744.24 ± 8.00
    十—醛 undecanal 酮类C11H22O--2.15 ± 0.34-5.88 ± 2.75--
    酮类
    乙醜苯 acetophenoneC8H8O----3.67 ± 1.22--
    异佛尔酮 isophoroneC9H14O--2.12 ± 0.03 12.93 ± 0.10 6.45 ± 0.21
    香叶基丙酮 acetone, Geranyl-烃类C13H22O--2.00 ± 0.728.55 ± 0.519.69 ± 0.01-3.04 ± 0.98
    烃类
    1-十二烯 1-dodeceneC12H243.31 ± 0.15---3.36 ± 0.32-4.42 ± 0.41
    2,6,10-三甲基-十四烯 tetradecane,2,6,10-trimethyl- C17H36----4.38 ± 0.81--
    含氮类
    己内酰胺caprolactam C6H11NO - 4.38 ± 1.27 3.55 ± 1.30 13.75 ± 1.01
    说明:-表示未检出。

    Table 1.  Main components of the volatile organic compounds released from branches and leaves in 7 Acer species (mean ± SD)

    槭树科7种植物释放VOCs的共有成分是α-蒎烯、长叶烯、长叶环烯、雪松烯、石竹烯、反式-2-十二烯-1-醇、壬醛和癸醛等8种化合物,分别占苦茶槭、鸡爪槭、三角槭、樟叶槭、羊角槭、毛脉槭和青榨槭各总量的20.5%,26.7%,46.2%,19.8%,57.2%,29.9%和38.0%。常绿树樟叶槭与落叶树苦茶槭、鸡爪槭、三角槭、羊角槭、毛脉槭和青榨槭共有成分分别为21.5%,32.6%,70.0%,67.4%,55.4%和43.9%。特有成分最多的是樟叶槭(24.4%),其次是青榨槭(12.7%)、毛脉槭(4.2%)、三角槭(3.9%)、羊角槭(3.3%)和鸡爪槭(1.3%)。

  • 7种槭树科植物释放VOCs种类和相对含量存在显著差异(图 2)。苦茶槭共有5类化合物,萜类6种(8.6%),醇类4种(11.0%),酯类4种(67.6%),醛类2种(11.2),烃类1种(1.6%);鸡爪槭含有萜类、烃类、醛类等5类化合物,萜类7种(20.1%),醇类1种(11.9%),酯类3种(52.9%),醛类2种(9.6%),含氮化合物1种(3.1%);三角槭包括萜类、酮类、醛类等6类化合物:萜类8种(46.1%),醇类2种(10.3%),酯类3种(17.0%),醛类3种(21.9%),酮类2种(2.6%),含氮化合物1种(2.2%);樟叶槭含有萜类、醇类、醛类等5类化合物:萜类18种(96.6%),醇类1种(0.4%),醛类3种(2.3%),酮类1种(0.3%),含氮化合物1种(0.5%);羊角槭含有萜类、醇类、酯类等6类化合物,萜类9种(36.7%),醇类5种(19.3%),酯类3种(9.6%),醛类3种(25.1%),酮类3种(7.2%),烃类2种(2.1%);毛脉槭含有萜类、醇类、酯类等4类化合物,萜类15种(54.9%),醇类3种(11.3%),酯类3种(24.1%),醛类2种(9.7%);青榨槭含有萜类、醇类、脂类等6类化合物,萜类6种(14.4%),醇类6种(27.2%),酯类2种(27.1%),醛类3种(26.6%),酮类2种(3.2%),烃类1种(1.5%)。萜类化合物含量最高的是樟叶槭,其相对含量分别是苦茶槭、鸡爪槭、三角槭、羊角槭、毛脉槭和青榨槭的14.6倍、4.8倍、2.1倍、2.6倍、2.8倍和6.7倍。在苦茶槭VOCs中脂类化合物相对含量最高,其相对含量是鸡爪槭、三角槭、羊角槭、毛脉槭和青榨槭的1.3倍、4.0倍、7.1倍、2.8倍和2.5倍,在樟叶槭中未检测到。

    Figure 2.  Relative contents of VOCs from branches and leaves in 7 Acer species

    Figure 3.  Constituents of VOCs from branches and leaves in 7 Acer species

  • 本研究对华东地区生长的7种槭树释放VOCs研究表明:同属不同种间植物释放VOCs种类和相对含量差异明显。常绿树樟叶槭与落叶类释放VOCs差异较大,说明槭树中常绿类与落叶类释放VOCs差异可能不完全反应组系差异。落叶类槭树间释放VOCs差异较小,共有成分较高(占63.0%~96.0%),其中鸡爪槭在落叶类中共有成分最高(占91.0%~94.0%),可能为所测落叶类槭树释放VOCs的核心类型。本研究中苦茶槭和鸡爪槭主要成分是酯类物质(50.0%以上),与张风娟等[16]测定华北地区生长的4种落叶类槭树释放成分一致;羊角槭释放的α-蒎烯、β-蒎烯、乙酸叶醇酯、长叶烯、长叶环烯和石竹烯等物质,在宋秀华等[19]测试的元宝枫7月释放VOCs中也检测到。这可能与采集方法、发育节律[19]、外界条件[20]、生长地域及亲缘关系等因素有关,槭树释放VOCs调控规律还需深入研究。

    萜类化合物在药剂预防和治疗心血管疾病、癌症以及抗菌、抗炎、抗病毒、抗氧化剂、抗高血糖等生物活性方面扮演着一定角色[21]。石竹烯具有镇静、抗焦虑、抗抑郁[22],抗炎[22]和抗肿瘤活性[23];α-蒎烯[24]、3-蒈稀[25]、β-蒎烯[26]能抗炎镇痛;罗勒烯是重要信号分子,抗菌杀虫[27],抗白血病肿瘤细胞增殖[28];萜品油烯能有效抑制低密度脂蛋白氧化[29]。槭树均释放α-蒎烯、石竹烯等萜类物质,樟叶槭富含罗勒烯、α-蒎烯、3-蒈烯、β-蒎烯和萜品油烯,三角槭和毛脉槭主要释放罗勒烯,羊角槭主要释放石竹烯,推测所测槭树有不同程度的保健功能,可作为保健型园林植物材料。苦茶槭和鸡爪槭富含的乙酸叶醇酯(63.1%,49.6%)是一种具有香蕉气味的高级香料,推测其还可种植提取香精。萜类及C6~C10醇醛类物质对细菌、真菌和放线菌有抑制作用[11, 18, 21],说明槭树具有良好杀菌价值。建议在公园或小区的林荫步道、锻炼区、保健区等活动场所适量配置槭树,以抑制微生物、改善空气质量、预防疾病,发挥槭树资源优势,构建优美人居环境。

Reference (29)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return