Volume 34 Issue 6
Nov.  2017
Turn off MathJax
Article Contents

JIN Wenjiang, HOU Ping, ZHANG Wei, LIANG Licheng, YU Fei. Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou[J]. Journal of Zhejiang A&F University, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
Citation: JIN Wenjiang, HOU Ping, ZHANG Wei, LIANG Licheng, YU Fei. Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou[J]. Journal of Zhejiang A&F University, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001

Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou

doi: 10.11833/j.issn.2095-0756.2017.06.001
  • Received Date: 2016-10-31
  • Rev Recd Date: 2017-01-12
  • Publish Date: 2017-12-20
  • To reveal heavy metal pollution of the Aojiang River Basin in Wenzhou, surface sediment and riparian soil were acquired from the river totaling 62 samples in 31 groups. Heavy metal content of chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) were measured with a handheld X-ray fluorescence spectrometer (X-MET 7000). Soil background values, variance analysis, correlation analysis, and evaluation methods for potential ecological problems were used to analyze spatial distribution and potential ecological risks of heavy metals. Results showed that 1) in general, the contents of four metals other than Pb in the riparian soil and surface sediment were significantly higher than background values of heavy metals in the soil of the Wenzhou Region (P < 0.05) representing an enrichment phenomenon. Also, content of Cr, Cu, Zn, and Pb in the sediment and soil had no significant differences (P>0.05), mainly because of the tidal water reflux at the seaport, but Ni content of sediment was significantly higher than riparian soil (P < 0.05). 2) The correlation analysis showed highly significant, positive correlations for Cr-Cu (rsurface sediments=0.666, rriparian soils=0.841, P < 0.01), Cu-Zn (rsurface sediments=0.781, rriparian soils=0.688, P < 0.01) and Cu-Zn (rsurface sediments=0.831, rriparian soils=0.800, P < 0.01) between surface sediments and riparian soils and significant correlations (rsurface sediments=0.433, P < 0.05) between Cu and Ni in surface sediments. However, Pb was not significantly correlated to the other elements (P>0.05). 3) The spatial distribution analysis of elemental contents showed a highly enrichment degree of heavy metals in the sediment and soil along the river reaches. In this river basin the potential single-factor ecological risks(Eri) of these five heavy metals was below 40 and the comprehensive potential ecological hazards(IR) was below 150. There was slight pollution from tanning, printing, and electroplating industries as well as from severe human disturbances, such as domestic garbage dumping and industrial sewage drainage, so that industrial management and human disturbances around this river basin should be lessened.

  • [1] SUN Jingyu, SUN Xiangyang, LI Suyan, WANG Chenchen, YUE Zongwei.  Sources and contamination assessment of heavy metals in the green land soils in Tongzhou District, Beijing . Journal of Zhejiang A&F University, 2024, 41(3): 517-525. doi: 10.11833/j.issn.2095-0756.20230435
    [2] SHAO Han, WANG Hu, WANG Yan, XU Hongfeng, SU Qian, LIU Yungen.  Effects of different land use modes on soil fertility and heavy metal contents in karst rocky desertification area . Journal of Zhejiang A&F University, 2022, 39(3): 635-643. doi: 10.11833/j.issn.2095-0756.20210437
    [3] YANG Jun, WANG Zuhui, LI Ang, HU Bo.  Heavy metal and phosphorus pollution characteristics and dredging depth in sediment of Wujin Port, Wuhan . Journal of Zhejiang A&F University, 2022, 39(3): 653-661. doi: 10.11833/j.issn.2095-0756.20210467
    [4] JIN Yu, YE Lingshuai, LI Huawei, HUANG Lin, LI Zhenyuan, FAN Xiongfei, ZHANG Chunling, FU Jianmin, DIAO Songfeng.  Soil heavy metal pollution and its ecological risk analysis in the main Diospyros kaki producing areas of Henan Province . Journal of Zhejiang A&F University, 2022, 39(6): 1303-1312. doi: 10.11833/j.issn.2095-0756.20210721
    [5] CUI Yanglin, GAO Xiang, DONG Bin, WEI Huimin.  Landscape ecological risk assessment of county . Journal of Zhejiang A&F University, 2021, 38(3): 541-551. doi: 10.11833/j.issn.2095-0756.20200461
    [6] PENG Bo, LIU Peng, WANG Yan, ZHANG Yefei, YANG Bo.  Pollution characteristics and risk assessment of heavy metals in surface water and sediments of Puzhehei watershed . Journal of Zhejiang A&F University, 2021, 38(4): 746-755. doi: 10.11833/j.issn.2095-0756.20200547
    [7] WANG Tao, XIAO Caixia, LIU Jiao, LU Xin.  Dynamic evolution and landscape ecological risks assessment of Qilu Lake in Yunnan Plateau . Journal of Zhejiang A&F University, 2020, 37(1): 9-17. doi: 10.11833/j.issn.2095-0756.2020.01.002
    [8] ZHANG Yanping, CHEN Zhenchao, TANG Fubin, REN Chuanyi, NI Zhanglin, QU Minghua.  Content and risk assessment of heavy metals in winter shoots of Phyllostachys edulis from Zhejiang, Sichuan, and Hunan Provinces . Journal of Zhejiang A&F University, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [9] ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE.  Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil . Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [10] ZHANG Su, LIANG Peng, WU Shengchun, ZHANG Jin, CAO Zhihong.  Temporal and spatial distribution of heavy metal contamination in Gaohong, Lin'an, Zhejiang Province . Journal of Zhejiang A&F University, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [11] XU Jialin, WU Shuai, LIANG Peng, ZHANG Jin, WU Shengchun.  Heavy metal pollution in rice of Gaohong Town with a health risk assessment . Journal of Zhejiang A&F University, 2017, 34(6): 983-990. doi: 10.11833/j.issn.2095-0756.2017.06.003
    [12] WEN Guojing, LIU Yungen, WANG Yan, HOU Lei, WANG Yanxia, GUO Yujing.  Temporal and spatial evolution of landscape patterns and ecological risk in the Puzhehei Lake basin . Journal of Zhejiang A&F University, 2017, 34(6): 1095-1103. doi: 10.11833/j.issn.2095-0756.2017.06.018
    [13] LIANG Licheng, YU Shuquan, ZHANG Chao, QIAN Li, QI Peng.  Spatial distribution and ecological risk assessment of heavy metals in Yongkang City . Journal of Zhejiang A&F University, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [14] WANG Fan, JIANG Hong, NIU Xiaodong.  Research advances in water vapor isotopic composition and its application in the hydrological research . Journal of Zhejiang A&F University, 2016, 33(1): 156-165. doi: 10.11833/j.issn.2095-0756.2016.01.021
    [15] ZHONG Bin, CHEN Junren, PENG Danli, LIU Chen, GUO Hua, WU Jiasen, YE Zhengqian, LIU Dan.  Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil . Journal of Zhejiang A&F University, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [16] ZHANG Wei, CHEN Shurong, HOU Ping.  Heavy metal contamination and potential ecological risk for sediments in the Puyang River Basin prior to and post dredging . Journal of Zhejiang A&F University, 2016, 33(1): 33-41. doi: 10.11833/j.issn.2095-0756.2016.01.005
    [17] YAN Wenbo, LIU Dan, PENG Danli, LI Song, CHEN Junren, YE Zhengqian, WU Jiasen, WANG Hailong.  Technology advances of ecological restoration and environmental remediation of heavy metal mines . Journal of Zhejiang A&F University, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [18] HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli.  Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil . Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [19] LI Dong-lin, JIN Ya-qin, ZHANG Ji-lin, RUAN Hong-hua.  Heavy metal soil pollution in the Qinhuai River riparian zone . Journal of Zhejiang A&F University, 2008, 25(2): 228-234.
    [20] JIANG Pei-kun, XU Qiu-fang, YANG Fang.  Relationship between water soluble organic carbon and heavy metal elements in the soil under Phyllostachy praecox stands . Journal of Zhejiang A&F University, 2003, 20(1): 8-11.
  • [1]
    GAO Xuelu, ZHOU Fengxia, CHEN C T A. Pollution status of the Bohai Sea:an overview of the environmental quality assessment related trace metals[J]. Environ Int, 2014, 62(4):12-30.
    [2]
    LEI Ming, ZENG Min, HU Liqiong, et al. Effects of different phosphorus-containing substances on heavy metals migration in soil-rice system[J]. Acta Sci Circumst, 2014, 34(6):1527-1533.
    [3]
    JIAN Minfei, LI Lingyu, XU Pengfei, et al. Spatiotemporal varian characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River -Poyang Lake Wetland[J]. Environ Sci, 2014, 5(5):1759-1765.
    [4]
    MA Zongwei, CHEN Kai, YUAN Zengwei, et al. Ecological risk assessment of heavy metals in surface sediments of six major Chinese freshwater lakes[J]. J Environ Qual, 2013, 4(2):341-350.
    [5]
    LI Haiyan, HUANG Yan, WANG Chongchen. Assessment on the pollution risk of heavy metal in the storm sewer sediments in Xicheng District[J]. Environ Poll Control, 2013, 32(3):28-33.
    [6]
    FANG Qisheng. Hazards of environmental mercury pollution-minamata disease[J]. Jiangsu Med J, 1979(7):42-45.
    [7]
    SHAO Hua. Japan's bone pain[J]. Geogr Transl Rep, 1984(1):64.
    [8]
    WANG Shaofang, LIN Jingxing, SHI Shiyun, et al. Geological disease caused by ecological environment:an example of cancer village in Shanxi Province[J]. Environ Prot, 2001(5):42-43, 46.
    [9]
    MEYBECK M, LESTEL L, BONTE P, et al. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950-2005)[J]. Sci Total Environ, 2007, 375(1/3):204-231.
    [10]
    WOITKE P, WELLMITZ J, HELM D, et al. Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube[J]. Chemosphere, 2013, 51(8):633-642.
    [11]
    MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. Geol J, 1969, 2(3):108-118.
    [12]
    CASTILLO M A, TRUJILLO I S, ALONSO E V, et al. Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain)[J]. Mar Poll Bull, 2013, 76(1/2):427-434.
    [13]
    ZHANG Zhihui, LI Bao, LIANG Renjun. Comparison of sediment heavy metal fractions at estuary and center of Nanyang zone from Nansi Lake, China[J]. Acta Sci Circumst, 2015, 35(5):1408-1416.
    [14]
    LI Lianfang, ZENG Xibai, LI Guoxue, et al. Institute of environment and sustainable development for agriculture[J]. Acta Sci Circumst, 2007, 27(2):289-297.
    [15]
    ZHANG Fen, YANG Changming, PAN Ruijie. Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Qingshan Reservoir in Lin'an City, Zhejiang Province of East China[J]. Chin J Appl Ecol, 2013, 24(9):2625-2630.
    [16]
    LI Ruzhong, XU Jingjing, JIANG Yanmin, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the riparian zone of Huixi stream in Tongling City[J]. Res Environ Sci, 2013, 26(1):88-96.
    [17]
    HE Wenming, WU Feng, ZHANG Changsheng, et al. Heavy metal pollution and its ecological risk assessment of riparian soils[J]. Chin J Ecol, 2011, 30(9):1993-2001.
    [18]
    ZHOU Limin, ZHENG Xiangmin, YAN Xiaoling. Heavy metal acumulation in sdiments of Suzhouhe River in Shanghai[J]. Urban Environ Urban Ecol, 2008, 21(2):1-5.
    [19]
    ZHANG Aijun. Discussion on countermeasures of waste water treatment in leather industry of Pingyang County[J]. Environ Sci Technol, 2005, 28(suppl 1):94-96.
    [20]
    XU Yue, SI Yanwu, XIAO Yejia, et al. Study on the cause and control of rural point source water pollution:a case study of Aojiang in Pingyang County, Wenzhou City[J]. Spec Zone Econ, 2014, 1(4):158-161.
    [21]
    LIU Weiguo, ZHANG Xinshen, LIU Minghua. Chromiun pollution and control in the leather-making industry[J]. Leather Sci Eng, 2001, 11(3):1-6.
    [22]
    LI Ping, FAN Juhong, LIU Rui, et al. A study on pollution characteristics and removal performance of heavy metals in a tannery and textile dyeing industrial park waste water treatment plant[J]. Environ Eng, 2012, 30(suppl 1):101-104.
    [24]
    ZHANG Wei, CHEN Shurong, HOU Ping. Heavy metal contamination and potential ecological risk for sediments in the Puyang River Basin prior to and post dredging[J]. J Zhejiang A & F Univ, 2016, 33(1):33-41.
    [25]
    ZHANG Zhaoyong, Jilili Abudouwaili, JIANG Fengqing. Pollution and potential ecology risk evaluation of heavy metals in river water, top sediments on bed and soils along banks of Bortala River, Northwest China[J]. Environ Sci, 2015, 36(7):2422-2429.
    [26]
    WANG Liqian, XIANG Feng. Comparison and application of portable X-Ray fluorescence spectrometer[J]. Environ Sci Surv, 2012, 31(5):97-101.
    [27]
    HAKANSON L. An ecological risk index for aquatic pollution control:a sedimentological approach[J]. Water Res, 1980, 14(8):975-1001.
    [29]
    ZHANG Ju, CHEN Shiyue, DENG Huanguang, et al. Heavy metal concentrations and pollution assessment of riparian soils in Shandong Province[J]. Acta Ecol Sin, 2012, 32(10):3144-3153.
    [30]
    FU Chuancheng, WANG Wenyong, PAN Jianjun, et al. Spatial-temporal variation and source apportionment of soil heavy metals in peri-urban:a case study of Zhetang Town, Nanjing[J]. Acta Pedol Sin, 2014, 51(5):1066-1077.
    [31]
    PANAYOTOVA T, DIMOVA-TODOROVA M, DOBREVSKY I. Purification and reuse of heavy metals containing wastewaters from electroplating plants[J]. Desalination, 2007, 206(1):135-140.
    [32]
    CHANG I, KIM B H. Effect of sulfate reduction activity on biological treatment of hexavalent Chromium[Cr(Ⅵ)] contaminated electroplating wastewater under sulfate-rich condition[J]. Chemosphere, 2007, 68(2):218-226.
    [33]
    SHANG Xiaojuan, ZHAO Shulan, DUO Li'an. Leaching characteristics of MSW compost heavy metals in soil under different temperatures and simulated acid rain[J]. Tech Equip Environ Poll Control, 2012, 6(3):995-999.
    [34]
    FAHIM N E, BARSOUM B N, EID A E, et al. Removal of Chromium (Ⅲ) from tannery wastewater using activated carbon from sugar industrial waste[J]. J Hazard Mater, 2006, 136(2):303-309.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)  / Tables(5)

Article views(3667) PDF downloads(626) Cited by()

Related
Proportional views

Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou

doi: 10.11833/j.issn.2095-0756.2017.06.001

Abstract: 

To reveal heavy metal pollution of the Aojiang River Basin in Wenzhou, surface sediment and riparian soil were acquired from the river totaling 62 samples in 31 groups. Heavy metal content of chromium (Cr), copper (Cu), zinc (Zn), nickel (Ni), and lead (Pb) were measured with a handheld X-ray fluorescence spectrometer (X-MET 7000). Soil background values, variance analysis, correlation analysis, and evaluation methods for potential ecological problems were used to analyze spatial distribution and potential ecological risks of heavy metals. Results showed that 1) in general, the contents of four metals other than Pb in the riparian soil and surface sediment were significantly higher than background values of heavy metals in the soil of the Wenzhou Region (P < 0.05) representing an enrichment phenomenon. Also, content of Cr, Cu, Zn, and Pb in the sediment and soil had no significant differences (P>0.05), mainly because of the tidal water reflux at the seaport, but Ni content of sediment was significantly higher than riparian soil (P < 0.05). 2) The correlation analysis showed highly significant, positive correlations for Cr-Cu (rsurface sediments=0.666, rriparian soils=0.841, P < 0.01), Cu-Zn (rsurface sediments=0.781, rriparian soils=0.688, P < 0.01) and Cu-Zn (rsurface sediments=0.831, rriparian soils=0.800, P < 0.01) between surface sediments and riparian soils and significant correlations (rsurface sediments=0.433, P < 0.05) between Cu and Ni in surface sediments. However, Pb was not significantly correlated to the other elements (P>0.05). 3) The spatial distribution analysis of elemental contents showed a highly enrichment degree of heavy metals in the sediment and soil along the river reaches. In this river basin the potential single-factor ecological risks(Eri) of these five heavy metals was below 40 and the comprehensive potential ecological hazards(IR) was below 150. There was slight pollution from tanning, printing, and electroplating industries as well as from severe human disturbances, such as domestic garbage dumping and industrial sewage drainage, so that industrial management and human disturbances around this river basin should be lessened.

JIN Wenjiang, HOU Ping, ZHANG Wei, LIANG Licheng, YU Fei. Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou[J]. Journal of Zhejiang A&F University, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
Citation: JIN Wenjiang, HOU Ping, ZHANG Wei, LIANG Licheng, YU Fei. Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou[J]. Journal of Zhejiang A&F University, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
  • 河流的重金属含量是河流的重要参考指标,与河流健康密切相关[1-2]。自然情况下,河流的重金属含量通常很低。工业排放的重金属会严重污染河流岸边土壤及河床表层底泥,威胁河流环境健康[3]。与其他的污染不同,重金属作为一类非降解性有毒有害物质,容易在水环境的沉积物中吸附和积累[4]。同时,排放到水环境中的重金属又很容易通过物质循环进入食物链,最终进入人体造成严重危害[5]。20世纪50年代日本发生的水俣病和骨痛病等公害病,20世纪70年代中国陕西发现的华县癌症村,均因重金属污染引起[6-8]。早在20世纪70年代,欧美等发达国家就开始对河流重金属污染开展研究,如塞纳河[9]、多瑙河[10]、莱茵河[11]等,迄今为止几乎包括了所有重要河流。其中CASTILLO等[12]对西班牙Andalucfa地区水体及底泥中的重金属生物有效性进行了分析,发现20世纪以来工业发展对该地区水体及底泥造成严重污染,尤其是铜、镍、铅污染最为严重。近年来,国内学者对河流、湖泊及水库的河岸土壤及表层底泥重金属污染展开大量研究[13-17]。其中,周立旻等[18]对苏州河上海段底泥重金属污染特征进行了分析,发现元素铜、铅、锌、铬等是主要产生生态危害的重金属元素,底泥重金属富集程度与沿岸的工业化发展进程密切相关。在浙江沿海的温州鳌江流域,工业生产和社会经济迅速发展,河流水环境重金属污染不断加重,给生态环境和人体健康带来了极大威胁[19-20]。2015年浙江省制定《浙江省重金属污染综合防治方案》,温州市平阳县被列为国家级重金属重点防控区,但截至目前尚未有人对该区鳌江流域的重金属开展研究。本研究拟以鳌江北港段为对象,研究河流表层底泥与河岸土壤中的重金属分布,并对潜在生态风险进行评价,以期为水环境治理和管理提供科学依据。

  • 鳌江流域是浙江省八大水系之一,位于浙江省温州市境内,是全国三大涌潮江之一,干流全长82.47 km。研究区域为流经平阳县内的鳌江干流和闹村溪、带溪、凤卧溪等3条支流。制革印染是当地主要产业,也是亚洲最大的加工地。制革大量使用含铬鞣剂和含高浓度三价铬盐[21];皮革染色常用铜盐(酒石酸铜钠、硫酸铜、醋酸铜)和铬盐作为染色的固色剂[22]。制革印染产生的废水约占全县废水总量的70%,污染物排放总量约为84 500 t·a-1[19];2015年温州市环境质量公报显示,鳌江流域为中度污染,已对该流域附近的居民生产生活用水产生极大影响[23]

  • 底泥样本采集于2016年3月,在干流和3条支流的拐弯处、堤坝、桥梁、河(溪)口等河道底泥淤积严重的断面设置采样点31个[24],共采集断面表层底泥和河岸土壤样品31组(图 1)。用重力式柱状沉积物采样器采集水下0~20 cm处底泥,样品采集后装入聚四氟乙烯自封袋中;用ETC-300A手动土壤采样器采集河岸0.3~2.0 m处0~20 cm土壤,样品采集后同样装入聚四氟乙烯自封袋中[25]。记录取样点位置、编号和周围环境等信息(表 1)。风干采集样品,去除植物残体和石砾,用玛瑙棒研压,过100目尼龙筛后备用;使用X-MET 7000射线荧光光谱仪(精度为1 mg·kg-1)[26]测量铬、镍、铜、锌、铅的质量分数。采用国家标准物质《土壤成分分析标准物质——暗棕壤》(GSS-1)和《水系沉积物标准物质》(GSD-12)进行控制。测量结果表明:GSS-1和GSD-12标准样品中重金属元素实测值与参考值的相对标准偏差(RSD)均小于10%。

    Figure 1.  Sampling location of surface sediments and riparian soil in Aojiang River

    编号河段采样点主要污染源
    1鳌江北港顺溪镇无明显污染源
    2前山村无明显污染源
    3溪南山路无明显污染源
    4雁荡山景区无明显污染源
    5浦潭村水坝生活垃圾堆放严重
    6龙涵村桥制革印染综合厂区的污水排放,生活垃圾倾倒严重
    7麻园桥制革印染综合厂区的污水排放,生活垃圾倾倒严重
    8麻园村制革印染综合厂区的污水排放,生活垃圾倾倒严重
    9清溪村制革印染综合厂区的污水排放,生活垃圾倾倒严重
    10下小南村废旧电镀厂附近,生活垃圾倾倒严重
    11青岙村废旧电镀厂附近,生活垃圾倾倒严重
    12显桥河口淤积大量污泥
    13下堡村河口淤积大量污泥
    14麻布桥河口淤积大量污泥
    15桃源大桥河口淤积大量污泥
    16岱口大桥河口淤积大量污泥
    17带溪湖窦村无明显污染源
    18腾龙路河口淤积大量污泥,周围有生活垃圾倾倒
    19铜牌厂电镀,制革印染综合厂区的污水排放
    20工业一区制革印染综合厂区的污水排放
    21工业二区制革印染综合厂区的污水排放
    22腾蚊桥制革印染综合厂区的污水排放
    23溪尾大桥河口淤积大量污泥,周围有大量生活垃圾倾倒
    24高桥村河口淤积大量污泥,周围有大量生
    25凤卧溪凤卧镇无明显污染源
    26凤安村无明显污染源
    27工业区制革印染综合厂区的污水排放
    28凤卧废弃桥桥梁处淤积大量污泥
    29闹村溪中村无明显污染源
    30闹村乡无明显污染源
    31闹村溪口车流量大

    Table 1.  Location of sampling sites and the surroundings

  • 用SPSS 19.0及GraphPad Prism 5.0进行数据分析,采样点分布图在Arc GIS 10.2软件中处理与输出。重金属质量分数与背景值的差异性分析采用单样本T检验法;不同介质的重金属质量分数差异性采用独立样本t检验法;数据正态分布检验采用K-S检验(P>0.05,样本呈正态分布),对符合正态分布的数据进行相关分析和Hakanson潜在生态风险评价[27]。具体公式如下:

    式中:Cfi为某污染因子;Ci为表层沉积物中某重金属的实测值;Cni为计算所需的参比值;Tri为沉积物中某污染物的毒性响应系数,5种重金属铬、铜、锌、镍、铅的毒性响应系数分别为2,5,1,5,5[20]Eri为某单个污染物的潜在生态风险指数。对应的污染级别可分为:Eri<40属于轻微生态危害;40≤Eri<80属于中等生态危害;80≤Eri<160属于强生态危害;160≤Eri<320属于很强生态危害;Eri≥320属于极强生态危害。IR为多种重金属综合潜在生态风险指数。对应的污染级别可分为IR<150属于轻微生态风险;150≤IR<300属于中等生态风险;300≤IR<600属于强生态风险;600≤IR<1 200属于很强生态风险;IR≥1 200属于极强生态风险。

  • 表 2所示:表层底泥和河岸土壤中的铬、镍、铜、锌质量分数均显著高于温州市土壤重金属背景值[28],而铅基本持平。实地调查资料显示(表 1):河流表层底泥污染来自于河水污染沉淀,岸边土壤污染则是因为涌潮及河水回流抬升产生的“二次污染”[29],因此,表层底泥与河岸土壤中重金属质量分数差异极小。

    介质w重金属/(mg.kg-1)
    表层底泥233 ± 38 a*32 ± 2 a*36 ± 4 a*159 ± 11 a*43 ± 2 a
    河岸土壤274 ± 54 a*26 ± 1 b*33 ± 4 a*157 ± 15 a*41 ± 3 a
    温州市土壤重金属背景值[23]52222011141
      说明: *表示表层底泥或河岸土壤中的重金属质量分数显著高于温州市土壤重金属背景值。不同小写字母表示表层底泥与河岸土壤之间差异显著(P<0.05),相同字母表示差异不显著(P>0.05)。

    Table 2.  Concentration of heavy metals in surface sediments and riparian soil

  • 对鳌江北港段表层底泥5种重金属离子相关性分析表明(表 3),表层底泥铬—铜、铬—锌、铜—锌的相关系数均达到极显著水平(P<0.01),铜—镍的相关系数达到显著水平(P<0.05),铅与其他元素间为无明显关系或负相关。河岸土壤中铬—铜、铬—锌、铜—锌的相关系数也均达到极显著水平(P<0.01),铅与其他各元素之间无明显相关性。底泥表层与岸边土壤中的重金属离子的相关性特征一致,表征两者的污染过程和强度基本一同。

    金属表层底泥河岸土壤
    11
    一0.01610.1291
    0.666**0.433*10.841**0.2511
    0.781**0.1040.831**10.688**0.3400.800**1
    一0.122一0.183一0.1020.02010.132一0.1650.2120.3451
      说明:***分别表示P<0.01极显著和P<0.05显著。土壤样本数n=31;沉积物样本数n=31。

    Table 3.  Correlation matrix of heavy metals in surface sediments and riparian soil

    富集程度较高的样点主要分布在鳌江北港段和带溪,有574.37万t·a-1制革印染污水排放,占全县废水总量的52.63%[19]。这与付传城等[30]对南京市柘塘镇土壤重金属研究结果相同,重金属污染主要来自当地工业排放。表层底泥中铜和镍的相关性主要来自电镀企业[31-32]。铅平均质量分数与背景值差异不显著,主要来源成土母质。

  • 图 2所示:铬在整个流域范围内鳌江北港7~12号和带溪19~22,24号采样点呈现高值区;镍只在鳌江北港9~16号的底泥呈现高值区;铜在鳌江北港5,9~12号和带溪19~22,24号采样点呈现高值区;锌在鳌江北港9~12号和带溪19~22,24号采样点呈现高值区;铅除17号点外,其他样点质量分数变化不明显。总的来看,这5种重金属质量分数较大值主要出现在鳌江北港段的9~12,16号和带溪的19~22,24号采样点。此外,发现流域2种介质中铬、铜、锌变化趋势基本一致,鳌江北港段表层底泥的镍与铜变化趋势较为一致,2组变化趋势的一致性与上文的相关性分析结果对应。

    Figure 2.  Spatial variation of heavy metals concentration in surface sediments and riparian soil

    部分采样点表层底泥和河岸土壤重金属富集程度较高,可能是生活垃圾堆放和工业排放等人为干扰因素造成的。尚小娟等[33]研究表明:垃圾中重金属因自由降水的淋溶,溶解释放到河岸土壤和河底底泥中,会导致其中的铬、镍和铜富集。根据表 1实际情况看,鳌江北港的5~12号采样点生活垃圾堆放是铬、镍和铜富集程度较高主要原因之一。FAHIM等[34]研究表明:铬主要来源于制革印染工业区大量排放的废水。根据表 1记录,鳌江北港的6~9号,带溪的20~22号采样点的周围是麻园工业区和腾蛟工业区,该工业区以制革印染业为主,解释了这些样点铬富集程度较高的原因。李萍等[22]对制革印染工业流程的研究表明:铜和锌来源于制革、印染企业生产过程中使用的染料和助剂,镍并非来自企业生产环节,而是一些印染企业废水处理过程中使用废酸所致,有些废酸源于电镀、镀锌等企业,里面含有包括铜、锌和镍在内的多种重金属杂质。因此鳌江北港段的大部分采样点铜、锌和镍富集程度较高,主要是制革印染业排放引起的。带溪17号采样点的河岸土壤铅质量分数较高,可能原因是该地的地壳和岩石铅本底值较高,采样周围未发现污染源。

  • 采用Hakanson潜在生态风险评价法,以温州市土壤背景值为参照值对鳌江流域表层底泥中重金属的潜在生态危害进行评估,结果见表 4。从单一重金属来看,鳌江流域表层底泥的重金属铬、镍、铜、锌和铅的各河段的生态风险指数(Eri)均小于40,属轻微污染;从多种重金属综合情况来看,各河段的表层底泥中多种重金属的综合潜在生态风险指数(IR)均小于150,属轻微污染。总的来看,表层底泥5种重金属潜在生态风险指数(Eri)从大到小依次为铬>铜>铅>镍>锌;各河段底泥重金属综合潜在生态风险系数(IR)从大到小依次为带溪>鳌江北>闹村溪>凤卧溪。

    河段EriIR
    鳌江北港段6.217.517.341.655.7728.47
    带溪15.195.8311.482.636.2941.42
    凤卧溪6.355.334.421.584.6622.34
    闹村溪5.437.745.971.786.5427.46
    平均值8.306.607.301.915.8229.92

    Table 4.  Potential ecological risk coefficient (Eri) and potential ecology risk index (IR) of heavy metals in surface sediments from the the Aojiang river

  • 采用Hakanson潜在生态风险评价法,以温州市土壤背景值为参照值对鳌江流域河岸土壤中重金属的潜在生态风险进行评估,结果见表 5。从单一重金属潜在生态风险指数(Eri)来看,鳌江流域河岸土壤的重金属铬、镍、铜、锌和铅的各河段Eri也均小于40,属轻微污染;从多种重金属综合潜在生态风险指数(IR)来看,各河段的河岸IR均小于150,属轻微污染。总的来看,河岸土壤中5种重金属潜在生态风险指数(Eri)从大到小依次为铬>铜>镍>铅>锌;各河段底泥重金属综合潜在生态风险指数(IR)从大到小依次为带溪>鳌江北港段>闹村溪>凤卧溪。

    河段EriIR
    鳌江北港段6.345.746.291.765.2325.36
    带溪19.975.1310.922.446.8345.29
    凤卧溪6.645.234.871.595.4623.79
    闹村溪7.747.187.892.786.0231.62
    平均值10.175.827.492.145.8931.52

    Table 5.  Potential ecological risk coefficient (Eri) and potential ecology risk index (IR) of heavy metals in sriparian soil from the of the Aojiang river

  • 统计特征分析表明:除铅外,其他重金属质量分数均显著高于温州市土壤背景值,表层底泥中镍的质量分数显著高于河岸土壤。鳌江流域表层底泥与河岸土壤铬、铜和锌质量分数表现极显著相关性,主要受制革印染业影响,涌潮河水回流抬升对岸边土壤产生二次污染;表层底泥镍与铜具有较强的相关性,主要受电镀业影响;铅与其他元素均无显著相关性,主要来自成土母质。流域铬、铜和锌重金属主要富集在鳌江北港段和带溪段,镍的富集主要在鳌江北港段,富集现象主要由于人为干扰;流域整体表层底泥及河岸土壤5种重金属单一潜在生态风险指数(Eri)均小于40,属轻微污染;2处的5种重金属综合潜在生态风险指数(IR)均小于150,也属轻度污染。其中铬的潜在生态风险最大,带溪的重金属综合潜在生态风险指数(IR)最大,应当开展针对性清理。

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return