JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
Citation: GAO Pingzhen, CHEN Shuanglin, GUO Ziwu, et al. Nitrogen-fixing plants and their economic value as an understory in Phyllostachys edulis stands[J]. Journal of Zhejiang A&F University, 2018, 35(1): 161-166. DOI: 10.11833/j.issn.2095-0756.2018.01.021

Nitrogen-fixing plants and their economic value as an understory in Phyllostachys edulis stands

DOI: 10.11833/j.issn.2095-0756.2018.01.021
  • Received Date: 2016-12-23
  • Rev Recd Date: 2017-06-12
  • Publish Date: 2018-02-20
  • To acknowledge the influence of nitrogen (N)-fixing plants as life forms as well as value of their ecotypic, economic, and medicinal parts in Phyllostachys edulis (moso bamboo) stands, N-fixing plants were surveyed in their main distribution areas of Zhejiang and Fujian Provinces using the method of field surveys. Relating research results of N-fixing plants not surveyed in Ph. edulis stands were also refered. Results showed that altogether there were 41 species in 23 genera of four families. Among them, Leguminosae accounted for 85.37% with Papillionaceae having 75.61% and non-Leguminosae, such as Elaeagnaceae, Euphorbiaceae, and Myricaceae accounted less. Plants were comprised of 20 shrub species, seven tree species, five herbaceous species, and nine vine species along with three ecotypic types of xerophyte, mesophyte, and hygrophyte, mainly mesophyte. The investigated 41 species all had medicinal value. In addition, 23 species had edible value, 10 species could be used as feed, and seven species could be used for fertilizer. According to their value as a medicine, the part of the plant in these N-fixing plants species under Ph. edulis stands was in general ranked as root > stem > whole plant > leaf > flower > fruit > seed. This research could provide a theoretical basis for the establishment of an eco-efficient compound management model in Ph. edulis stands.
  • [1] YE Peng, YE Changmin, ZHOU Tongyue, LU Yujun, YANG Fan, TANG Mengping.  Spatial structure characteristics of close-to-nature Phyllostachys edulis forests in Zhejiang Province . Journal of Zhejiang A&F University, 2020, 37(2): 228-234. doi: 10.11833/j.issn.2095-0756.2020.02.005
    [2] JIANG Zhonglong, YE Liuxin, LIU Jun, LIN Song, XU Minyu, WU Jiasen, LIU Juan, LIU Haiying.  Effects of enclosure duration on litter and soil water holding capacity of Phyllostachys edulis forest . Journal of Zhejiang A&F University, 2020, 37(5): 860-866. doi: 10.11833/j.issn.2095-0756.20190603
    [3] ZHANG Yanping, CHEN Zhenchao, TANG Fubin, REN Chuanyi, NI Zhanglin, QU Minghua.  Content and risk assessment of heavy metals in winter shoots of Phyllostachys edulis from Zhejiang, Sichuan, and Hunan Provinces . Journal of Zhejiang A&F University, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [4] TANG Sijia, TANG Mengping, SHEN Qianyong, DU Xiufang, PANG Chunmei.  Relationship of spatial structure and regeneration dynamics in Phyllostachys edulis . Journal of Zhejiang A&F University, 2018, 35(1): 1-9. doi: 10.11833/j.issn.2095-0756.2018.01.001
    [5] HU Ce, LIANG Xie'en, WANG Haixiang, XU Chao, ZHOU Zheyu, ZHU Li'na, HUANG Haonan, ZHANG Rumin, WEN Guosheng.  Diurnal variation of Phyllostachys edulis photosynthesis and transpiration during its rapid growth period . Journal of Zhejiang A&F University, 2018, 35(2): 277-283. doi: 10.11833/j.issn.2095-0756.2018.02.011
    [6] TANG Sijia, TANG Mengping, ZHAO Saisai, DU Xiufang, SHEN Qianyong, PANG Chunmei.  Competitive spatial patterns for Moso bamboo on Mount Tianmu . Journal of Zhejiang A&F University, 2018, 35(2): 199-208. doi: 10.11833/j.issn.2095-0756.2018.02.002
    [7] CHU Yanqin, NIU Shukui, CHEN Feng, RUI Shujun, WANG Kai.  Fire disturbance and environmental factors for the undergrowth in a Pinus tabulaeformis forest . Journal of Zhejiang A&F University, 2017, 34(1): 96-103. doi: 10.11833/j.issn.2095-0756.2017.01.014
    [8] YU Shuhong, ZHOU Guomo, SHI Yongjun, LÜ Yulong, SHEN Zhenming.  Net carbon sinks in the initial stages of moso bamboo stands . Journal of Zhejiang A&F University, 2016, 33(5): 807-815. doi: 10.11833/j.issn.2095-0756.2016.05.012
    [9] GU Honghao, WENG Jun, KONG Jiajie, YE Xiaomeng, LIU Yongjun, QI Lianghua, SONG Xinzhang.  Ecological stoichiometry of Phyllostachys edulis leaves with extensive and intensive management . Journal of Zhejiang A&F University, 2015, 32(5): 661-667. doi: 10.11833/j.issn.2095-0756.2015.05.002
    [10] LI Beilei, SONG Zhaoliang, JIANG Peikun, ZHOU Guomo, LI Zimin.  Phytolith distribution and carbon sequestration in China with Phyllostachys edulis . Journal of Zhejiang A&F University, 2014, 31(4): 547-553. doi: 10.11833/j.issn.2095-0756.2014.04.009
    [11] LI Cuiqin, ZHOU Yufeng, GU Lei, SHI Yongjun, SHEN Zhenming, XU Xiaojun, LI Ruijun.  Carbon transfer of Phyllostachys edulis filar products . Journal of Zhejiang A&F University, 2013, 30(1): 63-68. doi: 10.11833/j.issn.2095-0756.2013.01.009
    [12] FAN Yanrong, CHEN Shuanglin, YANG Qingping, LI Yingchun, GUO Ziwu, CHEN Shan.  Population growth and biomass allocation of Polygonatum cyrtonema within a Phyllostachys edulis forest utilizing bamboo density treatments . Journal of Zhejiang A&F University, 2013, 30(2): 199-205. doi: 10.11833/j.issn.2095-0756.2013.02.007
    [13] FAN Ye-qing, ZHOU Guo-mo, SHI Yong-jun, DONG De-jin, ZHOU Yu-feng.  Relationship of slope aspect and position on biomass and carbon storage in a Phyllostachys edulis stand . Journal of Zhejiang A&F University, 2012, 29(3): 321-327. doi: 10.11833/j.issn.2095-0756.2012.03.001
    [14] DONG Da-chuan, KONG Zhen, YANG Wei-xi, LI Shuang-shuang, GAO Rong-fu, GAO Pei-jun.  Spectral reflectance of leaves for Phyllostachys pubescens at different canopy layers using a 4th order derivative . Journal of Zhejiang A&F University, 2011, 28(6): 893-899. doi: 10.11833/j.issn.2095-0756.2011.06.009
    [15] LIU Shuo, ZHOU Guo-mo, BAI Shang-bin.  Light intensity changes on Cunninghamia lanceolata in mixed stands with different concentrations of Phyllostachys pubescens . Journal of Zhejiang A&F University, 2011, 28(4): 550-554. doi: 10.11833/j.issn.2095-0756.2011.04.005
    [16] ZHANG Li-yang, WEN Guo-sheng, WANG Sheng-jie, LIU Zhao-ling.  Four light-response models to estimate photosynthesis of Phyllostachys pubescens . Journal of Zhejiang A&F University, 2011, 28(2): 188-193. doi: 10.11833/j.issn.2095-0756.2011.02.003
    [17] YANG Zai-hong,  YANG Xiao-bo,  YU Xue-biao, LI Yue-lie, WU Qin-shu.  Single factor correlation analysis of diversity in a Eucalyptus plantation understory on Hainan Island . Journal of Zhejiang A&F University, 2007, 24(6): 725-730.
    [18] CAO Yong-hui, XIAO Jiang-hua, CHEN Shuang-lin, WU Bo-lin, WU Ming, ZHANG De-ming.  Effect of everygreen brood-leaved trees on Phyllostachys pubescens growth and their competition in the mixed forest . Journal of Zhejiang A&F University, 2006, 23(1): 35-40.
    [19] FAN Hai-lan, HONG Wei, HONG Tao, WU Chen-zhen, SONG Ping, ZHU Hui, ZHANG Qiong, LIN Yong-ming.  Effects of controlled burning on species diversity of undergrowth in Choerospondias axillaris plantations . Journal of Zhejiang A&F University, 2005, 22(5): 495-500.
    [20] Jiang Xiaoquan, Zhou Leizhi, Chen Xingzhi..  Superior Regions of Ecoclimate of Phyllostachys pubescens. . Journal of Zhejiang A&F University, 1995, 12(4): 380-387.
  • [1]
    LI Xianyuan, ZHANG Lei, CAO Wei. Investigation of the nodulation and nitrogen-fixing resource of legume in Guizhou Province [J]. J Southwest China Norm Univ Nat Sci, 2004, 29(3): 445-450.
    [2]
    HAMDI Y A, NAWAWY A S, TEWFIK M S, et al. Effect of herbicides on growth and nitrogen-fixation of alga, Tolypothrix tenuis [J]. Acta Micobiol Pol B, 1970, 2(1): 53-55.
    [3]
    SUN Shengpeng, PELLICER N C, MERKEY B, et al. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: a review [J]. Environ Eng Sci, 2010, 27(2): 111-126.
    [4]
    Bangkok Regional Office for Asia and the Pacific FAO. Nitrogen fixing trees: a training guide [J]. Mid East J Anesth, 1987, 8(2): 559-560.
    [5]
    BREWBAKER J L. Utilization of nitrogen fixing trees [J]. Pesquisa Agropecuaria Brasileira, 1984, 19(spec issue): 193-249.
    [6]
    BOND G. Taxonomy and distribution of non-legume nitrogen-fixing systems [G]//GORDON J C, WHEELER C T. Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications. The Hague: Martinus Nijhoff/Dr W Junk Publishers, 1983: 55-87.
    [7]
    DING Mingmao, HE Daoquan, YI Weimin, et al. A survey on the nitrogen-fixing legume resources in the Dinghushan natural forests [J]. Chin Biodivers, 1993, 1(1): 2-8.
    [8]
    HE Jiangzhou, GONG Mingfu, WEI Gehong. Investigation and nodulation characteristic of nitrogen fixation legumes resource in Tarim Basin [J]. J Tarim Univ, 2006, 18(3): 1-4.
    [9]
    HONG Wei, CHEN Hui, WU Chengzhen. A study on the compound fertilizer for Phyllostachys heterocycla cv. pubescens [J]. Sci Silv Sin, 2003, 39(1): 81-85.
    [10]
    GU Xiaoping, XIAO Jianghua, LIANG Wenyan, et al. The effects of N, P and K fertilizer applied in pulp bamboo stand [J]. Sci Silv Sin, 1998, 34(1): 25-32.
    [11]
    HUANG Dangliang. Study on the fertilization experiment of Phyllostachys pubescens [J]. J Fujian For Sci Technol, 1998, 25(4): 52-55.
    [12]
    HE Donghua, CHEN Junhui, XU Qiufang, et al. Effects of intensive management on abundance and composition of soil N2-fixing bacteria in Phyllostachys heterocycla stands [J]. Chin J Appl Ecol, 2015, 26(10): 2961-2968.
    [13]
    CHEN Yang, WANG Xinjie. Plant diversity under Phyllostachy pubescens forests in hilly area of northwest Fujian Province [J]. J Cent South Univ For Technol, 2014, 34(1): 84-88.
    [14]
    XU Youde. A study on the resources of medicinal pants in Phyllostachys pubescens forest in Wuyi Mountains [J]. Bamboo Res, 1990(2): 11-20.
    [15]
    ZHANG Ganghua, XIAO Jianghua, CHEN Shuanglin, et al. Study on the species diversity at moso bamboo stands of different type [J]. For Res, 2007, 20(5): 615-621.
    [16]
    HE Yiling. Understory in Different Stands of Phyllostachys pubescens and Its Relationship with Soil Nutrients [D]. Beijing: Chinese Academy of Forestry,2000
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 71.4 %META: 71.4 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 1.1 %其他: 1.1 %China: 1.2 %China: 1.2 %Cuernavaca: 0.1 %Cuernavaca: 0.1 %Kahramanmaraş: 0.5 %Kahramanmaraş: 0.5 %Osaka: 0.1 %Osaka: 0.1 %Rochester: 0.0 %Rochester: 0.0 %Turkey: 0.3 %Turkey: 0.3 %[]: 0.7 %[]: 0.7 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %临汾: 0.0 %临汾: 0.0 %丽水: 0.1 %丽水: 0.1 %乐山: 0.0 %乐山: 0.0 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伊犁: 0.0 %伊犁: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.1 %兰辛: 0.1 %北京: 16.2 %北京: 16.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南充: 0.1 %南充: 0.1 %南宁: 0.0 %南宁: 0.0 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.6 %台州: 0.6 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大津: 0.0 %大津: 0.0 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %常州: 0.0 %常州: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.7 %张家口: 1.7 %徐州: 0.0 %徐州: 0.0 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %斯洛伐克布拉迪斯拉发: 0.1 %斯洛伐克布拉迪斯拉发: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.0 %昆明: 0.0 %晋城: 0.0 %晋城: 0.0 %杭州: 4.5 %杭州: 4.5 %格兰特县: 0.0 %格兰特县: 0.0 %格里利: 0.1 %格里利: 0.1 %武汉: 0.2 %武汉: 0.2 %江门: 0.0 %江门: 0.0 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.0 %海得拉巴: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 0.4 %漯河: 0.4 %漳州: 0.1 %漳州: 0.1 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纳什维尔: 0.1 %纳什维尔: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 6.0 %芒廷维尤: 6.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %荆门: 0.0 %荆门: 0.0 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 51.4 %西宁: 51.4 %西安: 0.2 %西安: 0.2 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %铜川: 0.0 %铜川: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.3 %阳泉: 0.3 %阿克苏: 0.0 %阿克苏: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %黔西南: 0.1 %黔西南: 0.1 %其他其他ChinaCuernavacaKahramanmaraşOsakaRochesterTurkey[]上海东莞临汾丽水乐山伊斯坦布尔伊犁佛山保定兰辛北京十堰南京南充南宁博阿努瓦厦门台北台州吉林呼和浩特哈尔滨哥伦布商丘嘉兴大津天津宁波常州广州张家口徐州惠州成都扬州斯洛伐克布拉迪斯拉发新乡无锡昆明晋城杭州格兰特县格里利武汉江门沈阳洛阳济南海得拉巴淮南深圳温州湖州漯河漳州潍坊烟台石家庄福州秦皇岛纳什维尔绍兴芒廷维尤芝加哥苏州荆门衡水衡阳衢州西宁西安诺沃克贵阳赣州达州运城邯郸郑州铜川银川长春长沙长治阳泉阿克苏马鞍山黔西南Highcharts.com
  • Cited by

    Periodical cited type(16)

    1. 马关媛,蒋小金,刘佳庆,刘文杰,陈春峰,张瑞. 不同林型橡胶林土壤水分入渗特征及影响因子. 水土保持研究. 2025(01): 57-65+72 .
    2. 许在恩,叶子豪,傅伟,潘鑫,潘鑫桐,童志鹏. 间伐对千岛湖流域生态公益林氮磷养分流失的影响. 中国水土保持. 2024(02): 44-47 .
    3. 程思源,陈俏艳,乔栋,戴黎聪. 海南热带雨林不同林分凋落物储量及其持水特性. 热带地理. 2024(04): 700-708 .
    4. 沈秋红,何诗杨,许元科,吴夏华,周肄智,吴家森,叶丽敏. 间伐对杉木林枯落物和土壤水源涵养能力的动态变化分析. 福建农业科技. 2024(02): 10-15 .
    5. 陈家琛,蒋政,伍雄辉,曹光球,曹世江. 间伐对福建山区杉木人工林凋落物水文特征的影响. 生态学杂志. 2024(04): 1057-1064 .
    6. 蔚阿龙,温慧,丛日春,侯美娟,李瀚之. 坝上地区不同森林类型凋落物层水文效应. 浙江农林大学学报. 2024(05): 959-969 . 本站查看
    7. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 . 本站查看
    8. 郭海云,王根绪,孙守琴. 氮添加对亚高山针叶林土壤结构及水分入渗性能的影响. 水土保持学报. 2023(01): 238-245 .
    9. 何芳婷. 不同间伐强度对杉木人工林生长量的影响. 乡村科技. 2023(05): 101-103 .
    10. 罗秀龙,舒英格,龙慧,李雪梅. 喀斯特地区不同年限退耕草地的持水性能. 水土保持通报. 2023(05): 7-17 .
    11. 白荣芬. 辽东栎垂直层含水特征与全碳分析. 林业科技通讯. 2022(02): 64-66 .
    12. 高荣,成向荣. 间伐对杉木人工林林下植物多样性及其水源涵养能力研究. 绿色科技. 2022(08): 7-11+62 .
    13. 于忠亮,付世萃,王梓默,潘艳艳,苑景淇,杨帆,张大伟. 吉林省辽河流域不同植被类型土壤水源涵养能力分析. 中国水土保持. 2022(07): 51-55 .
    14. 王立超,夏江宝,赵玉尧,陈萍. 密度调控对鲁北黄泛平原区人工林土壤物理性质及植物多样性的影响. 水土保持通报. 2022(03): 43-48+56 .
    15. 郭昊澜,赵子豪,连晓倩,张婷,吴鹏飞. 间伐对杉木人工林水土保持功能影响的研究进展. 亚热带农业研究. 2021(04): 252-257 .
    16. 谭又铭,骆恒,陈龙,偏措西若. 不同间伐强度对德昌杉林木生长的影响. 绿色科技. 2021(23): 161-162 .

    Other cited types(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article views(2717) PDF downloads(448) Cited by(28)

Related
Proportional views

Nitrogen-fixing plants and their economic value as an understory in Phyllostachys edulis stands

doi: 10.11833/j.issn.2095-0756.2018.01.021

Abstract: To acknowledge the influence of nitrogen (N)-fixing plants as life forms as well as value of their ecotypic, economic, and medicinal parts in Phyllostachys edulis (moso bamboo) stands, N-fixing plants were surveyed in their main distribution areas of Zhejiang and Fujian Provinces using the method of field surveys. Relating research results of N-fixing plants not surveyed in Ph. edulis stands were also refered. Results showed that altogether there were 41 species in 23 genera of four families. Among them, Leguminosae accounted for 85.37% with Papillionaceae having 75.61% and non-Leguminosae, such as Elaeagnaceae, Euphorbiaceae, and Myricaceae accounted less. Plants were comprised of 20 shrub species, seven tree species, five herbaceous species, and nine vine species along with three ecotypic types of xerophyte, mesophyte, and hygrophyte, mainly mesophyte. The investigated 41 species all had medicinal value. In addition, 23 species had edible value, 10 species could be used as feed, and seven species could be used for fertilizer. According to their value as a medicine, the part of the plant in these N-fixing plants species under Ph. edulis stands was in general ranked as root > stem > whole plant > leaf > flower > fruit > seed. This research could provide a theoretical basis for the establishment of an eco-efficient compound management model in Ph. edulis stands.

JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
Citation: GAO Pingzhen, CHEN Shuanglin, GUO Ziwu, et al. Nitrogen-fixing plants and their economic value as an understory in Phyllostachys edulis stands[J]. Journal of Zhejiang A&F University, 2018, 35(1): 161-166. DOI: 10.11833/j.issn.2095-0756.2018.01.021
  • 生物固氮是自然界植物利用氮素的重要途径,固氮植物通过与根瘤形成的共生固氮体系[1],不仅为固氮植物提供氮素,而且在土壤改良及农业可持续发展中有着不可低估的作用[2-3]。大量研究表明,生物固氮是生态系统中有效氮的主要来源,据统计,地球上由豆科Leguminosae根瘤菌固定的氮素达8×1010 kg·a-1,约占全球生物固氮总量的40%,相当于全世界工业合成氮肥量的2倍[4]。自20世纪90年代以来,国内外陆续开展了固氮植物资源的调查研究,表明豆科植物是主要的固氮植物,1.8万种豆科植物中(含羞草亚科Mimosoideae逾0.28万种,苏木亚科Caesalpinioideae逾0.28万种,蝶形花亚科Papilionoideae逾l.20万种),98%的含羞草亚科、63%的蝶形花亚科及30%的苏木亚科植物能结瘤固氮,非豆科共生固氮植物相对较少[5-8]。调查发现毛竹Phyllostachys edulis林下植物资源较为丰富[9],但对毛竹林下固氮植物资源的调查少有涉及。毛竹是中国重要的经济竹种,分布区域广,栽培面积大,应用范围广,经济价值高,是中国南方毛竹主产区竹农的重要经济来源,也是区域社会经济发展的重要资源和生态屏障。氮是毛竹生长所需要的重要营养元素,林地氮素补充对毛竹林出笋率、立竹胸径和产量均有促进作用[10-12],季节性施肥是毛竹林丰产栽培的重要措施,尤其是施加氮肥。然而,长期过量施肥会导致毛竹林土壤养分失衡、酸化、板结、有害物质积累及生物多样性降低、竹材和竹笋产量与质量下降等负面影响。简单地依靠施氮肥为主的方式来提高竹林产品产量和品质,已经不能保障毛竹林立地生产力的稳定和生态系统完整性的维护,尤其是在当前毛竹林产品市场疲软,竹林经营效益大幅度下降,竹农经营毛竹林的积极性受到严重影响的背景下,如何系统地调查毛竹林下固氮植物资源,筛选生态适应性强、投入少、见效快、经济价值高、市场前景大的固氮植物种类,构建毛竹林下固氮植物高效复合经营模式,提高毛竹林自肥能力,对毛竹林可持续经营以及提高竹农经济收入等有着重要作用。基于此,笔者采取踏查法对浙江、福建毛竹主产区的毛竹林下固氮植物进行了调查,并对其经济价值进行了分析。

  • 2015年8-9月、2016年7-8月在浙江省龙游县、景宁县、桐庐县、富阳区、江山市和福建省沙县等毛竹主要分布区采用踏查法对人为干扰相对较小、林下植被较为丰富的毛竹林下固氮植物进行调查记录,并通过万方数据资源检索补充毛竹林下固氮植物种类。毛竹林下固氮植物生活型、经济价值、药用部位皆参考于《中国植物志》。调查数据用Word 2003统计软件进行处理。

  • 毛竹林下固氮植物种类较为丰富,共有4科23属41种(表 1)。其中,豆科(含羞草亚科、苏木亚科、蝶形花亚科3个亚科)20属35种,占毛竹林下固氮植物种类的85.37%。豆科中含羞草亚科和苏木亚科种类较少,蝶形花亚科种类较多,达17属31种,占毛竹林下固氮植物种类的75.61%。毛竹林下非豆科固氮植物有胡颓子科Elaeagnaceae,大戟科Euphorbiaceae和杨梅科Myricaceae等3个科,胡颓子属Elaeagnus有4种,占9.76%,算盘子属Glochidion和杨梅属Myrica各有1属,各占2.44%。

    Table 1.  Species of nitrogen-fixing plants under Phyllostachys edulis stands

  • 生活型是植物适应外界环境的形态表现。由表 2可知:毛竹林下固氮植物类型有乔木、灌木、草本和藤本。其中,乔木有2科5属7种,占毛竹林下固氮植物种类的17.07%,灌木、草本、藤本分别有3科9属20种、1科7属5种、1科5属9种,分别占毛竹林下固氮植物种类的53.66%,14.63%和21.95%。可见,毛竹林下固氮植物主要为灌木类型,乔木、草本和藤本分布相对较少。

    生活型
    科数/科 占总科数的比例/% 属数/属 占总属数的比例/% 种数/种 占总种数的比例/%
    乔木 2 50.00 5 21.74 7 17.07
    灌木 3 75.00 9 39.13 20 48.78
    草本 1 25.00 7 30.43 5 12.20
    藤本 1 25.00 5 21.74 9 21.95

    Table 2.  Life form of nitrogen-fixing plants under Phyllostachys edulis stands

    生态型是植物物种对其生境的基因方面的反应。由表 3可知:毛竹林下固氮植物有旱生、中生、湿生等3种生态型,其中,中生植物3科16属28种,占毛竹林下固氮植物种类的68.29%,旱生和湿生植物分别有1科3属6种、2科7属7种,分别占毛竹林下固氮植物种类的14.63%和17.07%。可见毛竹林下固氮植物主要为中生型,湿生和旱生分布较少。

    生态型
    科数/科 占总科数的比例/% 属数/属 占总属数的比例/% 种数/种 占总种数的比例/%
    旱生 1 25 3 13.04 6 14.63
    中生 3 75 16 69.57 28 68.29
    湿生 2 50 7 30.43 7 17.07

    Table 3.  Ecotype of nitrogen-fixing plants under Phyllostachys edulis stands

  • 毛竹林下固氮植物具有诸多方面的经济价值,如药用、食用、饲料、肥料等(表 4)。其中,调查到的毛竹林下固氮植物都具有药用价值,具有食用价值的种类有3科16属23种,占毛竹林下固氮植物种类的56.10%,可以用于饲料、肥料的分别有2科9属10种、1科7属7种,分别占毛竹林下固氮植物种类的24.39%和17.07%,此外,具有香料、化工等其他经济价值的有1科8属12种,占毛竹林下固氮植物种类的29.27%。具有2种以上多重经济价值的种类有3科21属31种,占毛竹林下固氮植物种类的75.61%。说明毛竹林下固氮植物具有很好的开发利用潜力。

    经济价值
    科数/科 占总科数的比例/% 属数/属 占总属数的比例/% 种数/种 占总种数的比例/%
    药用 4 100.00 23 100.00 41 100.00
    食用 3 75.00 16 69.57 23 50.10
    饲料 2 50.00 9 39.13 10 24.39
    肥料 1 25.00 7 30.43 7 17.07
    其他 1 25.00 8 34.78 12 29.27
    多重价值 3 75.00 21 91.30 31 75.61

    Table 4.  Economic value of nitrogen-fixing plants under Phyllostachys edulis stands

  • 表 5可知:毛竹林下固氮植物的药用部位有根、茎、叶、花、果实、种子、全株。其中,根药用的最多,茎次之,种子最少。根、茎、叶营养器官药用的分别有4科15属19种、4科11属15种和3科5属8种,分别占毛竹林下固氮植物种类的46.34%,36.59%和19.51%。花、果实、种子生殖器官药用的分别有1科6属7种、3科3属6种和2科3属3种,分别占毛竹林下固氮植物种类的17.07%,14.63%和7.32%。整株可药用的有1科7属12种,占毛竹林下固氮植物种类的29.27%。总体而言,毛竹林下固氮植物按入药部位分,其种类多少排序为根>茎>全株>叶>花>果实>种子。

    药用部位
    科数/科 占总科数的比例/% 属数/属 占总属数的比例/% 种数/种 占总种数的比例/%
    4 100.00 15 65.22 19 46.34
    4 100.00 11 47.83 15 36.59
    3 75.00 5 21.74 8 19.51
    1 25.00 6 26.09 7 17.07
    果实 3 75.00 3 13.04 6 14.63
    种子 2 50.00 3 13.04 3 7.32
    全株 1 25.00 7 30.43 12 29.27

    Table 5.  Medicinal parts of nitrogen-fixing plants under Phyllostachys edulis stands

  • 调查结果表明:毛竹林下固氮植物共有4科23属41种,主要为豆科植物,而且以蝶形花亚科种类为主。毛竹林下固氮植物有旱生、中生、湿生3种生态型,并且以中生为主,存在乔木、灌木、草本和藤本4种生活型,其中以灌木类型种类居多,说明灌木类固氮植物比其他类型的固氮植物更能适应毛竹林下环境,这与毛竹林劈山除草等人为经营干扰会导致一些林下植物生命过程破坏,难以完成完整的生殖过程有关[15],也与区域毛竹林经营中施用化学除草剂,清除了大量的林下植被,使乔木、草本、藤本类植物失去更新生长的竞争能力,有利于灌木生长等有关[16]

    毛竹林下固氮植物具有药用、食用、饲料、肥料等经济价值,所调查的全部固氮植物皆具有药用价值,1/2以上的种类具有食用价值,1/5左右的种类可用于饲料、肥料,而且兼具药用、食用、饲料、肥料等2种以上经济价值的种类约占4/5。毛竹林下固氮植物药用器官有根、茎、叶、花、果实、种子,有的可全株入药,其中,根部药用最多,种子药用最少。可见,结合毛竹及其林下固氮植物的生物学和生态学特性以及与环境之间的关系,科学合理的提出毛竹林下种植固氮植物的种类配比、空间配比、时间配比,选中最佳坡向坡位坡度,并结合不同的人为干扰,研究构建毛竹林下固氮植物复合经营模式,对于提高林地使用率和产出率,充分发挥毛竹林的经济、生态功能具有重要作用。

Reference (16)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return