[1] |
刘绍辉, 方精云.
土壤呼吸的影响因素及全球尺度下温度的影响[J]. 生态学报, 1997, 17(5): 469-476.
|
LIU Shaohui, FANG Jingyun.
Effect factors of soil respiration and the temperature's effection in the global scale[J]. Acta Ecol Sin, 1997, 17(5): 469-476.
|
[2] |
徐秋芳. 森林土壤活性有机碳库的研究[D]. 杭州: 浙江大学, 2003. |
XU Qiufang. Study on Labile Organic Carbon Pool in Forest Soils[D]. Hangzhou: Zhejiang University, 2003. |
[3] |
ELLERT B H, GREGORICH E G. Management-induced changes in the actively cycling fractions of soil organic matter[G]//MCFEE W W, KELLY J M. Carbon Forms and Functions in Forest Soils. Madison: Soil Science Society of America, 1995: 119-138. |
[4] |
KALBITZ K, SOLINGER S, PARK J H.
Controls on the dynamics of dissolved organic matter in soils:a review[J]. Soil Sci, 2000, 165(4): 277-304.
doi: 10.1097/00010694-200004000-00001 |
[5] |
赵劲松, 张旭东, 袁星.
土壤溶解性有机质的特性与环境意义[J]. 应用生态学报, 2003, 14(1): 126-130.
|
ZHAO Jinsong, ZHANG Xudong, YUAN Xing.
Characteristics and environmental significance of soil dissolved organic matter[J]. Chin J Appl Ecol, 2003, 14(1): 126-130.
|
[6] |
陈涵贞, 苏德森, 吕新.
武夷山常绿阔叶林土壤有机碳和微生物量碳的动态特征[J]. 农学学报, 2011, 1(12): 38-42.
doi: 10.3969/j.issn.1007-7774.2011.12.008 |
CHEN Hanzhen, SU Desen, LÜ Xin.
Dynamic characteristics of soil organic carbon and microbial biomass carbon of evergreen broad-leaved forest in Wuyi Mountain[J]. J Agric, 2011, 1(12): 38-42.
doi: 10.3969/j.issn.1007-7774.2011.12.008 |
[7] |
漆良华, 范少辉, 杜满义.
湘中丘陵区毛竹纯林、毛竹-杉木混交林土壤有机碳垂直分布与季节动态[J]. 林业科学, 2013, 49(3): 17-24.
doi: 10.11707/j.1001-7488.20130303 |
QI Lianghua, FAN Shaohui, DU Manyi.
Vertical distribution and seasonal dynamics of soil organic carbon in Phyllostachys edulis plantations and Ph. edulis-Cunninghamia lanceolata mixed forests in the hilly region of central Hunan, Southern China[J]. Sci Silv Sin, 2013, 49(3): 17-24.
doi: 10.11707/j.1001-7488.20130303 |
[8] |
曹建华, 潘根兴, 袁道先.
岩溶地区土壤溶解有机碳的季节动态及环境效应[J]. 生态环境, 2005, 14(2): 224-229.
|
CAO Jianhua, PAN Genxing, YUAN Daoxian.
Seasonal changes of dissolved organic carbon in soil:its environmental implication in karst area[J]. Ecol Environ, 2005, 14(2): 224-229.
|
[9] |
汪伟, 杨玉盛, 陈光水.
罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J]. 生态学杂志, 2008, 27(6): 924-928.
|
WANG Wei, YANG Yusheng, CHEN Guangshui.
Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China[J]. Chin J Ecol, 2008, 27(6): 924-928.
|
[10] |
何云, 周义贵, 李贤伟.
台湾桤木林草复合模式土壤微生物量碳季节动态[J]. 林业科学, 2013, 49(7): 26-33.
doi: 10.11707/j.1001-7488.20130704 |
HE Yun, ZHOU Yigui, LI Xianwei.
Seasonal dynamics of soil microbial biomass carbon in Alnusfor mosana forest-grass compound models[J]. Sci Silv Sin, 2013, 49(7): 26-33.
doi: 10.11707/j.1001-7488.20130704 |
[11] |
刘帅, 陈玥希, 孙辉.
西南亚高山-高山海拔梯度上森林土壤水溶性有机碳时间动态[J]. 西北林学院学报, 2015, 30(1): 33-38.
|
LIU Shuai, CHEN Yuexi, SUN Hui.
Temporal dynamics of DOC in forest soil along an elevation algradient of subalpine-alpine in the southwestern China[J]. J Northwest For Univ, 2015, 30(1): 33-38.
|
[12] |
RINNAN R, STARK S, TOLVANEN A.
Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J]. J Ecol, 2009, 97(4): 788-800.
doi: 10.1111/jec.2009.97.issue-4 |
[13] |
刘荣杰, 李正才, 王斌.
浙西北丘陵地区次生林与杉木林土壤水溶性有机碳季节动态[J]. 生态学杂志, 2013, 32(6): 1385-1390.
|
LIU Rongjie, LI Zhengcai, WANG Bin.
Seasonal dynamics of soil water-soluble organic carbon in secondary forests an Chinese fir plantations in hilly region of northwest Zhejiang Province, East China[J]. Chin J Ecol, 2013, 32(6): 1385-1390.
|
[14] |
刘纯, 刘延坤, 金光泽.
小兴安岭6种森林类型土壤微生物量的季节变化特征[J]. 生态学报, 2014, 34(2): 451-459.
|
LIU Chun, LIU Yankun, JIN Guangze.
Seasonal dynamics of soil microbial biomass in six forest types in Xiaoxing'an Mountains, China[J]. Acta Ecol Sin, 2014, 34(2): 451-459.
|
[15] |
王学娟, 周玉梅, 王秀秀.
长白山苔原生态系统土壤酶活性及微生物生物量对增温的响应[J]. 土壤学报, 2014, 51(1): 166-175.
doi: 10.11766/trxb201303120112 |
WANG Xuejuan, ZHOU Yumei, WANG Xiuxiu.
Responses of soil enzymes in activity and soil microbes in biomass to warming in tundra ecosystem on Changbai Mountains[J]. Acta Pedol Sin, 2014, 51(1): 166-175.
doi: 10.11766/trxb201303120112 |
[16] |
周运超, 潘根兴, 李恋卿.
太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的响应[J]. 环境科学, 2003, 24(1): 46-51.
|
ZHOU Yunchao, PAN Genxing, LI Lianqing.
Change of organic carbon pools and the responses to soil warming during laboratory incubations under different temperatures of 3 kinds of paddy soils in Tai Lake region, China[J]. Environ Sci, 2003, 24(1): 46-51.
|
[17] |
王清奎, 汪思龙, 于小军.
常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响[J]. 生态学杂志, 2007, 26(12): 1918-1923.
|
WANG Qingkui, WANG Silong, YU Xiaojun.
Soil carbon mineralization potential and its effect on soil active organic carbon in evergreen broadleaved forest and Chinese fir plantation[J]. Chin J Ecol, 2007, 26(12): 1918-1923.
|
[18] |
王莲阁, 高岩红, 丁长欢.
变温环境对典型石灰土有机碳矿化的影响[J]. 环境科学, 2014, 35(11): 4291-4297.
|
WANG Liange, GAO Yanhong, DING Changhuan.
Effects of variable temperature on organic carbon mineralization in typical limestone soils[J]. Environ Sci, 2014, 35(11): 4291-4297.
|
[19] |
洪起平, 丁平, 丁炳扬.凤阳山自然资源考察与研究[M].北京:中国林业出版社, 2007. |
[20] |
陈琴, 方升佐, 田野.
杨树和桤木落叶混合分解对土壤微生物生物量的影响[J]. 应用生态学报, 2012, 23(8): 2121-2128.
|
CHEN Qin, FANG Shengzuo, TIAN Ye.
Effects of the decomposition of poplar and alder mixed leaf litters on soil microbial biomass[J]. Chin J Appl Ecol, 2012, 23(8): 2121-2128.
|
[21] |
VANCE E D, BROOKS P C, JENKINSON D S.
An extraction method for measuring soil microbial biomass C[J]. Soil Boil Biochem, 1987, 19(6): 703-707.
doi: 10.1016/0038-0717(87)90052-6 |
[22] |
李忠佩, 张桃林, 陈碧云.
可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4): 544-552.
doi: 10.11766/trxb200308110408 |
LI Zhongpei, ZHANG Taolin, CHEN Biyun.
Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon[J]. Acta Pedol Sin, 2004, 41(4): 544-552.
doi: 10.11766/trxb200308110408 |
[23] |
刘荣杰, 吴亚丛, 张英.
中国北亚热带天然次生林与杉木人工林土壤活性有机碳库的比较[J]. 植物生态学报, 2012, 36(5): 431-437.
|
LIU Rongjie, WU Yacong, ZHANG Ying.
Comparison of soil labile organic carbon in Chinese fir plantations and natural secondary forests in north subtropical areas of China[J]. Chin J Plant Ecol, 2012, 36(5): 431-437.
|
[24] |
闫恩荣, 王希华, 陈小勇.
浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响[J]. 生态学报, 2007, 27(4): 1646-1655.
|
YAN Enrong, WANG Xihua, CHEN Xiaoyong.
Impacts of evergreen broad-leaved forest, degradation on soil nutrients and carbon pools in Tiantong, Zhejiang Province[J]. Acta Ecol Sin, 2007, 27(4): 1646-1655.
|
[25] |
杨玉盛, 郭剑芬, 陈光水.
森林生态系统DOM的来源、特性及流动[J]. 生态学报, 2003, 23(3): 547-558.
|
YANG Yusheng, GUO Jianfen, CHEN Guangshui.
Origin, property and flux of dissolved organic matter in forest ecosystems[J]. Acta Ecol Sin, 2003, 23(3): 547-558.
|
[26] |
李岩, 方晰, 项文化.
湘中丘陵区4种森林土壤水溶性有机碳含量及其与土壤养分的关系[J]. 土壤通报, 2014, 45(6): 1483-1490.
|
LI Yan, FANG Xi, XIANG Wenhua.
Contents of soil dissolved organic carbon and its relationships withsoil nutrients in four subtropical forests in central southern China[J]. Chin J Soil Sci, 2014, 45(6): 1483-1490.
|
[27] |
张勇, 胡海波, 黄玉洁.
不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J]. 环境科学研究, 2015, 28(12): 1870-1878.
|
ZHANG Yong, HU Haibo, HUANG Yujie.
Effect of different vegetation restoration models on molecular structure and stability of soil organic carbon[J]. Res Environ Sci, 2015, 28(12): 1870-1878.
|
[28] |
马丽娜, 王喜明, 代万安.
西藏高原日光温室菜地土壤碳、氮矿化特征研究[J]. 中国生态农业学报, 2013, 21(11): 1340-1349.
|
MA Lina, WANG Ximing, DAI Wanan.
Comparative analysis of carbon and nitrogen mineralization in soils under alpine meadow, farmland and greenhouse conditions in Tibet[J]. Chin J Eco-Agric, 2013, 21(11): 1340-1349.
|
[29] |
苏冬雪, 王文杰, 邱岭.
落叶松林土壤可溶性碳、氮和官能团特征的时空变化及与土壤理化性质的关系[J]. 生态学报, 2012, 32(21): 6705-6714.
|
SU Dongxue, WANG Wenjie, QIU Ling.
Temporal and spatial variations of DOC, DON and their function group characteristics in larch plantations and possible relations with other physical-chemical properties[J]. Acta Ecol Sin, 2012, 32(21): 6705-6714.
|
[30] |
LOVELL R D, JARVIS S C.
Soil microbial biomass and activity in soil from different grassland management treatments stored under controlled conditions[J]. Soil Biol Biochem, 1998, 30(14): 2077-2085.
doi: 10.1016/S0038-0717(98)00084-4 |
[31] |
蔡晓布, 彭岳林, 于宝政.
不同状态高寒草原主要土壤活性有机碳组分的变化[J]. 土壤学报, 2013, 50(2): 93-101.
|
CAI Xiaobu, PENG Yuelin, YU Baozheng.
Changes in major fractions of active soil organic carbon in alpine steppes different in states[J]. Acta Pedol Sin, 2013, 50(2): 93-101.
|
[32] |
GREGORICH E G, LIANG B C, DRURY C F.
Elucidation of the source and turnover of water soluble and microbial biomass carbon in agriculture soils[J]. Soil Biol Biochem, 2000, 32(5): 581-587.
doi: 10.1016/S0038-0717(99)00146-7 |
[33] |
赵满兴, KALBITZK, 周建斌.
黄土区几种土壤培养过程中可溶性有机碳、氮含量及特性的变化[J]. 土壤学报, 2008, 45(3): 476-484.
|
ZHAO Manxing, KARSTEN K, ZHOU Jianbin.
Variation of content and structural characteristics of dissolved organic carbon and nitrogen in soluble organic matter during mianeralization of several soils in the loess region[J]. Acta Pedol Sin, 2008, 45(3): 476-484.
|
[34] |
ZOGG G P, ZAK D R, RINGELBERG D B.
Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Sci Soc Am J, 1997, 61(2): 475-481.
doi: 10.2136/sssaj1997.03615995006100020015x |
[35] |
李恋卿, 潘根兴, 龚伟.
太湖地区几种水稻土的有机碳储存及其分布特性[J]. 科技通报, 2000, 16(6): 421-426.
|
LI Lianqing, PAN Genxing, GONG Wei.
Organic carbon storage in selected paddy soils in Taihu Lake region and their occurrence[J]. Bull Sci Technol, 2000, 16(6): 421-426.
|
[36] |
王翠萍.
不同土壤微生物量碳与有机碳矿化的关系研究[J]. 广东农业科学, 2013, (11): 52-54.
doi: 10.3969/j.issn.1004-874X.2013.11.016 |
WANG Cuiping.
The relationship of soil organic carbon andmineralization to themicrobial biomass content (MBC) under the conditions of different utilization types with soil[J]. Guangdong Agric Sci, 2013, (11): 52-54.
doi: 10.3969/j.issn.1004-874X.2013.11.016 |
[37] |
石玲, 戴万宏.
宣城红壤微生物量碳含量及其与土壤有机碳矿化的关系[J]. 土壤通报, 2009, 40(3): 547-551.
|
SHI Ling, DAI Wanhong.
Microbial biomass carbon content and its relations to soil organic carbon mineralization in red soils in Xuancheng, Anhui Province[J]. Chin J Soil Sci, 2009, 40(3): 547-551.
|
[38] |
KIRSCHBAUM M U F.
Will changes in soil organic matter act as a positive or negative feedback on global warming[J]. Biogeochemistry, 2000, 48(1): 21-51.
doi: 10.1023/A:1006238902976 |