JI Yongjie, YANG Congrui, ZHANG Wangfei, et al. Forest above ground biomass estimation using airborne P band polarimetric SAR data[J]. Journal of Zhejiang A&F University, 2022, 39(5): 971-980. DOI: 10.11833/j.issn.2095-0756.20220111
Citation: LIN Peng, LONG Ling, XU Jianfeng, et al. Effect of modified UV-curing ink on the light-induced discoloration of printed veneer[J]. Journal of Zhejiang A&F University, 2018, 35(2): 355-360. DOI: 10.11833/j.issn.2095-0756.2018.02.021

Effect of modified UV-curing ink on the light-induced discoloration of printed veneer

DOI: 10.11833/j.issn.2095-0756.2018.02.021
  • Received Date: 2017-03-02
  • Rev Recd Date: 2017-04-06
  • Publish Date: 2018-04-20
  • To reduce the light-induced discoloration of printed veneer, nano-TiO2 and nano-ZnO were chosen to modify red UV ink and yellow UV ink. Relative ink quality of 0.5%, 1.0%, 1.5% and 2.0% of modifier was added to UV ink by stirring. Then the modified UV ink was printed on the surface of poplar veneer. Using a laser particle sizer, UV-Vis spectrophotometer, and colorimeter, physical properties of the modified ink and color differences printed on poplar veneer were studied. Results showed that the average particle size of the UV inks modified by nano-TiO2 decreased a little while the UV inks modified by nano-ZnO had no change. Absorbance of UV ink in the ultraviolet region was increased with the addition of nano-TiO2 or nano-ZnO. Both of nano-TiO2 and nano-ZnO could prevent light-induced discoloration of printed veneer. But when UV ink modified by nano-ZnO was printed on a veneer surface, the color difference was lower than those modified by nano-TiO2. The optimum amount of nano-ZnO in red UV ink was 1.5%, and the ΔE* of the printed veneer was 0.41. Compared with the veneer printed by unmodified red UV ink, ΔE* decreased 78.1%. The optimum amount in yellow UV ink was 0.5%, and the ΔE* of the printed veneer was 3.12. Compared with veneer printed by unmodified yellow UV ink, ΔE* decreased 66.9%.
  • [1] BAO Minzhen, YU Wenji, CHEN Yuhe, YU Yanglun, WU Zaixing, HE Sheng, LI Neng.  Effects of CuAz preservative on the antiseptic performance and physical and mechanical properties of poplar scrimber . Journal of Zhejiang A&F University, 2020, 37(1): 165-170. doi: 10.11833/j.issn.2095-0756.2020.01.022
    [2] WEI Jinguang, WEI Yanan, BAO Minzhen, ZHANG Yahui, YU Yanglun, LI Changgui, YU Wenji.  Effect of density on porosity and physical-mechanical properties of high-performance scrimbers . Journal of Zhejiang A&F University, 2018, 35(3): 519-523. doi: 10.11833/j.issn.2095-0756.2018.03.017
    [3] YU Youming, WANG Cong, CAI Zhiyong, LU Keyang.  Bending performance of wood-aluminum composites: prediction and analysis . Journal of Zhejiang A&F University, 2017, 34(1): 1-6. doi: 10.11833/j.issn.2095-0756.2017.01.001
    [4] YU Hongwei, LIU Zhikun, LÜ Rongjin, LUO Congjun, LÜ Zejun, LI Guangyao.  Surface roughness of high moisture content wood and bamboo laminated lumber sliced veneer (bamboo) . Journal of Zhejiang A&F University, 2017, 34(4): 711-720. doi: 10.11833/j.issn.2095-0756.2017.04.018
    [5] GAO Shan, WANG Lihai, YANG Donghui, XU Wenhao.  Probe-wood contact and gauge pressure with Sylvatest-Duo for precision ultrasonic measurements of wood . Journal of Zhejiang A&F University, 2016, 33(5): 875-880. doi: 10.11833/j.issn.2095-0756.2016.05.021
    [6] CAO Lingyan, ZHAO Wenxiang, YU Xiaoying, DONG Congyong, JIN Zhenfu.  Super absorbent resin from grafting acrylic acid onto bamboo fiber . Journal of Zhejiang A&F University, 2016, 33(2): 295-299. doi: 10.11833/j.issn.2095-0756.2016.02.015
    [7] FANG Lu, WANG Zheng, XIONG Xianqing.  Properties of silane modified poplar veneer/high density polyethylene film composites with varying pressing temperatures . Journal of Zhejiang A&F University, 2016, 33(3): 483-488. doi: 10.11833/j.issn.2095-0756.2016.03.016
    [8] TRAN Minh Toi, WU Jinrong, CHEN Xiaoyi, DENG Yuhe, WANG Xinzhou, HE Shuangshuang, YU Wangwang, ZHANG Jian.  Properties of Salix discolor scrimber . Journal of Zhejiang A&F University, 2016, 33(4): 658-666. doi: 10.11833/j.issn.2095-0756.2016.04.015
    [9] BAI Xuebing, XU Jingtao, GUO Jingqiu, CHEN Kai.  Segmentation of wood surface knots and wormholes based on an improved LBF Model . Journal of Zhejiang A&F University, 2016, 33(2): 306-314. doi: 10.11833/j.issn.2095-0756.2016.02.017
    [10] LIU Duo, HE Lihui, JIANG Nianchun, BAO Binfu, SHEN Zhehong, CHEN Hao.  Combustion properties and bonding strength of plywood with a styrene-acrylic-SiO2 type adhesive . Journal of Zhejiang A&F University, 2016, 33(1): 116-121. doi: 10.11833/j.issn.2095-0756.2016.01.016
    [11] ZHANG Lei, CHANG Xiaoya, WU Jing, WANG Mingzhi.  Fire-retardant properties of an intumescent fire retardant coating for wood using 4A zeolite . Journal of Zhejiang A&F University, 2015, 32(1): 156-161. doi: 10.11833/j.issn.2095-0756.2015.01.023
    [12] WANG Shuqiang, PANG Xiaoren, HUANG Chengjian, SHEN Daohai, ZHANG Weigang, LI Yanjun.  Combustion properties of sliced bamboo plywood with chemical loading . Journal of Zhejiang A&F University, 2015, 32(4): 590-595. doi: 10.11833/j.issn.2095-0756.2015.04.015
    [13] ZHOU Zhu, FANG Yiming, YIN Jianxin, ZHOU Suyin, LUO Ruisen, ZHENG Jian.  Review of nondestructive detection of wood and wood products based on hyperspectral imaging technology . Journal of Zhejiang A&F University, 2015, 32(3): 458-466. doi: 10.11833/j.issn.2095-0756.2015.03.020
    [14] XIE Linkun, WANG Hongyan, GUAN Cheng, DU Guanben.  Silylated Pinus kesiya and Betula alnoides wood surfaces using hexamethyldisiloxane (HMDSO) plasma deposition . Journal of Zhejiang A&F University, 2015, 32(6): 903-908. doi: 10.11833/j.issn.2095-0756.2015.06.012
    [15] LUO Jingyi, FU Weirui, PAN Chengyuan.  Identification of wood-rotting fungi and their decay capability in six wood species . Journal of Zhejiang A&F University, 2015, 32(1): 1-10. doi: 10.11833/j.issn.2095-0756.2015.01.001
    [16] CHEN Yufei, WU Qiang, XU Guangmi, WANG Jingfang, FU Shenyuan, QIAN Jun.  Orthogonal experiments and analysis on cellulose nano-crystals extracted from Miscanthus floridulus . Journal of Zhejiang A&F University, 2014, 31(3): 399-403. doi: 10.11833/j.issn.2095-0756.2014.03.011
    [17] YANG You-you, LU Feng-zhu, BAO Bin-fu, SHEN Zhe-hong.  Mould and fire resistance of Phyllostachys edulis and Pinus massoniana treated with a nano antibiotic agent,TiO2 doped-Ag . Journal of Zhejiang A&F University, 2012, 29(6): 910-916. doi: 10.11833/j.issn.2095-0756.2012.06.016
    [18] YANG You-you, BAO Bin-fu, SHEN Zhe?-hong.  Outdoor mold-resistance and flame retardance of Pinus massoniana treated with nano-ZnO . Journal of Zhejiang A&F University, 2012, 29(2): 197-202. doi: 10.11833/j.issn.2095-0756.2012.02.008
    [19] FU Yun-lin, MO Yin-you, LIU Yi-xing, QIAO Meng-ji, CHEN Wen-jun.  Application of nanometer silicon dioxide in coating and idea of strengthening wood surface properties with nanometer silicon dioxide . Journal of Zhejiang A&F University, 2011, 28(4): 644-652. doi: 10.11833/j.issn.2095-0756.2011.04.020
    [20] LUO Xi-ping, FUShen-yuan, ZHOUChun-hui.  Photocatalytic degradation of 2,4-dichlorophenol using nanometer TiO2on modified bamboo charcoal . Journal of Zhejiang A&F University, 2007, 24(5): 524-527.
  • [1]
    ZHU Changqing. New technologies of surface decoration for wood-based panels[J]. China Wood Ind, 2016, 30(2):19-21.
    [3]
    GUO Hongwu, WANG Jinlin, LI Chunsheng. Study on the photochroma of coated veneer by water-borne clear prints[J]. Sci Silv Sin, 2009, 45(5):121-125.
    [4]
    CHEN Yongchang, LIU Guodong, LIU Xiaoxia. Research on the properties of the offset printing light aging phenomenon[J]. J Shaanxi Univ Sci Technol, 2015, 33(1):42-45.
    [5]
    CHANG Shangtzen, CHOU Pailung. Photo-discoloration of UV-curable acrylic coatings and the underlying wood[J].Polym Degradation Stab, 1999, 63(3):435-439.
    [6]
    SANG Ruijuan, WU Zhihui. Application of UV inkjet printing technology in the surface decoration of furniture[J]. Packag Eng, 2011, 32(6):29-32, 39.
    [7]
    PAPILLOUD S, BAUDRAZ D. Analysis of food packaging UV inks for chemicals with potential to migrate into food simulants[J]. Food Add Contam, 2002, 19(2):168-175.
    [8]
    WEI Xianfu. UV ink and its application technology[J]. China Print Pack Study, 2010, 2(6):1-8.
    [9]
    YAN Xiaoxing, WU Yan, MAO Weiguo, et al. Influence of modification of UV-curing wood coatings with SiO2 on its mechanical properties and gloss[J]. J Nanjing For Univ Nat Sci Ed, 2014, 38(4):173-176.
    [10]
    LONG Ling, WAN Xianglong, WANG Qibao, et al. Color fastness of veneer with nano-TiO2 modified waterborne coating[J]. China Wood Ind, 2010, 24(1):11-14.
    [11]
    YANG Pei, ZHANG Jinsheng, LI Lihua, et al. The study of water-borne wall coating's UV anti-aging ability with nano modified[J]. Appl Chem Ind, 2014, 43(7):1240-1242.
    [12]
    GUO Gang, YANG Dingming, XIONG Yuzhu, et al. Study on optical properties and application in polypropylene ageing resistance of nano-TiO2 and nano-ZnO[J]. J Funct Mater Contents, 2004, 35(suppl 1):183-187.
    [13]
    GUO Gang, WANG Binhua, HUANG Wanxia, et al. Study on optical properties and application in powder coating ultraviolet ray resistance of nano-TiO2[J]. J Sichuan Univ Eng Sci Ed, 2004, 36(5):53-56.
    [14]
    ZHAO Hongzhen, QI Shuhua, ZHOU Wenying, et al. The development of study on UV curing coating[J]. Chem Adhes, 2006, 28(5):352-356.
    [15]
    YANG Jinghua, YU Gang, HE Yaohua, et al. Dispersion of nano-TiO2 and modification of fluorocarbon paint[J]. Chem Ind Eng Prog, 2006, 25(7):803-806.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 75.8 %META: 75.8 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.4 %其他: 12.4 %其他: 3.4 %其他: 3.4 %Austell: 0.1 %Austell: 0.1 %Austin: 0.2 %Austin: 0.2 %Baden: 0.2 %Baden: 0.2 %Canada: 0.1 %Canada: 0.1 %Canton: 0.8 %Canton: 0.8 %Carrboro: 0.1 %Carrboro: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Colombia: 0.1 %Colombia: 0.1 %Edinburg: 0.2 %Edinburg: 0.2 %Egypt: 0.4 %Egypt: 0.4 %Elizabeth City: 0.1 %Elizabeth City: 0.1 %Flat Rock: 0.2 %Flat Rock: 0.2 %France: 0.2 %France: 0.2 %Germany: 0.1 %Germany: 0.1 %Hamilton: 0.2 %Hamilton: 0.2 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.1 %Iran (ISLAMIC Republic Of): 0.1 %Jonquiere: 0.2 %Jonquiere: 0.2 %Lithonia: 0.2 %Lithonia: 0.2 %Neptune City: 0.2 %Neptune City: 0.2 %Norman: 0.2 %Norman: 0.2 %Perth Amboy: 0.1 %Perth Amboy: 0.1 %Pontevedra: 0.1 %Pontevedra: 0.1 %Rochester: 0.3 %Rochester: 0.3 %Russian Federation: 0.2 %Russian Federation: 0.2 %Slovakia (SLOVAK Republic): 0.1 %Slovakia (SLOVAK Republic): 0.1 %Spain: 0.2 %Spain: 0.2 %Switzerland: 0.1 %Switzerland: 0.1 %Sydney Mines: 0.2 %Sydney Mines: 0.2 %Turkey: 0.0 %Turkey: 0.0 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 4.3 %United States: 4.3 %Williamsport: 0.1 %Williamsport: 0.1 %[]: 6.5 %[]: 6.5 %上海: 2.0 %上海: 2.0 %临汾: 0.0 %临汾: 0.0 %九江: 0.1 %九江: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %休斯敦: 0.4 %休斯敦: 0.4 %伦敦: 0.1 %伦敦: 0.1 %佛罗里达: 0.1 %佛罗里达: 0.1 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %利兹: 0.0 %利兹: 0.0 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %加拿大不列颠哥伦比亚帕克斯维尔: 0.1 %加拿大不列颠哥伦比亚帕克斯维尔: 0.1 %加拿大安大略: 0.1 %加拿大安大略: 0.1 %加拿大魁北克: 0.2 %加拿大魁北克: 0.2 %北京: 4.2 %北京: 4.2 %北伯根: 0.0 %北伯根: 0.0 %匹兹堡: 0.1 %匹兹堡: 0.1 %十堰: 0.0 %十堰: 0.0 %华沙: 0.0 %华沙: 0.0 %南京: 0.4 %南京: 0.4 %南充: 0.0 %南充: 0.0 %南昌: 0.1 %南昌: 0.1 %博阿努瓦: 0.0 %博阿努瓦: 0.0 %厦门: 0.1 %厦门: 0.1 %台州: 0.5 %台州: 0.5 %吉列: 0.1 %吉列: 0.1 %吉达: 0.2 %吉达: 0.2 %吉隆坡: 0.0 %吉隆坡: 0.0 %吕梁: 0.0 %吕梁: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.3 %哥伦布: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %圣保罗: 0.0 %圣保罗: 0.0 %圣路易斯: 0.1 %圣路易斯: 0.1 %埃克塞特: 0.3 %埃克塞特: 0.3 %天津: 0.1 %天津: 0.1 %娄底: 0.0 %娄底: 0.0 %宁波: 0.0 %宁波: 0.0 %安克雷奇: 0.1 %安克雷奇: 0.1 %安德森: 0.1 %安德森: 0.1 %安條克: 0.2 %安條克: 0.2 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 1.9 %密蘇里城: 1.9 %小石城: 0.1 %小石城: 0.1 %巴西: 0.2 %巴西: 0.2 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %巴黎: 0.2 %巴黎: 0.2 %布雷登顿: 0.1 %布雷登顿: 0.1 %布鲁克林区: 0.1 %布鲁克林区: 0.1 %常州: 0.1 %常州: 0.1 %广安: 0.0 %广安: 0.0 %广州: 0.1 %广州: 0.1 %开普吉拉多: 0.2 %开普吉拉多: 0.2 %弗吉尼亚: 0.2 %弗吉尼亚: 0.2 %张家口: 1.8 %张家口: 1.8 %扬州: 0.2 %扬州: 0.2 %抚州: 0.1 %抚州: 0.1 %斯洛伐克特伦钦: 0.0 %斯洛伐克特伦钦: 0.0 %无锡: 0.1 %无锡: 0.1 %晋城: 0.1 %晋城: 0.1 %杭州: 3.2 %杭州: 3.2 %森尼韦尔: 0.2 %森尼韦尔: 0.2 %武汉: 0.2 %武汉: 0.2 %法尔肯施泰因: 0.9 %法尔肯施泰因: 0.9 %波兰华沙: 0.1 %波兰华沙: 0.1 %泸州: 0.0 %泸州: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %济南: 0.2 %济南: 0.2 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %温特黑文: 0.2 %温特黑文: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.5 %漯河: 0.5 %烟台: 0.0 %烟台: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %科珀斯克里斯蒂: 0.3 %科珀斯克里斯蒂: 0.3 %纽瓦克: 0.4 %纽瓦克: 0.4 %纽约: 0.1 %纽约: 0.1 %罗利: 0.0 %罗利: 0.0 %美国: 0.1 %美国: 0.1 %美国佛罗里达西特拉斯: 0.1 %美国佛罗里达西特拉斯: 0.1 %芒廷维尤: 7.5 %芒廷维尤: 7.5 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %萨克拉门托: 0.1 %萨克拉门托: 0.1 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 30.7 %西宁: 30.7 %西安: 0.1 %西安: 0.1 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.7 %诺沃克: 0.7 %贵阳: 0.1 %贵阳: 0.1 %达林顿: 0.0 %达林顿: 0.0 %运城: 0.9 %运城: 0.9 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.1 %郑州: 0.1 %都伯林: 0.3 %都伯林: 0.3 %重庆: 0.3 %重庆: 0.3 %金华: 0.1 %金华: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %马尼拉: 0.0 %马尼拉: 0.0 %马德里: 0.1 %马德里: 0.1 %其他其他AustellAustinBadenCanadaCantonCarrboroCentral DistrictChinaColombiaEdinburgEgyptElizabeth CityFlat RockFranceGermanyHamiltonIndiaIran (ISLAMIC Republic Of)JonquiereLithoniaNeptune CityNormanPerth AmboyPontevedraRochesterRussian FederationSlovakia (SLOVAK Republic)SpainSwitzerlandSydney MinesTurkeyUnited KingdomUnited StatesWilliamsport[]上海临汾九江伊利诺伊州休斯敦伦敦佛罗里达六安兰州利兹加利福尼亚加利福尼亚州加拿大不列颠哥伦比亚帕克斯维尔加拿大安大略加拿大魁北克北京北伯根匹兹堡十堰华沙南京南充南昌博阿努瓦厦门台州吉列吉达吉隆坡吕梁呼和浩特哈尔滨哥伦布嘉兴圣保罗圣路易斯埃克塞特天津娄底宁波安克雷奇安德森安條克宣城密蘇里城小石城巴西巴音郭楞巴黎布雷登顿布鲁克林区常州广安广州开普吉拉多弗吉尼亚张家口扬州抚州斯洛伐克特伦钦无锡晋城杭州森尼韦尔武汉法尔肯施泰因波兰华沙泸州洛杉矶济南淮安深圳温州温特黑文湖州漯河烟台盐城石家庄福州科珀斯克里斯蒂纽瓦克纽约罗利美国美国佛罗里达西特拉斯芒廷维尤芝加哥苏州莫斯科萨克拉门托衢州襄阳西宁西安许昌诺沃克贵阳达林顿运城邵阳郑州都伯林重庆金华长春长沙长治阳泉阿什本青岛马尼拉马德里Highcharts.com
  • Cited by

    Periodical cited type(0)

    Other cited types(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(1)

Article views(2959) PDF downloads(448) Cited by(8)

Related
Proportional views

Effect of modified UV-curing ink on the light-induced discoloration of printed veneer

doi: 10.11833/j.issn.2095-0756.2018.02.021

Abstract: To reduce the light-induced discoloration of printed veneer, nano-TiO2 and nano-ZnO were chosen to modify red UV ink and yellow UV ink. Relative ink quality of 0.5%, 1.0%, 1.5% and 2.0% of modifier was added to UV ink by stirring. Then the modified UV ink was printed on the surface of poplar veneer. Using a laser particle sizer, UV-Vis spectrophotometer, and colorimeter, physical properties of the modified ink and color differences printed on poplar veneer were studied. Results showed that the average particle size of the UV inks modified by nano-TiO2 decreased a little while the UV inks modified by nano-ZnO had no change. Absorbance of UV ink in the ultraviolet region was increased with the addition of nano-TiO2 or nano-ZnO. Both of nano-TiO2 and nano-ZnO could prevent light-induced discoloration of printed veneer. But when UV ink modified by nano-ZnO was printed on a veneer surface, the color difference was lower than those modified by nano-TiO2. The optimum amount of nano-ZnO in red UV ink was 1.5%, and the ΔE* of the printed veneer was 0.41. Compared with the veneer printed by unmodified red UV ink, ΔE* decreased 78.1%. The optimum amount in yellow UV ink was 0.5%, and the ΔE* of the printed veneer was 3.12. Compared with veneer printed by unmodified yellow UV ink, ΔE* decreased 66.9%.

JI Yongjie, YANG Congrui, ZHANG Wangfei, et al. Forest above ground biomass estimation using airborne P band polarimetric SAR data[J]. Journal of Zhejiang A&F University, 2022, 39(5): 971-980. DOI: 10.11833/j.issn.2095-0756.20220111
Citation: LIN Peng, LONG Ling, XU Jianfeng, et al. Effect of modified UV-curing ink on the light-induced discoloration of printed veneer[J]. Journal of Zhejiang A&F University, 2018, 35(2): 355-360. DOI: 10.11833/j.issn.2095-0756.2018.02.021
  • 木制品的直接印刷是指通过印刷设备直接将各种色泽的花纹和图案印刷到木制品表面,对于人造板和纹理不佳的材种,木纹直接印刷可以大大提高其附加值[1-2]。直接印刷的木制品和其他的木制品表面装饰材料一样,在使用过程中会出现老化变色的问题[3-5]。印刷木制品的老化变色问题很大程度上是油墨的老化变色引起的,因此认为印刷油墨是木纹直接印刷工艺中的关键性因素。紫外光固化(UV)油墨由于干燥速度快,膜层硬度较高,耐磨性好,能真实再现细微的木纹纹理,被广泛用于木制品直接印刷中[6-8]。利用无机纳米材料对UV涂料进行改性是改善UV涂膜物理性能及耐光色牢度的一个重要途径,但采用无机纳米材料改性UV油墨的相关研究较少。闫小星等[9]采用二氧化硅对紫外光固化木器涂料进行改性,发现在适宜的相对质量和干燥时间下,紫外光固化木器涂层的硬度、附着力和冲击强度有明显提高。龙玲等[10]用制备的纳米二氧化钛浆料对水性木器漆进行改性,发现在不影响漆膜透明度的情况下,添加纳米二氧化钛的质量分数在1.5%时,漆膜对染色单板和素板均具有较好的紫外线屏蔽性能。杨培等[11]采用共混法,将分散后的复合纳米氧化锌-二氧化铈粉体掺杂到水性外墙涂料中,当改性纳米粉体占浆料的质量分数为1.0%~1.5%时,其紫外吸收抗老化能力最佳。本研究选取纳米二氧化钛和纳米氧化锌2种材料改性红色UV油墨和黄色UV油墨,考察改性油墨的物理性能和印刷薄木的耐光变色性能,优化印刷木制品用UV油墨的改性工艺,从而得到耐光变色性能较好的UV油墨和印刷薄木。

  • 油墨选用三原色中的红色UV油墨和黄色UV油墨(江苏海田技术有限公司);纳米二氧化钛(金红石型,北京德科岛金科技有限公司,固含量30%);纳米氧化锌(德国BYK公司,固含量40%);杨木薄木(3 500 mm × 1 800 mm × 1.5 mm,含水率8%);无水乙醇(工业级)。

  • 激光粒度仪(马尔文Mastersizer 3000E);紫外可见分光光度计(岛津UV-2700);UV固化机(江苏赫斯曼机械有限公司MXGainUP-W);紫外加速老化试验箱(常州市国立试验设备研究所LUV-1);色彩分析仪(柯尼卡美达能CR-400);数显高速搅拌机(最高转数2 000 r·min-1,金坛市医疗仪器厂)。

  • 采用的改性剂为纳米二氧化钛(T)和纳米氧化锌(U)。取适量的UV油墨于数显高速分散搅拌机容器中,500 r·min-1转速下预分散10 min;按比例添加称量好的纳米二氧化钛/纳米氧化锌于油墨中,转速1 000 r·min-1下搅拌20 min。分散完成后转入黑色小瓶中保存。分别添加质量分数为0.5%,1.0%,1.5%,2.0%的改性剂改性UV油墨。改性油墨编号如表 1所示,未改性的红色UV油墨和黄色UV油墨分别由R和Y表示。

    颜色 样品编号 改性剂 改性剂质量分数/%
    红色 RT0.5 纳米二氧化钛 0.5
    RT1.0 1.0
    RT1.5 1.5
    RT2.0 2.0
    RU0.5 纳米氧化锌 0.5
    RU1.0 1.0
    RU1.5 1.5
    RU2.0 2.0
    黄色 YT0.5 纳米二氧化钛 0.5
    YT1.0 1.0
    YT1.5 1.5
    YT2.0 2.0
    YU0.5 纳米氧化锌 0.5
    YU1.0 1.0
    YU1.5 1.5
    YU2.0 2.0

    Table 1.  Sample nunihers

  • 采用激光粒度仪测试改性前后UV油墨样品的粒度。称取0.05 g油墨样品加入到装有500 mL无水乙醇的测试烧杯中,搅拌均匀后进行粒度测试,计算机随后输出粒度数据。最终测试溶液的质量浓度为0.10 g· L-1

  • 采用UVProbe紫外分光光度计对油墨进行紫外光吸收测试。移液枪量取0.10 g· L-1的样品于比色管中,加入无水乙醇稀释,使稀释液质量浓度为0.01 g· L-1,摇匀待测。测试中参照样为乙醇。

  • 将UV油墨印刷至杨木薄木表面,UV固化机固化20 s。将印刷薄木制成350 mm × 850 mm × 1.5 mm的样品放入紫外加速老化实验箱中。LUV-1型老化箱是按照GB/T 14522-2008《机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法:荧光紫外灯》制作的,采用规定的UVB荧光紫外灯。控制黑标温度(60 ± 3)℃,持续老化168 h。用柯尼卡美达能CR-400色彩分析仪测量印刷薄木的颜色。测量时间分别为2,4,6,8,10,12,24,48,72,96,120,144和168 h。采用国际照明委员会颁布的CIELab颜色系统来评价颜色的变化。L*a*b*分别代表明度、红绿轴色品指数、黄蓝轴色品指数,用ΔE*表示色差。计算公式如下:

    其中:ΔL*Δa*Δb*分别表示试件老化前后L*a*b*的差值,ΔE*越小表示颜色变化越小,印刷木制品的耐光变色性能越好。

  • 在一定范围内,油墨粒径越小,油墨的稳定性越好。改性剂种类和用量对UV油墨粒径的影响实验结果如图 1所示。由图 1A图 1B可以看出:改性红色UV油墨时,添加的纳米二氧化钛质量分数增加,改性UV油墨的粒径减小;添加的纳米氧化锌质量分数增加,改性UV油墨粒径则略有增大。表明添加纳米二氧化钛作为红色UV油墨改性剂,对UV油墨的粒径(稳定性)影响不大,如若使用纳米氧化锌作为红色UV油墨改性剂,其用量不宜过大。与红色UV油墨相比,改性黄色UV油墨时,改性剂的加入对UV油墨粒径的影响不大(图 1C图 1D)。这可能是因为黄色UV油墨本身的粒径较大,改性剂粒子的加入也没有明显的团聚、沉淀及分散不良的状况。

    Figure 1.  Average particle size of modified/ulinlodified UV ink

  • 改性UV油墨的紫外吸收强度除了受改性剂种类的影响,还与改性剂用量,油墨粒径、黏度、稳定性等性能相关,进而体现为改性UV油墨的紫外吸收性能不一样。图 2为改性剂种类及用量对UV油墨紫外吸收强度的影响,图 2A图 2B分别为纳米二氧化钛和纳米氧化锌改性红色UV油墨的吸光度曲线,图 2C图 2D分别为纳米二氧化钛和纳米氧化锌改性黄色UV油墨的吸光度曲线。从图 2可以看出:未改性的黄色UV油墨在紫外区的吸光度明显大于未改性的红色UV油墨,这是由颜料本身差异造成的[12]。对于2种颜色UV油墨来说,改性剂的加入会使得UV油墨在紫外区的吸光度增大,这对UV油墨的耐光变色性能是有利的。对于同种颜色UV油墨来说,添加纳米二氧化钛后UV油墨的紫外吸收强度比添加相同用量纳米氧化锌的稍高,这是因为纳米二氧化钛在紫外区的吸光度高于纳米氧化锌的吸光度。金红石型二氧化钛是n型宽带隙半导体,其电子结构由充满电子的价电子带和没有电子的空轨道形成的导带构成,存在禁止带间隙。当能量大于或等于禁止带间隙的光子入射到二氧化钛粒子上时,比禁止带间隙能量大的光子被吸收,而使二氧化钛有强烈吸收紫外线的能力。氧化锌吸收紫外线的机理与金红石型二氧化钛类似。金红石型二氧化钛与氧化锌的室温下禁止带间隙值(Eg)分别为3.0 eV和3.2 eV,根据计算与之对应的自由激子的吸收带边始于413 nm和387 nm,吸收波长阈值都在紫外光区,这也是金红石型二氧化钛紫外吸收效率高于氧化锌的根本原因[13-14]。纳米粒子对紫外线的吸收作用受到粒径的限制,如果纳米粒子由于团聚等原因导致粒径增大,这种效应便会消失。

    Figure 2.  Ahsorhance of modified/unmodified UV ink

    在红色和黄色UV油墨中添加纳米二氧化钛或纳米氧化锌,均能增大油墨在紫外区的吸光度,即改性UV油墨印刷薄木的耐光变性能可得到改善。

  • 待杨木薄木上的UV油墨完全干燥后观察其表面颜色,发现UV油墨中添加纳米二氧化钛质量分数 > 1.5%时,印刷薄木上有明显白点出现;添加量越大,印刷薄木上的白点越多。原因是二氧化钛本身呈白色,改性剂添加量增大,其本色显现,影响了UV油墨的印刷效果。用纳米氧化锌改性UV油墨印刷也存在同样的问题,但是没有纳米二氧化钛明显。

  • 使用柯尼卡美达能CR-400色差分析仪对老化后的印刷薄木样品进行测试,计算得到的ΔE*图 3所示。由图 3可以看出:相较未改性红色UV油墨,改性UV油墨印刷的印刷薄木色差值有不同程度减小;说明改性UV油墨能不同程度地提高印刷薄木的耐光变色性能。经过168 h的老化,未改性红色UV油墨印刷薄木的ΔE*为1.88,添加纳米二氧化钛质量分数为1.0%和1.5%时,ΔE*分别为1.08和1.37,低于未改性的红色UV油墨。纳米氧化锌的加入对耐光变色性能的改善更优于纳米二氧化钛,添加的质量分数为0.5%时,色差值为0.76,随着添加量的增加,色差值稳定在0.4~0.6。

    Figure 3.  Influence of modifier type and dosage on color difference change of veneer printed by red UV ink

  • 对于黄色UV油墨来说,经改性UV油墨印刷的薄木色差值较未改性的有不同程度的减小(图 4)。纳米二氧化钛添加量不同,对印刷薄木的耐光变色性能影响不同。老化168 h后,未改性黄色UV油墨印刷薄木ΔE*为9.44,添加1.0%和1.5%纳米二氧化钛时,ΔE*分别为8.92和9.87,较未改性的变化不大;而当添加量为2.0%时,ΔE*为12.55,远高于未改性黄色UV油墨;当添加量为0.5%时,ΔE*值最低,为6.24,较未改性的下降了33.8%。添加纳米氧化锌质量分数为0.5%,1.0%,1.5%和2.0%时,ΔE*分别为3.12,3.88,3.51,2.78,最多较未改性UV油墨下降了70.5%。但是纳米氧化锌添加量为2.0%时,薄木表面微微泛白。

    Figure 4.  Influence of modifier type and dosage on color difference change of veneer printed by yellow UV ink

    纳米氧化锌的加入能够明显改善印刷杨木表面的耐光变色性能,添加量越大,ΔE*越小,这与纳米氧化锌改性UV油墨的吸光度趋势相一致,但相邻添加量改性UV油墨印刷薄木的ΔE*差别不明显。对于红色UV油墨印刷杨木,纳米二氧化钛加入量最优值为1.0%,对于黄色UV油墨印刷杨木,纳米二氧化钛加入量最优值为0.5%。纳米二氧化钛的改性效果不及纳米氧化锌,且纳米二氧化钛添加量增加,反而会产生负面作用。这是因为纳米二氧化钛虽然对紫外线的吸收优于纳米氧化锌,但是纳米二氧化钛浆料固含量低,且纳米二氧化钛本身为白色,加入到红色和黄色UV油墨中,可能发生团聚,使油墨泛白,在老化过程中,随着油墨的颜色变浅,白色的二氧化钛颗粒便会显现出来,导致颜色变化明显[15]

  • 经纳米二氧化钛或纳米氧化锌改性后,UV油墨的粒径变化不大,紫外区的吸光度变化明显。随着添加的改性剂质量分数的增加,紫外区的吸光度增大。

    添加质量分数1.5%的纳米氧化锌时,改性红色UV油墨印刷薄木ΔE*为0.41,比未改性样品相应值降低了78.1%;添加质量分数0.5%的纳米氧化锌,改性黄色UV油墨印刷薄木ΔE*为3.12,比未改性样品的相应值降低了66.9%。

    采用适量的纳米二氧化钛或纳米氧化锌改性UV油墨,均能提高印刷薄木的耐光变色性能。但是相比于纳米二氧化钛改性UV油墨印刷薄木,纳米氧化锌改性UV油墨印刷薄木的耐光变性能更佳。

Reference (15)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return