Volume 35 Issue 3
May  2018
Turn off MathJax
Article Contents

YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan. Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
Citation: YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan. Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006

Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis

doi: 10.11833/j.issn.2095-0756.2018.03.006
  • Received Date: 2017-10-11
  • Rev Recd Date: 2017-12-20
  • Publish Date: 2018-06-20
  • Taking moso bamboo (Phyllostachys edulis) seedlings and heavy metal contaminated soil for research object, the changes of chlorophy fluorescence parameter, concentration of heavy metals in plant and concentration of heavy metal and EDTA in soil solution were studied through soil column leaching test, which was expected to provide scientific basis for the strength of chelate-induced phytoremediation of contaminated soils. The results revealed that chlorophy fluorescence parameter was inhibited while treated with EDTA and organic acids, and the inhibitory effects reached peak at the treatment of 30.0 mmol·kg-1 organic acids. The addition of EDTA promoted the uptake of Zn, Cu and Cd by moso bamboo, while it was useless for organic acids. The activation effect reached peak under the treatment of 3.0 mmol·kg-1 EDTA. The concentration of heavy metal in the soil layer of 20 and 40 cm increased along with time, and achieved stability after 4 times collection, and reached peak at the last collection. For the soils treated with organic acids, they reached peak at the second collection, and then decreased gradually. The content of EDTA in soil solution was mainly concentrated in the 5 cm soil layer, and decreased along with time, and then kept stability at the fifth and ninth day, which was at the range of 110.9-122.9 mg·L-1 and 257.8-263.3 mg·L-1 respectively. It could be concluded that potential phytoremediation capability of moso bamboo in heavy metals contaminated soils would be enhanced effectively with application of EDTA, however, the environmental risks should be considered synthetically when using.
  • [1] TIAN Xiaoqingfan, XIAO Xiangqian, QIU Yufeng, BU Aiai, LEI Gang, CHEN Youchao, CAI Chunju, TANG Ronggui, CAI Yanjiang.  Responses of CO2 emissions and labile organic carbon to earthworm activities in Phyllostachys edulis soil . Journal of Zhejiang A&F University, 2024, 41(3): 1-10. doi: 10.11833/j.issn.2095-0756.20230369
    [2] SUN Jingyu, SUN Xiangyang, LI Suyan, WANG Chenchen, YUE Zongwei.  Sources and contamination assessment of heavy metals in the green land soils in Tongzhou District, Beijing . Journal of Zhejiang A&F University, 2024, 41(): 1-9. doi: 10.11833/j.issn.2095-0756.20230435
    [3] SHAO Han, WANG Hu, WANG Yan, XU Hongfeng, SU Qian, LIU Yungen.  Effects of different land use modes on soil fertility and heavy metal contents in karst rocky desertification area . Journal of Zhejiang A&F University, 2022, 39(3): 635-643. doi: 10.11833/j.issn.2095-0756.20210437
    [4] ZHAO Chu, QIAN Yanping, TIAN Runan.  Inhibitory effect of succinic acid, cinnamic acid and vanillic acid from Pontederia cordata on Microcystis aeruginosa . Journal of Zhejiang A&F University, 2020, 37(6): 1105-1111. doi: 10.11833/j.issn.2095-0756.20190722
    [5] ZHANG Yanping, CHEN Zhenchao, TANG Fubin, REN Chuanyi, NI Zhanglin, QU Minghua.  Content and risk assessment of heavy metals in winter shoots of Phyllostachys edulis from Zhejiang, Sichuan, and Hunan Provinces . Journal of Zhejiang A&F University, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [6] ZHANG Youqing, LI Kaili, LIU Xingquan, WANG Zhaojun, WU Jun, LU Pin.  Contamination and health risk assessment of dried bamboo shoots in Zhejiang Province . Journal of Zhejiang A&F University, 2017, 34(1): 178-184. doi: 10.11833/j.issn.2095-0756.2017.01.024
    [7] LIANG Licheng, YU Shuquan, ZHANG Chao, QIAN Li, QI Peng.  Spatial distribution and ecological risk assessment of heavy metals in Yongkang City . Journal of Zhejiang A&F University, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [8] JIN Wenjiang, HOU Ping, ZHANG Wei, LIANG Licheng, YU Fei.  Spatial distributions and ecological risks of heavy metals in surface sediments and riparian soils of the Aojiang River Basin, Wenzhou . Journal of Zhejiang A&F University, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [9] ZHANG Su, LIANG Peng, WU Shengchun, ZHANG Jin, CAO Zhihong.  Temporal and spatial distribution of heavy metal contamination in Gaohong, Lin'an, Zhejiang Province . Journal of Zhejiang A&F University, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [10] ZHANG Jianyun, GAO Caihui, ZHU Hui, ZHONG Shuigen, YANG Wenyan, ZHENG Junlong, WU Shengchun, SHAN Shengdao, WANG Zhirong, ZHANG Jin, CAO Zhihong, Peter CHRISTIE.  Mechanism and effects of biochar application on morphology and migration of heavy metals in contaminated soil . Journal of Zhejiang A&F University, 2017, 34(3): 543-551. doi: 10.11833/j.issn.2095-0756.2017.03.021
    [11] ZHONG Bin, CHEN Junren, PENG Danli, LIU Chen, GUO Hua, WU Jiasen, YE Zhengqian, LIU Dan.  Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil . Journal of Zhejiang A&F University, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [12] SUN Tao, LU Kouping, WANG Hailong.  Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions . Journal of Zhejiang A&F University, 2015, 32(1): 140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
    [13] HU Yangyong, MA Jiawei, YE Zhengqian, LIU Dan, ZHAO Keli.  Research progress on using Sedum alfredii for remediation of heavy metal-contaminated soil . Journal of Zhejiang A&F University, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [14] LIU Li-na, JIN Ai-wu.  Spatial variability of soil nutrients for an intensively managed Phyllostachys pubescens forest . Journal of Zhejiang A&F University, 2011, 28(5): 828-832. doi: 10.11833/j.issn.2095-0756.2011.05.025
    [15] LIU Ying-kun, CAI Sha-yi, YU Wei-wu, LENG Hua-nan, GUI Ren-yi.  Organic acid exudates from roots of Phyllostachys pubescens with aluminum stress . Journal of Zhejiang A&F University, 2011, 28(4): 533-537. doi: 10.11833/j.issn.2095-0756.2011.04.002
    [16] ZHANG Li, HE Xin-hua, CHEN Hu, LI Yi-wei, ZHANG Chao-lan.  Organic acid exudates from Myrica rubra roots with lead stress . Journal of Zhejiang A&F University, 2009, 26(5): 663-666.
    [17] JIANG Jun-ming, ZHU Wei-shuang, LIU Guo-hua, FEI Shi-ming, CHEN Xiu-ming.  Soil fertility in a Phyllostachys pubescens forest of southern Sichuan . Journal of Zhejiang A&F University, 2008, 25(4): 486-490.
    [18] LI Dong-lin, JIN Ya-qin, ZHANG Ji-lin, RUAN Hong-hua.  Heavy metal soil pollution in the Qinhuai River riparian zone . Journal of Zhejiang A&F University, 2008, 25(2): 228-234.
    [19] JIANG Pei-kun, XU Qiu-fang, YANG Fang.  Relationship between water soluble organic carbon and heavy metal elements in the soil under Phyllostachy praecox stands . Journal of Zhejiang A&F University, 2003, 20(1): 8-11.
    [20] XU Qiu-fang, JIANG Pei-kun.  Effects of fertilizing on biological properties of root region soil under Phyllostachys pubescens forest . Journal of Zhejiang A&F University, 2000, 17(4): 364-368.
  • [1]
    XU Jianfeng, WANG Lei, XIONG Ying, et al. Research progress on strengthening phytoremediation technologies for heavy metals contaminated soil[J]. J Environ Eng Technol, 2017, 7(3):366-373.
    [2]
    LI Zhiyuan, MA Zongwei, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China:pollution and health risk assessment[J]. Sci Total Environ, 2014, 468/469:843-853.
    [3]
    WAN Xiaoming, LEI Mei, CHEN Tongbin. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil[J]. Sci Total Environ, 2016, 563/564:796-802.
    [4]
    XI Meizhu, BAI Zhongke, ZHAO Zhongqiu. Advances on the study of chelate-enhanced phytorermediation for heavy metal contaminated soils[J]. Soil Fert Sci China, 2008(5):6-11.
    [5]
    LIU Xiaoli, ZENG Zhaoxia, TIE Baiqing, et al. Cd runoff load and soil profile movement after implementation of some typical contaminated agricultural soil remediation strategies[J]. Environ Sci, 2016, 37(2):734-739.
    [6]
    ZHANG Yuxiu, HUANG Zhibo, CHAI Tuanyao. Advances in mechanisms and applications of chelating agents for phytoremediation of heavy metal contaminated soils[J]. Progr Nat Sci, 2009, 19(11):1149-1158.
    [7]
    LUO Jie, QI Shihua, SOPHIE X W, et al. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems[J]. Ecotoxicology, 2016, 25(4):646-654.
    [8]
    LAI H Y, CHEN Z S. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis)[J]. J Hazard Mater, 2006, 137(3):1710.
    [9]
    CHIGBO C, BATTY L. Chelate-assisted phytoremediation of Cu-pyrene-contaminated soil using Z. mays[J]. Water Air Soil Pollut, 2015, 226(3):74. doi:10.1007/s11270-014-2277-2.
    [10]
    LONG Zhen, XU Haitao, ZHANG Yaping, et al. Removal of heavy metals from contaminated soils by activating agents combined with plants[J]. Environ Eng, 2016, 34(10):172-176.
    [11]
    YI Longsheng, WANG Wenyan, TAO Ye, et al. Removing heavy metals in contaminated soil by the organic acids[J]. J Agro-Environ Sci, 2013, 32(4):701-707.
    [12]
    DUQUÈNE L, VANDENHOVE H, TACK F, et al. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments[J]. Sci Total Environ, 2009, 407(5):1496-1505.
    [13]
    CHEN Junren, SHAFI M, LI Song, et al. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens)[J]. Sci Rep, 2015, 5(3):13554.
    [14]
    PENG Danli, SHAFI M, WANG Ying, et al. Effect of Zn stresses on physiology, growth, Zn accumulation, and chlorophyll of Phyllostachys pubescens[J]. Environ Sci Pollut Res, 2015, 22(19):14983-14992.
    [15]
    LIU Dan, ISLAM E, MA Junshan, et al. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system[J]. Bull Environ Contam Toxicol, 2008, 81(1):30-35.
    [16]
    CHEN Junren, SHAFI M, WANG Ying, et al. Organic acid compounds in root exudation of moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals[J]. Environ Sci Pollut Res, 2016, 23(20):20977-20984.
    [17]
    WU L H, LUO Y M, CHRISTIE P, et al. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil[J]. Chemosphere, 2003, 50(6):819-822.
    [18]
    DOUMETT S, LAMPERI L, CHECCHINI L, et al. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study:influence of different complexing agents[J]. Chemosphere, 2008, 72(10):1481-1490.
    [19]
    GUO Xiaofang, WEI Zebin, WU Qitang. Degradation and residue of EDTA used for soil repair in heavy metal-contaminated soil[J]. Trans Chin Soc Agric Eng, 2015, 31(7):272-278.
    [20]
    ZHENG Ruihang, ZHANG Xu, FANG Fang, et al. Technical studies of detection method of EDTA residue in the pickled product[J]. China Food Add, 2011(2):212-219.
    [21]
    JIAN Minfei, WANG Sichen, YU Houping, et al. Influence of Cd2+ or Cu2+ stress on the growth and photosynthetic fluorescence characteristics of Hydrilla verticillata[J]. Acta Ecol Sin, 2016, 36(6):1719-1727.
    [22]
    AZZARELLO E, PANDOLFI C, GIORDANO C, et al. Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa[J]. Environ Exp Bot, 2012, 81(3):11-17.
    [23]
    WEI Zebin, CHEN Xiaohong, WU Qitang, et al. Enhanced phytoextraction of heavy metals from contaminated soils using Sedum alfredii Hance with biodegradable chelate GLDA[J]. Environ Sci, 2015, 36(5):1864-1869.
    [24]
    LEE J, SUNG K. Effects of chelates on soil microbial properties, plant growth and heavy metal accumulation in plants[J]. Ecol Eng, 2014, 73:386-394.
    [25]
    CAY S, UYANIK A, ENGIN M S, et al. Effect of EDTA and tannic acid on the removal of Cd, Ni, Pb and Cu from artificially contaminated soil by Althaea rosea Cavan[J]. Int J Phytoremed, 2015, 17(6):568-574.
    [26]
    WU Longhua, LUO Yongming. Chelate-enhanced phytoremediation of copper polluted soil (Ⅲ) effect of EDTA and low molecule weight organic acids[J]. Acta Pedol Sin, 2002, 39(5):679-685.
    [27]
    UDOVIC M, LESTAN D. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching[J]. Chemosphere, 2009, 74(10):1367-1373.
    [28]
    YLIVAINIO K. Effects of iron(Ⅲ)chelates on the solubility of heavy metals in calcareous soils[J]. Environ Pollut, 2010, 158(10):3194-3200.
    [29]
    LI Yanli, LI Bowen, LIU Wei, et al. Effects of soil leaching with organic acid on vertical movement and the availability of Cd in soil[J]. J Soil Water Conserv, 2011, 25(1):34-38.
    [30]
    WU L H, LUO Y M, XING X R, et al. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk[J]. Agric Ecosyst Environ, 2004, 102(3):307-318.
    [31]
    SHAHID M, AUSTRUY A, ECHEVARRIA G, et al. EDTA-enhanced phytoremediation of heavy metals:a review[J]. Soil Sedim Contam Int J, 2014, 23(4):389-416.
    [32]
    MEERS E, RUTTENS A, HOPGOOD M J, et al. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J]. Chemosphere, 2005, 58(8):1011-1022.
    [33]
    EVANGELOU M W H, EBEL M, SCHAEFFER A. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum[J]. Chemosphere, 2006, 63(6):996-1004.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(2)

Article views(3077) PDF downloads(363) Cited by()

Related
Proportional views

Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis

doi: 10.11833/j.issn.2095-0756.2018.03.006

Abstract: Taking moso bamboo (Phyllostachys edulis) seedlings and heavy metal contaminated soil for research object, the changes of chlorophy fluorescence parameter, concentration of heavy metals in plant and concentration of heavy metal and EDTA in soil solution were studied through soil column leaching test, which was expected to provide scientific basis for the strength of chelate-induced phytoremediation of contaminated soils. The results revealed that chlorophy fluorescence parameter was inhibited while treated with EDTA and organic acids, and the inhibitory effects reached peak at the treatment of 30.0 mmol·kg-1 organic acids. The addition of EDTA promoted the uptake of Zn, Cu and Cd by moso bamboo, while it was useless for organic acids. The activation effect reached peak under the treatment of 3.0 mmol·kg-1 EDTA. The concentration of heavy metal in the soil layer of 20 and 40 cm increased along with time, and achieved stability after 4 times collection, and reached peak at the last collection. For the soils treated with organic acids, they reached peak at the second collection, and then decreased gradually. The content of EDTA in soil solution was mainly concentrated in the 5 cm soil layer, and decreased along with time, and then kept stability at the fifth and ninth day, which was at the range of 110.9-122.9 mg·L-1 and 257.8-263.3 mg·L-1 respectively. It could be concluded that potential phytoremediation capability of moso bamboo in heavy metals contaminated soils would be enhanced effectively with application of EDTA, however, the environmental risks should be considered synthetically when using.

YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan. Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
Citation: YE Chaojun, WU Jiasheng, ZHONG Bin, CHEN Junren, GUO Jia, XU Meizhen, LIU Dan. Effects of EDTA and organic acid on phytoremediation of heavy metal contaminated soil by Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2018, 35(3): 431-439. doi: 10.11833/j.issn.2095-0756.2018.03.006
  • 随着工农业的发展及人类的活动加剧,重金属污染已经严重危害到人类的健康[1-2]。目前,植物修复因其绿色环保受到广泛的关注,但由于受到土壤中重金属生物有效性的影响,植物修复效率低下[3-4]。利用螯合剂来活化土壤中的重金属,促进植物对重金属的吸收,是提高植物修复效率的方法之一[5],其中,乙二胺四乙酸(EDTA)是使用最广泛的一种螯合剂,能够显著提高铅(Pb),铜(Cu),镉(Cd)等重金属的活性[6-8]。CHIGBO等[9]在铜污染的土壤中施加EDTA强化植物修复后显著提高了土壤中铜的有效态含量,同时显著促进了植物对铜的吸收积累。有研究表明:EDTA的生物降解性差,可能会对环境造成一定污染[10]。草酸、柠檬酸等生物降解性较好的小分子有机酸也被广泛用于植物修复中[11]。DUQUÈNE等[12]研究发现,使用5 mmol·kg-1柠檬酸、柠檬酸铵、草酸等有机酸显著增加了土壤溶液中重金属的质量浓度。相对于其他超积累植物或者重金属富集植物,毛竹Phyllostachys edulis拥有巨大的生物量,并且已被证明作为植物修复材料的可能性[13-14]。本研究采用镀锌厂重金属污染土壤和毛竹苗进行土柱淋洗试验,研究施加螯合剂EDTA和有机酸后毛竹叶片叶绿素荧光特性,毛竹重金属质量分数变化,土壤溶液重金属质量分数及EDTA质量浓度的动态变化,为螯合剂强化重金属污染土壤植物修复提供科学依据。

  • 供试土壤来自浙江省杭州市富阳区云纳热镀锌厂附近农田(29°53′17″N,119°53′24″E),采集0~20,20~40,40~60 cm等3个土层的重金属污染土壤,风干过5 mm筛,其土壤基本理化性质见表 1。供试植株:由种子培养生长在基质中的毛竹幼苗,选择长势相似且无病虫害的幼苗,用蒸馏水去除附着的基质,在含有1/2 Yoshida营养液(pH 5.8)的黑色塑料盆中预培养。营养液隔5 d更新1次,保持24 h通气。

    土层/cm pH值 w碱解氮/(mg·kg-1) w有效磷/(mg·kg-1) w速效钾/(mg·kg-1) w/(mg·kg-1) w/(mg·kg-1) w/(mg·kg-1)
    0~20 1 367.10 296.20 2.21
    20~40 7.16 30.10 4.41 98.64 300.00 58.90 0.56
    40~60 133.78 34.11 0.24

    Table 1.  Physicochemical properties of soil

  • 将不同土层的土壤装入土柱中,并且在5,20,40,60 cm土层处装入土壤溶液收集器[15]。栽植毛竹苗3株·土柱-1,并且控制土柱土壤含水率,整个实验培养周期为2个月,在实验结束前10 d,一次性分别添加人工螯合剂和有机酸。所添加的人工螯合剂为质量摩尔浓度1.5 mmol·kg-1(E1.5)和3.0 mmol·kg-1(E3.0)的EDTA-Na2;有机酸根据毛竹苗根系分泌物配制,为m(草酸):m(柠檬酸):m(乳酸)=5:1:1的混合物[16],质量摩尔浓度为15.0 mmol·kg-1(S15)和30.0 mmol·kg-1(S30),以不添加螯合剂和有机酸为对照(ck),共5个处理,重复3个·处理-1,并随机排放。整个试验在浙江农林大学温室大棚内完成。为避免pH值不同所引起的活化差异,所添加的EDTA和有机酸的pH值均调节成供试土壤pH值[17]

  • 在添加螯合剂前1 d,收集土柱各土层的土壤溶液,作为初始溶液,然后一次性加入EDTA和有机酸,并在第1,3,5,7,9天收集土壤溶液[18],共6次。收集到的土壤溶液取10 mL酸化,利用ICP-OES测定土壤液中重金属质量分数,其余冷冻保存冰箱备用。

  • 在试验结束前2 d,选择晴朗天气,利用便携式叶绿素荧光仪在9:00-12:00测定每株毛竹第3片叶片叶绿素荧光特征。Fo为初始荧光;Fm为最大荧光产量;Fv/Fm为PSⅡ最大光化学量子产量;Fv/Fo为PSⅡ潜在光化学效率。

  • 收获的毛竹用20.0 mmol·L-1EDTA-Na2浸泡20 min,去除附着的重金属,将毛竹分为根茎叶3部分,粉碎,称取0.1 g的样品,用硝酸/高氯酸消煮定容至50 mL并过滤,用ICP-OES测定重金属质量分数。

  • EDTA质量浓度测定参考郭晓方等[19]、郑睿行等[20]方法:取1.0 mL样品至管中,加1.0 mL氯化铁溶液(2.5 mmol·L-1)和1.0 mL抗坏血酸(含4.0 mg抗坏血酸),稀释至5.0 mL,水定容摇匀,经0.22 μm微孔滤膜过滤,立即液相色谱法测定。液相色谱为日本LC-20AT,分析柱:C18 Inertsil ODS-SP色谱柱(4.6 mm × 250 mm,5 μm),岛津;保护柱:Inertsil ODS-SP(5 μm,4.0 mm × 10 mm),岛津;流动相:水-甲醇(80+20)含有0.02 mol·L-1四丁基溴化铵,0.03 mol·L-1乙酸钠缓冲液(磷酸调pH 4);流速:0.8 mL·min-1,检测波长:258 nm。

  • 采用Excel 2013和SPSS 21.0软件进行数据处理,用SigmaPlo 12.5软件作图。采用方差分析和最小差异显著法(LSD)对数据进行统计分析,差异显著性水平为P < 0.05。

  • 表 2可知:施加EDTA和有机酸后,Fo略微上升,与对照组之间无显著差异;而FmFv /FmFv /Fo不同程度地下降,且添加3.0 mmol·kg-1EDTA和有机酸后,FmFv /FmFv /Fo显著降低,在30.0 mmol·kg-1有机酸下FmFv /FmFv /Fo下降幅度最大,分别降低了11.7%,5.3%和19.2%。可见,30.0 mmol·kg-1的有机酸处理对毛竹叶片叶绿素荧光特性抑制效果最为显著。

    处理 Fo Fm Fv/Fm Fv/Fo
    ck 178.11±6.61 a 801.44±38.43 a 0.779±0.007 a 3.502±0.201 a
    E1.5 182.75±7.34 a 762.63±31.06 ab 0.760±0.013 ab 3.179±0.237 ab
    E3.0 187.33±14.91 a 733.17±49.10 bc 0.743±0.027 bc 2.941±0.448 b
    S15 181.63±14.38 a 718.50±36.91 c 0.747±0.018 bc 2.973±0.273 bc
    S30 185.13±7.44 a 707.75±35.21 c 0.737±0.018 c 2.830±0.265 c
      说明:同列相同字母表示差异不显著(P>0.05),同列不同字母表示差异显著(P<0.05)

    Table 2.  Changes of chlorophy fluorescence parameter of moso bamboo leaves after adding EDTA and organic acids

  • 图 1可以看出:添加EDTA后毛竹对3种重金属的吸收显著增加,且随着EDTA质量摩尔浓度增加而增加;添加有机酸后,毛竹对重金属的吸收无显著差异。毛竹从土壤吸收的重金属主要集中在根部,其次在茎,最少在叶,并且毛竹对镉的转运效率最高,对铜的转运效率最低。

    Figure 1.  Effect of EDTA and organic acids on moso bamboo accumulated heavy metal

  • 图 2所示:在对照处理中,土壤溶液中铜质量分数随着采集时间的增加始终在低于0.1 mg·kg-1的范围内波动。在土壤中添加螯合剂后,土壤溶液中铜的质量分数显著增加。在EDTA处理中,3.0 mmol·kg-1EDTA对铜的活化作用较强,在添加EDTA后第1天各土层土壤溶液中铜质量分数显著上升,且5 cm土层处土壤溶液中铜质量分数变化最大,与对照相比分别增加了1 215和1 639倍。随着时间的推移,5 cm表层土层土壤溶液中铜质量分数先升高,在第3天的时候达到最大,然后再随时间的增加而降低;在20 cm及更深的土层中,土壤液中的铜不断累积。添加有机酸后,只有表层土壤表现出明显的活化作用。在5 cm土层中,15.0 mmol·kg-1有机酸处理后,土壤溶液中铜质量分数随着时间增加逐渐减少,15.0 mmol·kg-1有机酸处理后,土壤溶液中铜质量分数随着时间增加先增加后减少,在20 cm处,仅在添加有机酸的第1天铜质量分数显著增加。在整个土柱试验中,土壤溶液中铜主要集中在表层土壤。

    Figure 2.  Change of Cu contents in soil solution of different soil layers

  • 图 3可知:对照土壤溶液中锌质量分数随着采集时间无显著变化,添加EDTA螯合剂后,土壤溶液中锌质量分数显著增加,且相比添加有机酸作用更加明显。在EDTA处理中,高质量浓度EDTA对锌的活化作用较强,在添加1.5和3.0 mmol·kg-1EDTA后第1天各土层土壤溶液中锌质量分数显著上升。随着时间的增加,5和60 cm土层处锌质量分数逐渐降低,在20和40 cm土层,土壤溶液中的锌质量分数随着时间的增加而增大。添加有机酸后,在5和20 cm土层土壤溶液中锌质量分数显著增加。

    Figure 3.  Change of Zn contents in soil solution of different soil layers

  • 图 4可见:对照土壤溶液中镉质量分数始终在很低的范围内波动。在土壤中添加螯合剂EDTA后,各土层土壤溶液中镉质量分数显著增加,对镉的活化作用显著强于有机酸处理。在添加EDTA后第1天各土层土壤溶液中镉质量分数显著上升,且5 cm土层土壤溶液中镉质量分数变化最大,相比对照分别增加了353和1 012倍。随时间的增加,各土层土壤溶液中镉与锌的质量分数变化趋势一致。添加有机酸对各土层土壤镉都有活化作用,且表层土壤最显著,随时间的增加镉质量分数不断降低。在整个淋洗柱中,土壤溶液中镉质量分数随土壤深度的增加而减少。

    Figure 4.  Change of Cd contents in soil solution of different soil layers

  • 图 5所知:添加1.5和3.0 mmol·kg-1EDTA后,土壤溶液中EDTA主要集中在5 cm土层。随着时间的增加,5 cm土层处EDTA质量浓度显著降低,5 d后达到稳定,分别为110.9~122.9 mg·L-1和257.8~263.3 mg·L-1;20 cm土层EDTA质量浓度为47.7~55.6 mg·L-1和84.4~124.5 mg·L-1,无显著变化;40 cm土层EDTA施加第1天达到最高,分别为22.3和50.7 mg·L-1,之后显著下降达到稳定;60 cm土层EDTA质量浓度相对较小,分别为2.9~6.2 mg·L-1和7.3~10.7 mg·L-1,差异不显著。

    Figure 5.  Change of EDTA contents in soil solution of different soil layers

  • 叶绿素荧光是反映植物光合生理的一个指标[21]。本研究中,添加3.0 mg·L-1EDTA和有机酸后毛竹叶片最大荧光Fm,PSⅡ最大光化学效率Fv /Fm和PSⅡ潜在光化学效率Fv /Fo显著降低,表明螯合剂的添加降低了植物的光合生物素,使植物的光合系统遭到破坏。EDTA处理后的毛竹叶片荧光参数降低,主要原因可能是EDTA活化了土壤中的重金属,提高了重金属的生物有效质量分数,高质量分数的重金属损害了毛竹的生长,对毛竹细胞内叶绿体、线粒体及细胞壁等结构产生了毒害作用[13, 22]。同样添加有机酸后也降低了毛竹叶片的叶绿素荧光参数,可能有机酸分解后改变了土壤的基本理化性质,从而改变了毛竹苗的生长状况。

    螯合剂可以活化土壤中难溶态重金属,改善其生物有效性[7, 27],提高植物对土壤中重金属的吸收效率[23-24]。EDTA是一种普遍使用的螯合剂,添加EDTA显著提高了毛竹对土壤中锌、铜和镉的吸收,作用效果显著高于有机酸。这与CAY等[25]研究EDTA强化蜀葵Althaea rosea修复重金属污染土壤得出的结果相似。添加有机酸并没有明显促进毛竹对重金属的吸收,可能是由于添加的有机酸分解后改变了土壤的基本理化性质,抑制了毛竹吸收重金属,这与吴龙华等[26]的研究结果类似。本研究中,EDTA淋洗显著增加了0~20 cm土层土壤中可溶性铜、锌和镉的质量分数,由于EDTA活化效果强,土壤溶液中铜、锌和镉的质量分数相对比较高。添加EDTA增强了重金属的迁移性,导致20和40 cm处土壤溶液中铜、锌和镉的质量分数随着时间的增加而增加。YLIVAINIO等[28]研究表明:在石灰性土壤中添加EDTA可持续提高镉、铅和镍在土壤中的溶解性。在本研究中,添加有机酸初期对土壤中铜和锌的活化效果比较明显,随着时间的推移,活化效果消失甚至产生了钝化效果。可能是由于有机酸在土壤中很快被土壤微生物分解,对重金属的活化效果消失,而且可能改变了土壤的pH值,从而产生钝化效果。吴龙华等[26]研究表明:施加3.0 mmol·kg-1,pH 6.3的草酸、柠檬酸或苹果酸对土壤铜含量及其形态分配无显著影响。添加有机酸后,土壤溶液中铜和锌质量分数在40和60 cm土层处变化不显著,说明添加有机酸后铜和锌在土壤中的纵向迁移能力弱;而有机酸处理对镉具有一定的活化和迁移能力。在整个土柱试验中,EDTA处理对重金属的活化和迁移效果始终强于有机酸。李艳丽等[29]采用土柱模拟淋洗试验,研究了EDTA,柠檬酸和草酸3种淋洗剂对污染土壤中镉纵向迁移的影响,结果表明:EDTA对镉的迁移能力强于柠檬酸和草酸。

    EDTA添加到土壤后会长时间残留,并迁移到更深的土壤中,从而对环境造成一定的风险[30-31]。有研究表明:可根据土壤类型,通过控制EDTA的施用量及施用时间来控制EDTA在强化修复重金属污染土壤中的残留和迁移[19]。相比EDTA,有机酸在自然界中很容易被生物降解,因此它的环境风险更小[32-33]。本研究中,EDTA主要集中在表层土壤,但第1天在40 cm土壤溶液中检测到相对较高的质量浓度,说明EDTA在土壤中迁移能力强。在第5天到第9天EDTA质量浓度相对稳定且相对较高,也说明EDTA很难被分解。

  • 乙二胺四乙酸(EDTA)和有机酸处理抑制了毛竹的叶绿素荧光特性,且30.0 mmol·kg-1有机酸处理的抑制程度最大,3.0 mmol·kg-1EDTA处理其次,15.0 mmol·kg-1有机酸处理最小。在整个土柱试验中,EDTA处理显著提高了土壤溶液中重金属质量分数,加重了重金属向下迁移的风险;有机酸处理对重金属的活化效果及在土壤中的迁移能力不明显。添加EDTA促进了毛竹对铜、锌、镉的吸收,而有机酸则无促进作用。添加1.5和3.0 mmol·kg-1EDTA后,土壤溶液中EDTA质量浓度主要集中在5 cm土层,且短期内很难被分解。

Reference (33)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return