-
菌根(mycorrhiza)是植物根系与土壤中某些特定真菌形成的共生体,能形成菌根的特定真菌称为菌根真菌[1]。菌根真菌能够与植物根系建立互惠共生体系,一方面从宿主植物获取碳水化合物,同时向植物提供土壤中的矿质营养,尤其是磷素[2]。菌根按照在植物体内的着生部位和形态特征分为内生菌根、外生菌根和内外生菌根[3]。丛枝菌根(arbuscular mycorrhizal, AM)是内生菌根中分布最广的类群,其胞内菌丝在根皮层细胞内及细胞间延伸形成丛枝状结构,可以和大多数植物共生,陆地生态系统中80%~90%的植物根系能够与其建立互惠共生体[4]。丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)分布广泛,高山地带、针叶林带、热带雨林、草原、农田都有分布,甚至在高度退化地区也有分布[5-6]。菌根是岩石矿物风化的主要因素,在岩石和矿物的风化进程中起着重要作用[7-8]。AMF定殖宿主根系有助于土壤养分活化,提高土壤肥力和水分供给能力,并且提供了活化养分转运至宿主植物的有效途径[9]。当土壤养分有效性低,养分被土壤颗粒及有机质吸附,AMF会活化这些养分[10],从而提高植物对磷、氮、钾、钙、硫、铜以及锌的吸收能力,促进植物生长。AMF被认为是一种天然生物肥料,可有效降低化学肥料投入,向宿主植物提供水分和养分,以交换光合产物[11]。研究表明:宿主植物接种AMF,根系吸收矿质养分能力提高,植物叶面积、根茎干质量增大,出苗率、果实产量以及矿质养分含量提高,土壤施肥量降低[12-13]。AMF是土壤—植物系统尤其是干旱和半干旱生态系统可持续发展的重要组成部分,在维持土壤养分和物质的生物地球化学循环以及确保植物健康和土壤质量方面发挥着重要作用。本研究通过总结丛枝菌根真菌对矿质养分活化作用效果,探讨AMF活化矿质养分机制及影响因素,认识丛枝菌根真菌在退化地区、困难立地中的应用潜力,为进一步深入研究AMF应用技术提供参考。
HTML
[1] | 刘永俊. 丛枝菌根的生理生态功能[J]. 西北民族大学学报(自然科学版), 2008, 29(1): 54-59. doi: 10.3969/j.issn.1009-2102.2008.01.011 | LIU Yongjun. The phyaiological and ecological functions of arbuscular mycorrhiza[J]. J Northwest Univ Natl Nat Sci, 2008, 29(1): 54-59. doi: 10.3969/j.issn.1009-2102.2008.01.011 |
[2] | GRACE E J, COTSAFTIS O, TESTER M. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes[J]. New Phytol, 2009, 181(4): 938-949. doi: 10.1111/j.1469-8137.2008.02720.x | |
[3] | 郭秀珍, 毕国昌.林木菌根及应用技术[M].北京:中国林业出版社, 1989. | |
[4] | HELGASON T, FITTER A H. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi(Phylum glomeromycota)[J]. J Exp Bot, 2009, 60(9): 2465-2480. doi: 10.1093/jxb/erp144 | |
[5] | LANFORANCO L, BONFANTE P, GENRE A. The mutualistic interaction between plants and arbuscular mycorrhizal fungi[J]. Microbiol Spectrum, 2016, 4(6): 1-20. doi: 10.1128/microbiolspec.FUNK-0012-2016 | |
[6] | SCHNEIDER J, STÜRMER S L, GUILHERME L R. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil[J]. J Hazardous Mat, 2013, 262(8): 1105-1115. | |
[7] | BONNEVILLE S, MORGAN D J, SCHMALENBERGER A. Tree-mycorrhiza symbiosis accelerate mineral weathering:evidences from nanometer-scale elemental fluxes at the hypha-mineral interface[J]. Geochim Et Cosmoch Acta, 2011, 75(22): 6988-7005. doi: 10.1016/j.gca.2011.08.041 | |
[8] | QUIRK J, BEERLING D J, BANWART S A. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering[J]. Biol Lett, 2012, 8(6): 1006-1011. doi: 10.1098/rsbl.2012.0503 | |
[9] | SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. 3 ed. New York:Academic Press, 2008. | |
[10] | HALDER M, DHAR P P, MUJIB A S M. Effect of arbuscular mycorrhiza fungi inoculation on growth and uptake of mineral nutrition in Ipomoea aquatica[J]. Curr World Environ, 2015, 10(1): 67-75. doi: 10.12944/CWE | |
[11] | ROUPHAEL Y, FRANKEN P, SCHNEIDER C. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops[J]. Sci Hortic, 2015, 196(): 91-108. doi: 10.1016/j.scienta.2015.09.002 | |
[12] | BELTRANO J, RUSCITTI M, ARANGO M C. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels[J]. J Soil Sci Plant Nut, 2013, 13(1): 123-141. | |
[13] | Al-KARAKI G N. The role of mycorrhiza in the reclamation of degraded lands in arid environments[G]//SHAHID S A. Developments in Soil Classification, Land Use Planning and Policy Implications. Dordrecht: Springer, 2013: 823-836. | |
[14] | KOELE N, DICKIE IA, BLUM J D. Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison[J]. Soil Biol Biochem, 2014, 69(69): 63-70. | |
[15] | SANZ-MONTERO M E, RODRÍGUEZ-ARANDA J P. Endomycorrhizae in Miocen paleosols:implications in biotite weathering and accumulation of dolomite in plant roots(SW Madrid Basin, Spain)[J]. Palaeogeogr Palaeocl Palaeoecol, 2012, 333/334(2): 121-130. | |
[16] | BONNEVILLE S, SMITS M M, BROWN A. Plant-driven fungal weathering:early stages of mineral alteration at the nanometer scale[J]. Geology, 2009, 37(7): 615-618. doi: 10.1130/G25699A.1 | |
[17] | AROCENA J M, VELDE B, ROBERTSON S J. Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops[J]. Appl Clay Sci, 2012, 64(4): 12-17. | |
[18] | REMISZEWSKI K A, BRYCE J G, FAHNESTOCK M F. Elemental and isotopic perspectives on the impact of arbuscular mycorrhizal and ectomycorrhizal fungi on mineral weathering across imposed geologic gradients[J]. Chemica Geol, 2016, 445(): 164-171. doi: 10.1016/j.chemgeo.2016.05.005 | |
[19] | YAO Qing, LI Xiaolin, FENG Gu. Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus[J]. Plant Soil, 2001, 230(2): 279-285. doi: 10.1023/A:1010367501363 | |
[20] | BURGHELEA C, ZAHARESCU D G, DONTSOVA K. Mineral nutrient mobilization by plants from rock:influence of rock type and arbuscular mycorrhiza[J]. Biogeochemistry, 2015, 124(1/3): 187-203. | |
[21] | BENDER S F, CONEN F, MGAVD H. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland[J]. Soil Biol Biochem, 2015, 80(): 283-292. doi: 10.1016/j.soilbio.2014.10.016 | |
[22] | MANAUT M, SANGUIN H, QUAHMANE L. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments[J]. Ecol Eng, 2015, 79(): 113-119. doi: 10.1016/j.ecoleng.2015.03.007 | |
[23] | GARCIA K, ZIMMERMANN S D. The role of mycorrhizal associations in plant potassium nutrition[J]. Front Plant Sci, 2014, 5(337): 1-9. | |
[24] | BENDER S F, HEIJDEN M G A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses[J]. J Appl Ecol, 2015, 52(1): 228-239. doi: 10.1111/1365-2664.12351 | |
[25] | TAWARAYA K, NAITO M, WAGATSUMA T. Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi[J]. J Plant Nutr, 2006, 29(4): 657-665. doi: 10.1080/01904160600564428 | |
[26] | 于二敏, 李聪, 贺超兴. AM真菌对大棚芦笋矿质元素吸收和营养品质的影响[J]. 中国蔬菜, 2014, (7): 40-43. doi: 10.3969/j.issn.1000-6346.2014.07.011 | YU Ermin, LI Cong, HE Chaoxing. Effects of arbuscular mycorrhizal fungi on mineral element absorption and nutrient quality of asparagus in plastic tunnel[J]. China Veg, 2014, (7): 40-43. doi: 10.3969/j.issn.1000-6346.2014.07.011 |
[27] | 李敏, 刘润进. AM真菌对蔬菜品质的影响[J]. 中国生态农业学报, 2002, 10(4): 62-64. | LI Min, LIU Runjin. Effects of arbuscular mycorrhizal fungi on vegetable quality[J]. Chin J Eco-Agric, 2002, 10(4): 62-64. |
[28] | SAIA S, BENÃTEZ E, GARCÃA-GARRIDO J M. The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material[J]. J Agric Sci, 2014, 152(3): 370-378. doi: 10.1017/S002185961300004X | |
[29] | WEREMIJEWICZ J, JANOS D P. Arbuscular common mycorrhizal networks mediate intra-and interspecific interactions of two prairie grasses[J]. Mycorrhiza, 2017, (2): 1-13. | |
[30] | WHITFIELD J. Fungal roles in soil ecology:underground networking[J]. Nature, 2007, 449(7159): 136-138. doi: 10.1038/449136a | |
[31] | BALOGH-BRUNSTAD Z, KELLER C K, DICKINSON J T. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments[J]. Geochim Et Cosmochim Acta, 2008, 72(11): 2601-2618. doi: 10.1016/j.gca.2008.04.003 | |
[32] | 罗珍, 朱敏, 线岩相洼. 丛枝菌根真菌侵染对紫色土水稳性团聚体特征的影响[J]. 土壤通报, 2012, 43(2): 310-314. | LUO Zhen, ZHU Min, XIAN Yanxiangwa. Influence of mycorrhizal inoculation on water stable aggregates traits in purple soil[J]. Chin J Soil Sci, 2012, 43(2): 310-314. |
[33] | BERRUTI A, LUMINI E, BALESTRINI R. Arbuscular mycorrhizal fungi as natural biofertilizers:let's benefit from past successes[J]. Front Microbiol, 2016, 6(426): 1-13. | |
[34] | GOVINDARAJULU M, PFEFFER P E, JIN H. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435(7043): 819-823. doi: 10.1038/nature03610 | |
[35] | 苏友波, 林春, 张福锁. 不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响[J]. 土壤, 2003, 35(4): 334-338. doi: 10.3321/j.issn:0253-9829.2003.04.013 | SU Youbo, LIN Chun, ZHANG Fusuo. Effect of arbascular mycorrhiza fungi(Glomus mosseae, Glomus versiformea, Gigaspora margarita and Gigaspora rosea) on phosphatase activities and soil organic phosphate content in clover rhizosphere[J]. Soils, 2003, 35(4): 334-338. doi: 10.3321/j.issn:0253-9829.2003.04.013 |
[36] | GADD G M. Geomycology:biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation[J]. Mycol Res, 2007, 111(1): 3-49. doi: 10.1016/j.mycres.2006.12.001 | |
[37] | GONZALEZ-CHAVEZ M C, CARRILO-GONZALEZ R, WRIGHT S F. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environ Pollut, 2004, 130(3): 317-323. doi: 10.1016/j.envpol.2004.01.004 | |
[38] | GHOLAMHOSEINI M, GHALAVAND A, DOLATABADIAN A. Effects of arbuscular mycorrhiazl inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress[J]. Agric Water Manage, 2013, 117(1): 106-114. | |
[39] | DUTTA S C, NEOG B. Inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in modulating phosphorus dynamics in turmeric rhizosphere[J]. Nat Acad Sci Lett, 2017, 40(6): 445-449. doi: 10.1007/s40009-017-0582-1 | |
[40] | SMITH S E, JOHN B J, SMITH F A. Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. and Allium cepa L.:effects of mycorrhizal infection and phosphate nutrition[J]. New Phytol, 1985, 99(2): 211-227. doi: 10.1111/nph.1985.99.issue-2 | |
[41] | 郝会军, 刘英, 王洪波. VA菌根与植物矿质营养的研究进展[J]. 安徽农业科学, 2007, 35(4): 978-979. doi: 10.3969/j.issn.0517-6611.2007.04.020 | HAO Huijun, LIU Ying, WANG Hongbo. Research progress of VA-mycorrhizal fungi and mineral nutrition of plant[J]. J Anhui Agric Sci, 2007, 35(4): 978-979. doi: 10.3969/j.issn.0517-6611.2007.04.020 |
[42] | 王明元, 夏仁学. 不同pH值下丛枝菌根真菌对枳生长及铁吸收的影响[J]. 微生物学报, 2009, 49(10): 1374-1379. doi: 10.3321/j.issn:0001-6209.2009.10.009 | WANG Mingyuan, XIA Renxue. Effects of arbuscular mycorrhizal fungi on growth and iron uptake of Poncirus trifoliate under different pH[J]. Acta Microbiol Sin, 2009, 49(10): 1374-1379. doi: 10.3321/j.issn:0001-6209.2009.10.009 |
[43] | JENTSCHKE G, BRANDES B, KUHN A J. The mycorrhizal fungus Paxillus involutus transports magnesium to norway spruce seedlings, evidence from stable isotope labeling[J]. Plant Soil, 2000, 220(1/2): 243-246. doi: 10.1023/A:1004727331860 | |
[44] | 张亮, 王明霞, 张薇. 外生菌根真菌对土壤钾的活化作用[J]. 微生物学报, 2014, 54(7): 786-792. | ZHANG Liang, WANG Mingxia, ZHANG Wei. Mobilization of potassium from soil by ectomycorrhizal fungi[J]. Acta Microbiol Sin, 2014, 54(7): 786-792. |
[45] | TOLJANDER J F, LINDAHL B D, PAUL L R. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. Fems Microbiol Ecol, 2007, 61(2): 295-304. doi: 10.1111/fem.2007.61.issue-2 | |
[46] | 王莉琴, 牛琳琳, 刁莉华. 不同丛枝菌根真菌对梨园土壤微生物和土壤养分的影响[J]. 西南师范大学学报(自然科学版), 2013, 38(5): 103-108. doi: 10.3969/j.issn.1000-5471.2013.05.021 | WANG Liqin, NIU Linlin, DIAO Lihua. Effects of different arbuscular mycorrhizal fungi in pear orchard on microorganisms and nutrients in the soil[J]. J Southwest China Norm Univ Nat Sci Ed, 2013, 38(5): 103-108. doi: 10.3969/j.issn.1000-5471.2013.05.021 |
[47] | GAO Y Z, ZHONG J, QUE H. Inculation with arbuscular mycorrhizal fungi increases glomalin-related soil protein content and PAH removal in soils planted with Medicago sativa L.[J]. Soil Biol Biochem, 2017, 115(): 148-151. doi: 10.1016/j.soilbio.2017.08.023 | |
[48] | LJC X, GERMIDA J J. Bacteria associated with Glomus clarum spores influence mycorrhizal activity[J]. Soil Biol Biochem, 2003, 35(3): 471-478. doi: 10.1016/S0038-0717(03)00003-8 | |
[49] | SCHEUBLIN T R, SANDERS I R, KEEL C. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi[J]. Isme J, 2010, 4(6): 752-763. doi: 10.1038/ismej.2010.5 | |
[50] | 梁宇, 郭良栋, 马克平. 菌根真菌在生态系统中的作用[J]. 植物生态学报, 2002, 26(6): 739-745. doi: 10.3321/j.issn:1005-264X.2002.06.016 | LIANG Yu, GUO Liangdong, MA Keping. The role of mycorrhizal fungi in ecosystems[J]. Acta Phytoecol Sin, 2002, 26(6): 739-745. doi: 10.3321/j.issn:1005-264X.2002.06.016 |
[51] | LIU Jin, GUO Cha, CHEN Zili. Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress[J]. Emirates J Food Agric, 2016, 28(4): 251-256. doi: 10.9755/ejfa. | |
[52] | HOSSEINI A, GHARGHANI A. Effects of arbuscular mycorrhizal fungi on growth and nutrient uptake of apple rootstocks in calcareous soil[J]. Int J Hortic Sci Technol, 2015, 2(2): 173-185. | |
[53] | SUN Xueguang, TANG Ming. Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of sorghum bicolor[J]. South Afr J Bot, 2013, 88(9): 373-379. | |
[54] | GUETHER M, BALESTRINI T, HANNAH M. Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis furing arbuscular mycorrhizal symbiosis in Lotus japonicus[J]. New Phytol, 2009, 182(1): 200-212. doi: 10.1111/j.1469-8137.2008.02725.x | |
[55] | ESTRADA B, AROCA R, MAATHUIS F J M. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis[J]. Plant Cell Environ, 2013, 36(10): 1771-1782. doi: 10.1111/pce.2013.36.issue-10 | |
[56] | OLSSON-FRANCIS K, SIMPSON A E, WOLFF-BOENISCH D. The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite[J]. Geobiology, 2012, 10(5): 434-444. doi: 10.1111/gbi.2012.10.issue-5 | |
[57] | WILSON M J. Weathering of the primary rock-forming minerals:processes, products and rates[J]. Clay Miner, 2004, 39(): 233-266. doi: 10.1180/0009855043930133 | |
[58] | CALLESEN I, HARRISON R, STUPAK I. Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres[J]. For Ecol Manage, 2016, 359(): 322-331. doi: 10.1016/j.foreco.2015.08.019 | |
[59] | LEHMANN A, RILLIG M C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-A meta-analysis[J]. Soil Biol Biochem, 2015, 81(): 147-158. doi: 10.1016/j.soilbio.2014.11.013 | |
[60] | TEIXEIRA-RIOS T, YANO-MELO A M. Arbuscular mycorrhizal fungi and phosphorus in the initial development of Mimosa tenuiflora(Willd.) Poir[J]. Braz J Bot, 2016, 39(4): 1-8. | |
[61] | THORLEY R M S, TAYLOR L L, BANWART S A. The role of forest trees and their mycorrhizal fungi in carbonate roce weathering and its significance for global carbon cycling[J]. Plant Cell Environ, 2015, 38(9): 1947-1961. doi: 10.1111/pce.2015.38.issue-9 | |
[62] | GUO Wei, ZHAO Renxin, FU Ruiying. Contribution of arbuscular mycorrhizal fungi to the development of maize (Zea mays L.) grown in three types of coal mine spoils[J]. Environ Sci Pollut Res, 2014, 21(5): 3592-3603. doi: 10.1007/s11356-013-2360-z | |
[63] | WU Qiangsheng, LI G H, ZOU Y N. Roles of arbuscular mycorrhizal fungi on growth and nutrient acquistion of peach(Prunus persica L. Batsch) seedling[J]. J Anim Plant Sci, 2011, 21(4): 746-750. | |
[64] | OLSEN E. Arbuscular mycorrhizal fungal communities and root colonization differ in relation to plant host and soil nutrients[J]. Res Gate, 2015, 62(): 85-101. | |
[65] | BANERJEE K, GADANI M H, SRIVASTAVA K K. Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition:a step towards afforestation of semi-ared region of western India[J]. Braz J Microbiol, 2013, 44(2): 587-593. doi: 10.1590/S1517-83822013005000046 | |
[66] | 石伟琦, 夏运生, 刘晓蕾. 丛枝菌根在草原生态系统碳固持中的重要作用[J]. 生态环境, 2008, 17(2): 846-850. doi: 10.3969/j.issn.1674-5906.2008.02.076 | SHI Weiqi, XIA Yunsheng, LIU Xiaolei. The important role of arbuscular mycorrhizal in carbon sequestration in grassland ecosysteds[J]. Ecol Environ, 2008, 17(2): 846-850. doi: 10.3969/j.issn.1674-5906.2008.02.076 |
[67] | QUIRK J, ANDREWS M Y, LEAKE J R. Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes[J]. Biol Lett, 2014, 10(7): 387-393. | |
[68] | GAMPER H, HARTWIG U A, LEUCHTRRMNN A. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure[J]. New Phytol, 2005, 167(2): 531-542. doi: 10.1111/nph.2005.167.issue-2 | |
[69] | LIN Guigang, MCCORMACK M L, MA Chengen. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytol, 2017, 213(3): 1440-1451. doi: 10.1111/nph.14206 | |
[70] | 方治国, 陈欣. 丛枝菌根在退化土壤恢复中的生态学作用[J]. 生态学杂志, 2002, 21(2): 61-63. doi: 10.3321/j.issn:1000-4890.2002.02.015 | FANG Zhiguo, CHEN Xin. Ecological functions of arbuscular mycorrhiza in the restoration of degraded soil[J]. Chin J Ecol, 2002, 21(2): 61-63. doi: 10.3321/j.issn:1000-4890.2002.02.015 |
[71] | ARONSON J, FLORET C, LEFLOC'H E. Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands:a view from the south[J]. Restor Ecol, 1993, 1(3): 8-17. | |
[72] | JACKSON LE, MILLER D, SIMITH S E. Arbuscular mycorrhizal colonization and growth of wild and cultivated lettuce in response to nitrogen and phosphorus[J]. Sci Hortic, 2002, 94(3/4): 205-218. | |
[73] | ASMELASH F, BEKELE T, BIRHANE E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands[J]. Front Microbiol, 2016, 7(): 1095-. doi: 10.3389/fmicb.2016.01095 | |
[74] | 卢鑫萍, 杜茜, 闫永利. 盐渍化土壤根际微生物群落及土壤因子对AM真菌的影响[J]. 生态学报, 2012, 32(13): 4071-4078. | LU Xinping, DU Qian, YAN Yongli. Effects of soil rhizosphere microbial community and soil factors on arbuscular mycorrhizal fungi in different salinized soils[J]. Acta Ecol Sin, 2012, 32(13): 4071-4078. |
[75] | KLUGH K R, CUMMING J R. Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera[J]. Tree Physiol, 2007, 27(8): 1103-1112. doi: 10.1093/treephys/27.8.1103 | |
[76] | AGARWAL A, SINGH J, SINGH A P. Arbuscular mycorrhizal fungi and its role in sequestration of heavy metals[J]. Trends Biosci, 2017, 10(21): 4068-4077. | |
[77] | CHATURVEDI R, FAVAS P, PRATAS J. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil[J]. Ecotoxicol Environ Saf, 2018, 148(): 318-326. doi: 10.1016/j.ecoenv.2017.10.048 | |
[78] | JONER E J, BRIONES R, LEYVAL C. Metal-binding capacity of arbuscular mycorhizal mycelium[J]. Plant Soil, 2000, 226(2): 227-234. doi: 10.1023/A:1026565701391 | |
[79] | ABU-MURIEFAH S S. The use of Acacia saligna inoculated with mycorrhizae in phytoremediation of lead-contaminated soils in the Kingdom of Saudi Arabia[J]. Glob J Agric Res, 2016, 4(1): 58-70. | |
[80] | 王志刚, 郭洋楠, 毕银丽. 接种AM真菌对采煤沉陷区复垦植物生长及土壤化学性状的影响[J]. 北方园艺, 2016, (24): 163-170. | WANG Zhigang, GUO Yangnan, BI Yinli. Effects of arbuscular mycorrhizal fungus inoculation on plant growth and soil chemical and biological properties amelioration in coal mining subsidence area[J]. Northern Hortic, 2016, (24): 163-170. |
[81] | SOARES C R F S, SIQUEIRA J O. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil[J]. Biol Fert Soil, 2008, 44(6): 833-841. doi: 10.1007/s00374-007-0265-z | |
[82] | ZHOU J L. Zn biosorption by Rhizopus arrhizus and other fungi[J]. Appl Microbiol Biotechnol, 1999, 51(5): 686-693. doi: 10.1007/s002530051453 | |
[83] | AMIRI R, NIKBAKHT A, RAHIMMALEK M. Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveloens L. inoculated with two species of mycorrhizal fungi under water deficit conditions[J]. J Plant Growth Regul, 2017, 36(2): 1-14. | |
[84] | 张中峰, 张金池, 黄玉清. 接种菌根真菌对青岗栎幼苗耐旱性的影响[J]. 生态学报, 2016, 36(11): 3402-3410. | ZHANG Zhongfeng, ZHANG Jinchi, HUANG Yuqing. Effects of mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings[J]. Acta Ecol Sin, 2016, 36(11): 3402-3410. |
[85] | 叶佳舒, 李涛, 胡亚军. 干旱条件下AM真菌对植物生长和土壤水稳性团聚体的影响[J]. 生态学报, 2013, 33(4): 1080-1090. | YE Jiashu, LI Tao, HU Yajun. Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses[J]. Acta Ecol Sin, 2013, 33(4): 1080-1090. |
[86] | GIANINAZZI S, GOLLOTTE A, BINET M N L. Agroecology:the key role of arbuscular mycorrhizas in ecosystem services[J]. Mycorrhiza, 2010, 20(8): 519-530. doi: 10.1007/s00572-010-0333-3 | |
[87] | QUIROGA G, ERICE G, AROCA R. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar[J]. Front Plant Sci, 2017, 8(): 1056-. doi: 10.3389/fpls.2017.01056 | |
[88] | ESSAHIBI A, BENHIBA L, BABRAM M A. Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.)[J]. Trees, 2017, 32(1): 1-11. | |
[89] | 冉琼, 钟章程. 模拟岩溶旱钙土壤基质中AM真菌对玉米幼苗光合生长的影响[J]. 生态学报, 2015, 35(2): 460-467. | RAN Qiong, ZHONG Zhangcheng. Effect of AMF on the photosynthetic characteristics and growth of maize seedlings under the stress of drought, high calcium and their combination in Karst area[J]. Acta Ecol Sin, 2015, 35(2): 460-467. |
[90] | PATTANAYAK S K, SURESHKUMAR P, TARAFDAR J C. New vista in phosphorus research[J]. J Indian Soc Soil Sci, 2009, 57(4): 536-545. | |
[91] | LEISER W L, OLATOYE M O, RATTUNDE HFW. No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of West African sorghums[J]. Plant Soil, 2016, 401(1/2): 51-64. |