HAO Yanmin, CHEN Keli, FENG Lijun, et al. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris[J]. Journal of Zhejiang A&F University, 2022, 39(4): 821-829. DOI: 10.11833/j.issn.2095-0756.20210651
Citation: ZHANG Jiayang, LIN Fang, ZHAN Naicai, et al. Morphological structure, composition, and organic carbon characteristics of soil agglomerations for alfalfa and ryegrass planting patterns[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1077-1086. DOI: 10.11833/j.issn.2095-0756.2019.06.004

Morphological structure, composition, and organic carbon characteristics of soil agglomerations for alfalfa and ryegrass planting patterns

DOI: 10.11833/j.issn.2095-0756.2019.06.004
  • Received Date: 2018-10-30
  • Rev Recd Date: 2019-01-30
  • Publish Date: 2019-12-20
  • Through consecutive location tests in northern Henan Province over 6 years and compared with a waste land, the effects of different planting patterns for alfalfa(Medicago sativa) and ryegrass(Bromus inermis) on the composition of soil aggregate structure and vertical distribution of organic carbon were studied using a correlation analysis. The relationship between the two was also discussed. Results showed that morphological structure of the soil aggregates changed after an artificial grassland was planted. Soil dry-sieving aggregates consisted mainly of 2.00-3.00 mm and 3.00-5.00 mm particle sizes (proportion:35.55%-57.12%); whereas, soil water-stable aggregates were composed of particles < 0.25 mm and 1.00-3.00 mm in size (proportion:53.47%-74.47%). The order of fractal dimensions for both dry-sieving aggregates and water-stable aggregates was wasteland > ryegrass single-sowing > alfalfa single-sowing > alfalfa/ryegrass mixed-sowing. Total organic carbon content, soil active organic carbon, and humus carbon decreased with an increase of soil depth, and organic carbon content in the 0-40 cm soil layer was alfalfa/ryegrass mixed-sowing > alfalfa single-sowing > ryegrass single-sowing > wasteland. Also, a two-sided test for pears showed a highly significant correlation (P < 0.01) to total organic carbon and active organic carbon(r=0.975), active organic carbon and humus carbon(r=0.975), and total organic carbon and humus carbon (r=0.954); and fractal dimension values were highly significant (P < 0.01) and positively correlated to small-particle size aggregates (< 0.25 mm) for both dry-sieving aggregates (r=0.972) and water-stable aggregates (r=0.980). In conclusion, compared to wasteland, the distribution of soil aggregates was greatly changed and soil carbon sequestration was promoted after artificial grassland was planted with alfalfa/ryegrass mixed-sowing being the best planting pattern.
  • [1] SUI Xiran, WU Lifang, WANG Yan, WANG Ziquan, XIAO Yuxin, LIU Yungen, YANG Bo.  Characteristics of nutrient and enzyme activity in soil aggregates of different rocky desertification levels in central Yunnan Plateau . Journal of Zhejiang A&F University, 2022, 39(1): 115-126. doi: 10.11833/j.issn.2095-0756.20210168
    [2] ZHANG Zeng, SONG Chengfang, SHAN Shengdao, ZHENG Huabao, ZHANG Cheng.  Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties . Journal of Zhejiang A&F University, 2021, 38(4): 765-773. doi: 10.11833/j.issn.2095-0756.20200651
    [3] JIN Wenhao, SHAO Shuai, CHEN Junhui, QIN Hua.  Research progress in the impact of different mycorrhizal types on soil carbon cycling . Journal of Zhejiang A&F University, 2021, 38(5): 953-962. doi: 10.11833/j.issn.2095-0756.20210531
    [4] LI Hua, CAI Jianjun, WU Cuihua, ZHANG Lili, YUAN An, KANG Yongxiang.  Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve . Journal of Zhejiang A&F University, 2021, 38(3): 485-493. doi: 10.11833/j.issn.2095-0756.20200509
    [5] YAO Lan, ZHANG Huanchao, HU Lihuang, WANG Genmei, FANG Yanming.  Soil labile organic carbon and nitrogen and their relationship with enzyme activities in different vegetation zones along an altitudinal gradient on Mount Huangshan . Journal of Zhejiang A&F University, 2019, 36(6): 1069-1076. doi: 10.11833/j.issn.2095-0756.2019.06.003
    [6] ZHANG Qingqing, ZHANG Guilian, WU Haibing, ZHONG Qicheng, HE Xiaoli, CHEN Ping, ZHU Qing, XU Bing, LIANG Jing.  Soil organic carbon distribution and its relationship with soil physicochemical properties in different forest types of Shanghai City . Journal of Zhejiang A&F University, 2019, 36(6): 1087-1095. doi: 10.11833/j.issn.2095-0756.2019.06.005
    [7] LIN Fang.  Microbial biomass and enzymatic activity in sandy soils of northern Henan Province with different alfalfa and awnless brome cultivating patterns . Journal of Zhejiang A&F University, 2019, 36(3): 590-597. doi: 10.11833/j.issn.2095-0756.2019.03.021
    [8] CAI Yu, WANG Jingyan, GONG Wei, LÜ Xiangnan, SHU Zhengyue, YAN Siyu, ZHAO Changping.  Raising chickens in citrus orchards on fractal features of soil aggregates . Journal of Zhejiang A&F University, 2017, 34(2): 225-232. doi: 10.11833/j.issn.2095-0756.2017.02.004
    [9] SHAO Xinghua, WANG Aibin.  Organic carbon and black carbon with fertilization in paddy and upland soils . Journal of Zhejiang A&F University, 2014, 31(4): 554-559. doi: 10.11833/j.issn.2095-0756.2014.04.010
    [10] ZHANG Tao, LI Yongfu, JIANG Peikun, ZHOU Guomo, LIU Juan.  Research progresses in the effect of land-use change on soil carbon pools and soil respiration . Journal of Zhejiang A&F University, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [11] MENG Cifu, JIANG Peikun, XU Qiufang, ZHOU Guomo, SONG Zhaoliang, HUANG Zhangting.  PhytOC in plant ecological system and its important roles in the global soil carbon sink . Journal of Zhejiang A&F University, 2013, 30(6): 921-929. doi: 10.11833/j.issn.2095-0756.2013.06.018
    [12] MA Jiawei, HU Yangyong, YE Zhengqian, WANG Xudong, WU Dongtao, 
    SHAN Shengdao, WANG Hailong.  Bamboo char for soil fertility improvement and nutrient uptake,yield,and quality in Brassica chinensis . Journal of Zhejiang A&F University, 2013, 30(5): 655-661. doi: 10.11833/j.issn.2095-0756.2013.05.004
    [13] YE Ling-yan, FU Wei-jun, JIANG Pei-kun, LI Yong-fu, ZHANG Guo-jiang, DU Qun.  Spatial variation of basic chemical properties and organic carbon storage for forest top-soil in Zhejiang Province . Journal of Zhejiang A&F University, 2012, 29(6): 803-810. doi: 10.11833/j.issn.2095-0756.2012.06.001
    [14] SONG Zhe-yue, SONG Zhao-liang, SHAN Sheng-dao.  Particle fractionation and organic carbon content in coastal saline soils with natural fallow and pig slurry amendments . Journal of Zhejiang A&F University, 2011, 28(2): 214-218. doi: 10.11833/j.issn.2095-0756.2011.02.007
    [15] DU Hua-qiang, TANG Meng-ping, CUI Rui-rui.  Spatial heterogeneity of soil nutrients in an evergreen broadleaved forest of Mount Tianmu,Zhejiang . Journal of Zhejiang A&F University, 2011, 28(4): 562-568. doi: 10.11833/j.issn.2095-0756.2011.04.007
    [16] HAO Rui-jun, FANG Hai-lan, SHEN Lie-ying, CHE Yu-ping.  Soil organic carbon mineralization with urban plant communities in Shanghai . Journal of Zhejiang A&F University, 2010, 27(5): 664-670. doi: 10.11833/j.issn.2095-0756.2010.05.005
    [17] ZENG Shu-cai, YUYuan-chun.  Evaluation of nursery soil fertility and relationship between fertility coefficients and seedling growth . Journal of Zhejiang A&F University, 2007, 24(2): 179-185.
    [18] ZHOU Guo-mo, LIU En-bin, SHE Guang-hui.  Summary of estimated methods on forest soil's carbon pool . Journal of Zhejiang A&F University, 2006, 23(2): 207-216.
    [19] XU Feng-lan, WEI Tan, LIU Ai-qing.  Studies on physical characters of soil in mixed forest of Chinese fir and paulownia . Journal of Zhejiang A&F University, 2000, 17(3): 285-288.
    [20] Gu Shufang.  Correlations Between the Anatomical Structure of Vegetative Organs and the Biological Characteristics in Sassafras tsumu . Journal of Zhejiang A&F University, 1993, 10(1): 1-6.
  • [1]
    PIRMORADIAN N, SEPASKHAH A, HAJABBASI R M. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosyst Eng, 2005, 90(2):227-234.
    [2]
    MA Ruiping, LIU Lei, AN Shaoshan, et al. Soil organic carbon and its fractions in aggregates under different plantcommunities in the hill-gully region of the Loess Plateau[J]. Chin J Eco-Agric, 2013, 21(3):324-332.
    [3]
    CHRISTENSEN B T. Physical fractionation of soil and organic matter in primary particle size and density separates[M]//STEWART B A. Advances in Soil Science: Vol 20. New York: Springer, 1992.
    [4]
    PERFECT F E, KAY B D. Applications of fractals in soil and tillage research:a review[J]. Soil Tillage Res, 1995, 36(1):1-20.
    [5]
    LIU Xiaojing, ZHANG Jinxia, LI Wenqing, et al. Effects of nitrogen and phosphorus addition and cuttings on yield and quality of alfalfa in dry region of Gansu, China[J]. J Desert Res, 2014, 34(6):1516-1526.
    [6]
    TAI Jicheng, YANG Hengshan, FAN Fu, et al. Effects of sowing methods on soil carbon density and composition in the alfalfa and Bromus inermispasture[J]. Pratacultural Sci, 2010, 27(6):102-107.
    [7]
    SHEN Fangfang, YUAN Yinghong, FAN Houbao, et al. Effects of elevated nitrogen deposition on soil organic carbon mineralization and soil enzyme activities in a Chinese fir plantation[J]. Acta Ecol Sin, 2012, 32(2):517-527.
    [8]
    ZHOU Hu, LÜ Yizhong, YANG Zhichen, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Sci Agric Sin, 2007, 40(9):1973-1979.
    [9]
    MA Shiwu, GAO Xuesong, DENG Liangji, et al. Distribution of humus in purple paddy soils derived from different parent materials[J]. J Mt Sci, 2008, 26(1):45-52.
    [10]
    MA Ruiping, AN Shaoshan, DANG Tinghui, et al. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of Loess Plateau[J]. Acta Pedol Sin, 2014, 51(1):104-112.
    [11]
    XU Jiangbing, LI Chengliang, HE Yuanqiu, et al. Effect of fertilization on organic carbon content and fractionation of aggregates in upland red soil[J]. Acta Pedol Sin, 2007, 44(4):675-682.
    [12]
    LIU Enke, ZHAO Bingqiang, MEI Xurong, et al. Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application[J]. Acta Ecol Sin, 2010, 30(4):1035-1041.
    [13]
    ZHANG Peng, JIA Zhikuan, LU Wentao, et al. Effects of organic fertilization on soil nutrient, enzyme activity and crop productivity in semi-arid areas of southern Ningxia[J]. Plant Nutr Fertil Sci, 2011, 17(5):1122-1130.
    [14]
    LI Yajie, XU Wenxiu, SU Lili, et al. Effects of water and nitrogen management on soil carbon sequestration and soybean yields in wheat-soybean cropping fields[J]. J Agro-Environ Sci, 2016, 35(3):524-531.
    [15]
    LIN Fang, XING Jingxin, REN Simin, et al. Microbial biomass and enzymatic activity in sandy soils of northern Henan Province with different alfalfa and awnless brome cultivation patterns[J]. J Zhejiang A&F Univ, 2019, 36(3):590-597.
    [16]
    YANG Peiling, LUO Yuanpei, SHI Yuanchun. Fractal characteristics of soil characterized by weight distribution of particle size[J]. Chin Sci Bull, 1993, 38(20):1896-1899.
    [17]
    QI Yingchun, WANG Yiquan, LIU Jun, et al. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index[J]. Trans CSAE, 2011, 27(1):340-347.
    [18]
    LIN Fang, LIU Xiaojing, ZHANG Jiayang. Effects of planting patterns on soil aggregates and organic matter characteristics of sandy soil[J]. J Desert Res, 2018, 38(6):1219-1229.
    [19]
    TIAN Shenzhong, WANG Yu, LI Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecol Sin, 2013, 33(22):7116-7124.
    [20]
    CAI Liqun, DU Wei, LUO Zhuzhu, et al. Effect of different plants on fractal features of soil aggregates after land retired from crop cultivation in slopes of central Gausu[J]. J Soil Water Conserv, 2012, 26(1):200-208.
    [21]
    WANG Yihao, GENG Yanghui, HUANG Zhonghua. Composition and fractal features of purple soil aggregates during the vegetation restoration processes in the Three Gorges Reservoir Region[J]. Acta Ecol Sin, 2013, 33(18):5493-5499.
    [22]
    SONG Liping, LUO Zhuzhu, LI Lingling, et al. Effect of lucerne-crop rotations on soil physical properties in the semi-arid Loess Plateau of Central Gansu[J]. Acta Prataculturae Sin, 2015, 24(7):12-20.
    [23]
    SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil Till Res, 2004, 79(1):7-31.
    [24]
    QIN Juan, SHANGGUAN Zhouping. Interaction effect and physiological mechanism in plants[J]. Agric Res Arid Areas, 2005, 23(3):225-230.
    [25]
    ZHAO Peng, SHI Dongmei, ZHAO Pei, et al. Relation of soil aggregate fractal dimension and organic carbon in purple-soilslope farmland[J]. Trans CSAE, 2013, 29(22):137-144.
    [26]
    WANG Jingyan, HU Tingxing, GONG Wei, et al. Fractal features of soil aggregate structure in slope farm land with different de-farming patterns in south Sichuan Province of China[J]. Chin J Appl Ecol, 2010, 21(6):1410-1416.
    [27]
    ZHANG Shirong, DENG Liangji, ZHOU Qian, et al. Fractal dimensions of particle surface in the plowed layersand their relationships with main soil properties[J]. Acta Pedol Sin, 2002, 39(2):221-226.
    [28]
    YAO Jiaozhuan, LIU Tingxi, TONG Xin, et al. Soil particle fractal dimension in the dune-meadow ecotone of the Horqin Sandy Land[J]. J Desert Res, 2016, 36(2):433-440.
    [29]
    WU Gaolin, LIU Zhenheng, ZHANG Lei, et al. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland[J]. Plant Soil, 2010, 333(1/2):469-479.
    [30]
    FONTE S J, YEBOAH E, OFORI P, et al. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates[J]. Soil Sci Soc Am J, 2009, 73(3):961-966.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.1 %FULLTEXT: 21.1 %META: 68.9 %META: 68.9 %PDF: 10.0 %PDF: 10.0 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.2 %其他: 8.2 %其他: 0.3 %其他: 0.3 %Beauharnois: 0.1 %Beauharnois: 0.1 %China: 0.4 %China: 0.4 %Seattle: 0.2 %Seattle: 0.2 %上海: 2.4 %上海: 2.4 %临汾: 0.1 %临汾: 0.1 %保定: 0.7 %保定: 0.7 %北京: 2.6 %北京: 2.6 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.1 %南昌: 0.1 %台州: 0.7 %台州: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.3 %天津: 0.3 %威斯康辛州: 0.3 %威斯康辛州: 0.3 %娄底: 0.1 %娄底: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.6 %宣城: 0.6 %巴利亚多利德: 0.4 %巴利亚多利德: 0.4 %常州: 0.1 %常州: 0.1 %广州: 0.2 %广州: 0.2 %张家口: 0.6 %张家口: 0.6 %扬州: 0.1 %扬州: 0.1 %文图拉: 0.1 %文图拉: 0.1 %新乡: 0.1 %新乡: 0.1 %晋城: 0.1 %晋城: 0.1 %杭州: 9.0 %杭州: 9.0 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.4 %沈阳: 0.4 %泰安: 0.1 %泰安: 0.1 %济南: 0.5 %济南: 0.5 %深圳: 0.1 %深圳: 0.1 %温州: 1.0 %温州: 1.0 %湖州: 0.4 %湖州: 0.4 %漯河: 1.1 %漯河: 1.1 %澳门: 0.1 %澳门: 0.1 %烟台: 0.1 %烟台: 0.1 %石家庄: 0.2 %石家庄: 0.2 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 25.4 %芒廷维尤: 25.4 %芝加哥: 3.8 %芝加哥: 3.8 %茂名: 0.3 %茂名: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.4 %衢州: 0.4 %西宁: 24.6 %西宁: 24.6 %西安: 0.2 %西安: 0.2 %诺沃克: 6.0 %诺沃克: 6.0 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.3 %赣州: 0.3 %运城: 2.0 %运城: 2.0 %郑州: 2.1 %郑州: 2.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.2 %金华: 0.2 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.1 %阳泉: 0.1 %其他其他BeauharnoisChinaSeattle上海临汾保定北京十堰南京南昌台州哥伦布嘉兴天津威斯康辛州娄底宜春宣城巴利亚多利德常州广州张家口扬州文图拉新乡晋城杭州武汉沈阳泰安济南深圳温州湖州漯河澳门烟台石家庄纽约芒廷维尤芝加哥茂名衡阳衢州西宁西安诺沃克贵阳赣州运城郑州重庆金华长沙阳泉Highcharts.com
  • Cited by

    Periodical cited type(2)

    1. 韩姗姗,李忠玲,张红艳,戴佳锟,窦秉德,岳淑宁. 探究复合菌剂在奶牛粪污处理中的应用进展. 农学学报. 2024(04): 66-71 .
    2. 常晓彤,李素艳,孙向阳,郝丹,李雅琳. 构巢曲霉冻干菌粉的制备及优化. 微生物学通报. 2022(11): 4674-4685 .

    Other cited types(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(4)

Article views(12238) PDF downloads(130) Cited by(3)

Related
Proportional views

Morphological structure, composition, and organic carbon characteristics of soil agglomerations for alfalfa and ryegrass planting patterns

doi: 10.11833/j.issn.2095-0756.2019.06.004

Abstract: Through consecutive location tests in northern Henan Province over 6 years and compared with a waste land, the effects of different planting patterns for alfalfa(Medicago sativa) and ryegrass(Bromus inermis) on the composition of soil aggregate structure and vertical distribution of organic carbon were studied using a correlation analysis. The relationship between the two was also discussed. Results showed that morphological structure of the soil aggregates changed after an artificial grassland was planted. Soil dry-sieving aggregates consisted mainly of 2.00-3.00 mm and 3.00-5.00 mm particle sizes (proportion:35.55%-57.12%); whereas, soil water-stable aggregates were composed of particles < 0.25 mm and 1.00-3.00 mm in size (proportion:53.47%-74.47%). The order of fractal dimensions for both dry-sieving aggregates and water-stable aggregates was wasteland > ryegrass single-sowing > alfalfa single-sowing > alfalfa/ryegrass mixed-sowing. Total organic carbon content, soil active organic carbon, and humus carbon decreased with an increase of soil depth, and organic carbon content in the 0-40 cm soil layer was alfalfa/ryegrass mixed-sowing > alfalfa single-sowing > ryegrass single-sowing > wasteland. Also, a two-sided test for pears showed a highly significant correlation (P < 0.01) to total organic carbon and active organic carbon(r=0.975), active organic carbon and humus carbon(r=0.975), and total organic carbon and humus carbon (r=0.954); and fractal dimension values were highly significant (P < 0.01) and positively correlated to small-particle size aggregates (< 0.25 mm) for both dry-sieving aggregates (r=0.972) and water-stable aggregates (r=0.980). In conclusion, compared to wasteland, the distribution of soil aggregates was greatly changed and soil carbon sequestration was promoted after artificial grassland was planted with alfalfa/ryegrass mixed-sowing being the best planting pattern.

HAO Yanmin, CHEN Keli, FENG Lijun, et al. Cloning and functional analysis of SvAPETALA1 in Senecio vulgaris[J]. Journal of Zhejiang A&F University, 2022, 39(4): 821-829. DOI: 10.11833/j.issn.2095-0756.20210651
Citation: ZHANG Jiayang, LIN Fang, ZHAN Naicai, et al. Morphological structure, composition, and organic carbon characteristics of soil agglomerations for alfalfa and ryegrass planting patterns[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1077-1086. DOI: 10.11833/j.issn.2095-0756.2019.06.004
  • 土壤团聚体是指由许多土壤单粒在有机碳的黏结下形成的土壤构造,它的结构组成与土壤有机碳有着紧密的联系[1]。土壤团聚体重要的表征形式主要是土壤机械稳定性团聚体和水稳定性团聚体[1]。土壤总有机碳即有机质中的总碳含量,在土壤碳汇中具有重要意义。土壤总有机碳根据化学组分的不同可分为活性有机碳和腐殖质碳等。其中,活性有机碳是土壤总有机碳中不稳定的部分,是植物营养元素的直接来源。腐殖质碳是土壤总有机碳经过微生物分解转化后形成的较为稳定的部分,因两者具有较高的生物利用率与损失率,因而能显著影响土壤的理化性质[2]。土壤团聚体组成的变化与有机碳的变化紧密相关,两者作为重要的土壤属性,在保持土壤生物活性、通气性、渗透性和抗侵蚀能力等方面起着十分重要的作用,目前已被广泛认为是评价土壤肥力或土壤质量的综合指标[3-4]。因此,开展土壤团聚体组成及有机碳特征研究具有十分重要的意义。紫花苜蓿Medicago sativa因其粗蛋白含量高、固氮能力强而享有“牧草之王”的美誉,是世界范围内普遍种植的豆科Leguminosae牧草[5]。无芒雀麦Bromus inermis适口性好,是可消化物质产量较高的禾本科Gramineae牧草之一[6]。目前,两者已成为豫北地区不可替代的战略性保障饲草。近年来,许多学者对土壤团聚体组成及有机碳特征开展了广泛研究,但大多数的研究对象是林地或农田土壤[7-8],且多集中于不同母质[9-10]、施肥模式[11-12]和施肥量[13-14]等,而对不同栽培模式草地土壤团聚体组成和有机碳特征的研究较少。笔者曾对豫北地区紫花苜蓿与无芒雀麦不同栽培模式下沙化土壤微生量和酶活性进行了研究[15]。本研究对该地区紫花苜蓿与无芒雀麦不同栽培模式下,土壤团聚体组成和有机碳的影响以及两者的相互关系,旨在为该区人工草地建植及土壤环境改善提供理论依据。

  • 试验地位于河南省新乡市洪门镇原堤村(35°16′N,113°57′E)。地处豫北地区,北临余河通道,南临黄河,属黄河冲积平原,年平均气温为14.2 ℃,年平均降水量573.4 mm,年均日照时数2 400.0 h,年平均相对湿度68%,无霜期220.0 d。试验地土壤类别为砂壤土,0~40 cm土壤基础理化性质如下:砂粒44%,粉粒38%,黏粒18%,全氮1.13 g·kg-1,全磷0.69 g·kg-1,全钾13.42 g·kg-1,碱解氮31.50 mg·kg-1,有效磷12.05 mg·kg-1,速效钾88.02 mg·kg-1,有机质9.08 g·kg-1,田间持水量28.54%,土壤pH 7.94。

  • 2012-2017年连续6 a进行试验,随机区组设计,设4个处理,即:以撂荒地为对照,设紫花苜蓿单播、无芒雀麦单播、紫花苜蓿/无芒雀麦混播3种不同的栽培模式(图 1),每个处理3次重复,共12个小区,小区面积20 m2(4 m × 5 m),总面积240 m2。2012年10月播种,紫花苜蓿的单播播量为15 kg·hm-2,无芒雀麦的单播播量为18 kg·hm-2,紫花苜蓿/无芒雀麦混播播量均为对应单播播量的一半。播种方式为条播,行距25 cm。试验期间免耕处理,不施用任何肥料,每年定期进行浇水与人工除草。

    Figure 1.  Schematic map of the study area and quadrat

  • 于2017年11月,以5点取样法,用土钻分别取0~10,10~20,20~30和30~40 cm 4个土层的原状土样,每个深度3个重复,将土样中的杂草剔除后,装入自封袋,用于土壤机械稳定性团聚体、水稳性团聚体和有机碳质量分数的实验室测定。

    团聚体形态和表面特征观察:在风干处理并沿自然裂缝掰开的原状土样(0~40 cm)中,选择自然断面并且平整的土样,用导电胶粘于铜台上并编号,然后进行喷金处理,用SS 550型号扫描电镜进行观察。

    团聚体测定步骤:按孔径大小(10.00,7.00,5.00,3.00,2.00,1.00,0.50,0.25 mm)由上至下套好筛组,将已称量(200 g)的土样倒入最上部筛子中,对筛组左右摆动进行筛分,机械稳定后分成了9个粒级(≥10.00,10.00~7.00,7.00~5.00,5.00~3.00,3.00~2.00,2.00~1.00,1.00~0.50,0.50~0.25和<0.25 mm(上限排除法)。对各级筛子中的土样称量,计算机械稳定性团聚体组成。取机械稳定性后所得的各粒级土样50 g,将筛组(从上到下依次是5.00,3.00,2.00,1.00,0.50,0.25 mm)放入水桶中并置于振荡架上,电动振荡(30 min)后将筛组轻轻拿出水面,将各级筛上的团聚体洗入蒸发皿,烘干(60 ℃)后称量,并计算水稳性团聚体组成。

    测定方法:采用总有机碳分析仪(Elementar,德国)测定土壤总有机碳质量分数。采用高锰酸钾氧化-比色法测定活性有机碳质量分数[2];采用焦磷酸钠浸提-重铬酸钾容量法测定腐殖质碳质量分数[2]

  • 土壤团聚体质量分形维数(Dm)的计算方法:Dm= 3-lg[Wδi)/WT]/lg(i/xmax)。其中:Wδi)为土粒直径<i的土壤颗粒累计质量;WT为土粒的质量之和;i为粒级之间的平均粒径;xmax为最大粒级的平均直径。由于lg[Wδi)/W0]与lg(i/xmax)具有线性关系,因此可采用最小二乘法进行线性拟合,3-Dm即为直线斜率,由此得到Dm[16]

    利用SPSS 19.0软件对分形维数的回归方程进行线性拟合,并对土壤团聚体结构及有机碳组分进行Pearson相关性分析(双侧检验),表中的数据以平均值来表示,并用Duncan法进行显著性分析。

  • 通过扫描电镜对土壤团聚体的形态进行观察,紫花苜蓿与无芒雀麦不同栽培模式下的团聚体形态有明显的不同。撂荒地(图 2A)土壤团聚体外表表面孔隙较少,凝结成片。人工草地建植后的土壤团聚体大多呈现出球状或块状,表面孔隙较多且较为疏松,大多呈圆润多孔状(图 2B图 2C)。各模式下团聚体形态从优至劣依次为紫花苜蓿/无芒雀麦混播、紫花苜蓿单播、无芒雀麦单播、撂荒地。其中,紫花苜蓿/无芒雀麦混播模式表现最为明显,团聚体凝聚程度较高。说明紫花苜蓿/无芒雀麦混播对团聚体形态改变促进作用较为明显。

    Figure 2.  Morphological characteristics of soil aggregates under different planting patterns

  • 表 1可以看出:土壤机械稳定性团聚体组成均以5.00~3.00和3.00~2.00 mm粒径为主(比例为35.55%~57.12%)。其中:对于5.00~3.00 mm粒径的土壤团聚体而言(4个土层的均值),无芒雀麦单播、苜蓿单播和紫花苜蓿/无芒雀麦混播分别比撂荒地增加10.90%~22.55%,12.25%~27.17%和27.15%~38.14%,且与撂荒地的差异均达到显著水平(P<0.05)。对于3.00~2.00 mm粒径的土壤团聚体而言(4个土层的均值),无芒雀麦单播、苜蓿单播和紫花苜蓿/无芒雀麦混播分别比撂荒地增加22.98%~41.64%,25.92%~45.10%和35.87%~50.38%,且与撂荒地的差异也均显著(P<0.05)。团聚体所占比例最少的是0.50~0.25 mm粒径,占0.46%~2.66%。与撂荒地相比,单播或混播<0.25 mm机械稳定性团聚体明显减少,5.00~3.00和3.00~2.00 mm团聚体明显增加。

    栽培模式土层/cm不同粒径土壤机械稳定性团聚体百分比组成/%DmR2
    ≥10.0010.00~7.007.00~5.005.00~3.003.00~2.002.00~1.001.00~0.500.50~0.25<0.25 mm
    撂荒地0~1015.893 a11.668 a8.263 d21.683 c19.476 c7.060 b7.561 a2.650 a5.746 a1.845 a0.986**
    10~2017.431 a13.224 a12.139 a19.481 c18.836 c7.694 b5.575 a1.655 a3.965 a1.885 a0.982**
    20~3019.110 a14.615 a14.773 a18.222 c17.818 c9.850 b2.376 c0.587 a2.649 a2.025 a0.946**
    30~4020.100 a17.214 a10.125 a17.206 c18.346 b10.068 bc3.976 a0.518 ab2.447 a2.165 a0.970**
    无芒雀0~1013.531 b9.122 b11.414 a24.744 b24.113 b7.872 b3.195 c1.863 b4.146 b1.765 b0.953**
    麦单播10~2014.391 b9.434 b7.736 b23.041 b22.933 b12.979 a5.575 a1.458 ab2.453 b1.846 a0.977**
    20~3018.051 b10.632 b10.050 b21.023 b22.177 b11.089 b3.634 b0.839 a2.505 a1.844 b0.962**
    30~4019.040 bc13.413 b9.323 a19.841 b21.319 a10.870 b3.395 a1.008 a1.791 b1.983 b0.969**
    紫花苜0~1012.182 c8.372 bc10.721 b25.549 b23.749 b9.094 a5.905 b1.660 bc2.768 c1.713 b0.981**
    蓿单播10~2013.931 b9.680 b13.576 a22.113 b24.068 ab9.478 b3.784 b1.039 ab2.331 b1.792 b0.968**
    20~3016.351 b10.854 bc9.136 b20.318 b22.378 b13.860 a4.037 ab0.833 a2.233 ab1.813 c0.963**
    30~4019.897 b14.211 b9.617 a20.628 b21.815 a9.040 c2.590 b0.462 b1.740 b1.855 c0.949**
    紫花苜0~1011.627 c8.022 c9.219 bc28.355 a28.767 a7.350 b3.271 c1.541 c1.848 d1.626 c0.961**
    蓿/无10~2012.042 c8.734 b7.934 b25.963 a25.429 a12.784 a4.982 a0.759 b1.373 c1.682 c0.971**
    芒雀麦20~3013.299 c11.032 c6.860 c23.441 a24.849 a13.329 a4.455 a0.932 a1.803 b1.703 d0.967**
    混播30~4015.670 c13.336 c5.024 b22.328 a22.573 a14.674 a3.903 a0.717 ab1.775 b1.715 d0.962**
    说明:不同小写字母表示在相同土层不同地块团聚体间差异显著(P<0.05);**表示极显著相关(P<0.01)

    Table 1.  Composition and fractal dimension of soil mechanical stable aggregates

    分形维数是表征土壤肥力的一个定量化评价指标[17]。分形维数越小,土壤结构良好且肥力越高[18]。由表 1可知:各样地土壤机械稳定性团聚体分形维数值大小排序为撂荒地、无芒雀麦单播、紫花苜蓿单播、紫花苜蓿/无芒雀麦混播,变化范围为1.626~2.165。与撂荒地相应的土层相比,无芒雀麦单播(30~40 cm),紫花苜蓿单播(0~10,30~40 cm),紫花苜蓿/无芒雀麦混播(0~10,10~20,20~30和30~40 cm)的分形维数均差异显著(P<0.05),它们的线性方程的相关系数(R2)均在0.946以上,且都达到极显著水平(P<0.01)。

  • 表 2可知:各样地土壤水稳性团聚体组成以<0.25和3.00~1.00 mm粒径为主(比例为53.47%~74.47%)。与撂荒地同一土层相比,无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播<0.25和3.00~1.00 mm团聚体的含量均显著减少(P<0.05)。

    栽培方式土层/cm不同粒径土壤水稳性团聚体百分比组成/%DmR2
    ≥5.005.00~3.003.00~1.001.00~0.500.50~0.25<0.25 mm
    撂荒地0~103.451 c9.886 c17.153 c8.217 c7.581 b53.712 a2.803 a0.965**
    10~204.524 c7.697 b16.618 d7.934 d6.241 b56.986 a2.826 a0.957**
    20~304.988 d6.644 b16.358 c7.376 c7.065 d57.569 a2.837 a0.960**
    30~405.401 b5.718 b16.171 c6.265 c8.143 c58.302 a2.840 a0.959**
    无芒雀0~1014.798 a9.556 bc26.823 a9.788 a6.072 c32.963 b2.687 a0.947**
    麦单播10~2013.121 a6.531 c24.316 b10.164 b6.876 b38.992 b2.736 a0.959**
    20~307.639 a5.175 c22.746 ab10.289 b9.964 b44.187 b2.747 a0.974**
    30~404.283 c4.876 c20.454 b11.747 a8.462 c50.178 b2.765 a0.980**
    紫花苜0~1013.520 b9.007 b27.824 a9.973 a7.574 b32.102 b2.665 a0.956**
    蓿单播10~209.742 b7.787 b25.890 a12.658 a6.236 b37.687 b2.682 a0.963**
    20~306.799 b5.638 c24.462 a11.855 a8.754 c42.492 b2.727 a0.974**
    30~402.523 d6.039 b21.429 b12.351 a10.477 b47.181 b2.756 a0.984**
    紫花苜蓿/0~104.603 d17.259 a22.661 b9.198 b15.468 a30.811 c2.636 a0.969**
    无芒雀麦10~205.048 c15.645 a21.058 c9.272 c16.393 a32.584 c2.655 a0.968**
    混播20~305.484 c11.658 a21.828 b9.598 b16.950 a34.482 c2.674 a0.973**
    30~406.411 a8.346 a24.853 a10.367 b12.231 a37.792 c2.700 a0.976**
    说明:不同小写字母表示在相同土层不同地块团聚体间差异显著(P<0.05);**表示极显著相关(P<0.01)

    Table 2.  Composition and fractal dimension of soil water stable aggregates

    ≥0.25 mm水稳性团聚体是表征土壤生态效应的重要指标,其含量越高,土壤团聚体水稳性越强,土壤结构越稳定[19]。对于≥0.25 mm粒径团聚体,其含量(4个土层的平均值)高低排序为紫花苜蓿/无芒雀麦混播(64.58%)、紫花苜蓿单播(57.96%)、无芒雀麦单播(56.37%)、撂荒地(40.81%),其中主要是促进了3.00~1.00和1.00~0.50 mm水稳性团聚体的形成,且无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播均较撂荒地呈现显著性差异(P<0.05)。

    同机械稳定性结果一样,各样地土壤水稳性团聚体分形维数值大小排序也为撂荒地、无芒雀麦单播、紫花苜蓿单播、紫花苜蓿/无芒雀麦混播,变化范围为2.636~2.840,但各样地同一土层下的分形维数值之间并无显著性差异(P>0.05)。与土壤机械稳定性团聚体各分形维数拟合方程的情况一样,水稳性团聚体线性拟合方程的相关系数(R2)在0.947以上,且也均达到极显著水平(P<0.01)。

  • 图 3可知:各样地土壤总有机碳质量分数(4个土层的平均值)高低排序为紫花苜蓿/无芒雀麦混播(10.41 g·kg-1)、紫花苜蓿单播(8.60 g·kg-1)、无芒雀麦单播(8.21 g·kg-1)、撂荒地(6.32 g·kg-1),活性有机碳以及腐殖质碳质量分数也具有同样的变化规律。其中:土壤表层(0~20 cm)无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播总有机碳、活性有机碳和腐殖质碳均较撂荒地呈现显著性差异(P<0.05);土壤亚表层(20~40 cm)无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播总有机碳、活性有机碳均较撂荒地呈现显著性差异(P<0.05),紫花苜蓿/无芒雀麦混播腐殖质碳较撂荒地差异显著(P<0.05),而无芒雀麦单播和紫花苜蓿单播腐殖质碳较撂荒地差异不显著(P>0.05)。此外,从土壤剖面来看,各种形态的有机碳质量分数均随土层的加深而降低。

    Figure 3.  Soil organic carbon content of different planting patterns

  • 表 3可知:土壤总有机碳、活性有机碳和腐殖质碳两两之间呈极显著正相关(P<0.01)。其中,总有机碳与活性有机碳、腐殖质碳的相关系数分别为0.975和0.954,活性有机碳与腐殖质碳的相关系数为0.975。

    参数总有机碳活性有机碳腐殖质碳不同粒径土壤机械稳定性团聚体
    ≥10.0010.00~7.007.00~5.005.00~3.003.00~2.002.00~1.001.00~0.500.50~0.25<0.25 mm
    分形维数-0.456-0.323-0.2200.1350.1110.388-0.265-0.442-0.632**0.515*0.745**0.972**
    总有机碳10.975**0.954**-0.887**-0.903**-0.3190.928**0.964**0.1230.0410.170-0.350
    活性有机碳10.975**-0.947**-0.931**-0.2820.957**0.964**0.0220.1160.314-0.202
    腐殖质碳1-0.952**-0.933**-0.2920.955**0.916**-0.0180.2180.401-0.091
    说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关

    Table 3.  Correlation between soil organic carbon and soil dry-sieved aggregates

    土壤机械稳定性团聚体分形维数与土壤总有机碳、活性有机碳、腐殖质碳均呈负相关。土壤机械稳定性团聚体的分形维数与≥10.00,10.00~7.00,7.00~5.00,1.00~0.50,0.50~0.25和<0.25 mm粒径团聚体呈正相关,其中与1.00~0.50,0.50~0.25和<0.25 mm粒径团聚体呈显著或极显著正相关,相关系数分别为0.515,0.745和0.972。机械稳定性团聚体分形维数与5.00~3.00,3.00~2.00和2.00~1.00 mm粒径呈负相关,其中与2.00~1.00 mm粒径团聚体呈极显著负相关(相关系数为-0.632)。这说明机械稳定性团聚体分形维数受小粒径(1.00~0.50,0.50~0.25和<0.25 mm)和中等粒径(5.00~3.00, 3.00~2.00和2.00~1.00 mm)含量的影响明显,即分形维数值随小粒径团聚体含量的增加而增加,随中等粒径团聚体的增加而降低。

    土壤总有机碳、活性有机碳、腐殖质碳与团聚体(≥10.00,10.00~7.00,7.00~5.00,<0.25 mm)呈负相关,其中与≥10.00,10.00~7.00 mm粒径团聚体呈极显著负相关(P<0.01),而与团聚体(5.00~3.00,3.00~2.00,2.00~1.00,1.00~0.50,0.50~0.25 mm)呈正相关,尤其与5.00~3.00和3.00~2.00 mm团聚体呈极显著正相关(P<0.01)。由此可见,中等粒径(5.00~3.00,3.00~2.00 mm)团聚体含量越高,大粒径(≥10.00,10.00~7.00 mm)团聚体含量越低,越有助于土壤有机碳质量分数的提高。

    表 4可知:土壤水稳性团聚体分形维数与总有机碳、活性有机碳和腐殖质碳均呈极显著负相关(P<0.01),相关系数分别为-0.964,-0.930和-0.894。水稳性团聚体分形维数与小粒径水稳性团聚体(<0.25 mm)呈极显著正相关(相关系数为0.980),而与中小粒径水稳性团聚体(≥5.00,5.00~3.00,3.00~1.00,1.00~0.50,0.50~0.25 mm)则基本呈显著或极显著负相关。同机械稳定性结果类似,这说明小粒径水稳性团聚体的增加有利于提高水稳性团聚体分形维数,而中小粒径水稳性团聚体的增加则会降低水稳性团聚体分形维数。

    参数总有机碳活性有机碳腐殖质碳不同粒径土壤水稳性团聚体
    ≥5.005.00~3.003.00~1.001.00~0.500.50~0.25<0.25 mm
    分形维数-0.964**-0.930**-0.894**-0.567*-0.636**-0.776**-0.406-0.509*0.980**
    总有机碳10.975**0.954**0.4910.726**0.673**0.3630.532*-0.944**
    活性有机碳10.975**0.504*0.714**0.664**0.3480.446-0.909**
    腐殖质碳10.4900.779**0.579*0.1920.481-0.881**
    说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关

    Table 4.  Correlation between soil organic carbon and soil water stable aggregates

  • 同一母质发育的土壤因栽培模式不同,土壤团聚体组成的分布特性可发生较大变化[20]。本试验研究结果表明:土壤机械稳定性团聚体组成以中等粒径(5.00~3.00和3.00~2.00 mm)团聚体为主,这一结果与王轶浩等[21]的研究结果一致,但宋丽萍等[22]在对黄土高原黄绵土团聚体的研究中却发现:土壤机械稳定性团聚体以≥0.25 mm粒径为主。这是因为本试验地位于黄河冲积平原,地表多含有黄河沉沙,土壤机械组成中砂粒比例较大,因而在此基础上形成的团聚体以中等粒径居多。由此可见,土壤团聚体组成受到土壤颗粒组成的影响很大。另外,本研究中,人工草地建植6 a后,≥0.25 mm粒径土壤机械稳定性团聚体含量增加,其中又以5.00~3.00和3.00~2.00 mm粒径团聚体的增加最为明显,单播和混播模式下均有此趋势,其含量由高到低依次为紫花苜蓿/无芒雀麦混播、紫花苜蓿单播、无芒雀麦单播。这可能是因为相对于地表裸露的撂荒地,人工建植的草地由于增加了土壤表层植物残体的积累,土壤中植物根系分泌物、微生物及其代谢产物增多,提高了土壤生物活性,土壤中的有机残体、真菌菌丝体和粪便类物质增加,进而通过土壤动物吞食和排泄活动结合在一起形成较多的中等粒径团聚体[23],导致土壤团聚体组成发生了改变。

  • 团聚体水稳性表征的是团聚体抵抗灌水浸泡和降雨击打的能力。有研究指出:≥0.25 mm水稳性团聚体的含量与土壤生态效应呈正比[22]。本研究表明:≥0.25 mm水稳性团聚体含量的高低排序为紫花苜蓿/无芒雀麦混播(64.58%)、紫花苜蓿单播(57.96%)、无芒雀麦单播(56.37%)、撂荒地(40.81%)。究其原因,可能是因为相对于撂荒地,人工建植的草地由于地表被植物覆盖,且地下根系密集,土壤持水性和渗透性均得到了有效改善,因而能有效拦截降雨或灌溉引起的地表径流和地下渗流对水稳性团聚体(≥0.25 mm)的冲刷和破坏作用[21]。此外,相对于单播模式,紫花苜蓿/无芒雀麦混播模式下这种格局变化更为明显。究其原因,可能是由于混播草地地表凋落物种类增多,且豆科植物的直根系与禾本科植物的须根系相互交错,地下形成了密集网络结构[24],因而水稳性团聚体(≥0.25 mm)的结构更加稳定,含量最高。

  • 土壤团聚体质量分形维数(Dm)是土壤团聚体结构的定量化反映[25]。研究表明:土壤团聚体质量分形维数与其中的团聚体内部组成呈显著相关,表现为团聚结构粒径分布的分形维数越小,土壤越具有良好的结构与稳定性,抗蚀能力越强[26]。目前,对于分形维数D值的评定主要是TYLER提出的分形理论体系,其中土壤质量分形维数(Dm)和体积分形维数(Dv)是该体系的重要参数。DmDv可以更好地表征土壤某些属性,如土壤结构、肥力和退化程度等[27],特别是可以很好地反映沙漠化逆转过程中土壤颗粒物质和养分的变化状况[28]。本研究结果表明:土壤机械稳定性和水稳性团聚体分形维数值的从大到小顺序均表现为撂荒地、无芒雀麦单播、紫花苜蓿单播、紫花苜蓿/无芒雀麦混播。这是因为本研究样地位于豫北黄河冲积平原,土壤质地类别为砂壤土,是由沙性母质发育而来,风沙化较为严重,因此沙化裸地为砂质壤土,有机质含量低,所以土壤团聚体质量分形维数相对其他3种模式最大,而人工草地建植后土壤团聚体质量分形维数随之降低,并在紫花苜蓿/多年生黑麦草混播模式下最低。由此证明:随着人工草地的建植土地沙化得到了不同程度地逆转,尤以紫花苜蓿/无芒雀麦混播模式效果最佳。

  • WU等[29]认为:相对于退化草地,物种多样性越丰富的草地其土壤养分和碳含量也越高。本试验研究结果表明:土壤各有机碳质量分数从大到小排序依次是紫花苜蓿/无芒雀麦混播、紫花苜蓿单播、无芒雀麦单播、撂荒地。这主要是因为与撂荒地相比,单播或混播草地由于土壤生物活动明显,大量的植物残体进入土壤为微生物的生长与繁衍提供了充足的碳源,其中不稳定的活性有机碳作为植物营养的主要来源,可直接为植物根系所吸收和利用,而稳定的腐殖质碳又是土壤团聚体形成的核心。此外,相较于紫花苜蓿或无芒雀麦单播,紫花苜蓿/无芒雀麦混播草地由于各自产生的根系分泌物互相促进,且微生物数量及代谢产物增多,因而增加了土壤有机胶结物质,有利于混播草地土壤微环境的改善,因而土壤固碳能力更强。

  • 土壤团聚体形成的实质是土壤有机无机体在静电引力、氢键及羟基等官能团作用下的复合过程。这些有机体无机体多少及其作用机制均会影响团聚体的形成与稳定。土壤有机碳作为团聚体的重要胶结物质,在团聚体的形成与稳定中具有极其重要的作用[30]。本研究Pearson双侧检验结果表明:土壤各种形态的有机碳(总有机碳、活性有机碳、腐殖质碳)两两之间呈极显著正相关,且机械稳定性和水稳性团聚体的分形维数值均与各有机碳质量分数和小粒径团聚体(<0.25 mm)呈正相关,与中等粒径团聚体(5.00~3.00,3.00~1.00 mm)呈负相关。可见,土壤小粒径团聚体的减少和中等粒径团聚体的增加有利于降低土壤团聚体质量分形维数,提高土壤稳定性与肥力。

Reference (30)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return