-
现代农业和林业害虫给粮食安全带来严重威胁,每年产生巨大的经济损失[1]。准确地监测害虫数量变化,预测害虫爆发趋势,可为害虫管理行动提供可靠依据和正确管理方法[2-3]。近年来,出现了许多用于虫害测报的新型害虫诱杀设备及监测系统,这些设备配有多种传感器,可以上传数据到用户手机端,且可以定时对诱杀的害虫拍摄然后识别计数[4-5],节省了大量人力。害虫诱杀设备及监测系统进行虫害测报的重要前提是如何准确分割害虫,针对此问题,许多国内外学者对害虫分割方法进行了研究。SOLIS-SÁNCHEZ等[6]利用目标的几何形态特征(偏心率、面积等)从诱虫板上分割粉虱Aleyrodidae。NING等[7]提出交互式分割方法从复杂背景中分割害虫。吕金娜[8]提出了基于LAB颜色空间的棉花Gossypium spp.害虫普适K聚类害虫图像分割方案,对典型棉花害虫图像进行分割。杨信廷等[9]提出了基于Prewitt、Canny边缘检测算子分割和支持向量机(SVM)的温室粉虱和蓟马Thripidae诱虫板的图像识别算法。陈树越等[10]提出改进的凹点检测和精确分割点定位的方法,实现对黏连害虫的分割。然而,上述方法大多用于单个害虫情况,对于野外诱虫装置获得图像、害虫产生轻微堆叠及颜色不一等问题还有待解决。害虫的分割效果与设备的收集功能密不可分。李芝茹等[11]采用了追踪式太阳能监测装置,在稳定供能的同时也可升降采集不同高度的害虫;张红涛等[12]、张昊辰等[13]针对捕虫诱集部分,设计了多种采集方法以及通道,来提升害虫图像质量。本研究针对害虫收集装置中的采集害虫图像分割精度的要求,根据害虫面积与采样盘面积的比例进行智能翻转,针对翻转功能需要克服的实际拍摄图像光照不均匀,阴影干扰大,及害虫种类颜色繁多等问题,提出了基于全局对比度的图像分割方法,对装置中的实际图像进行分割处理,使其满足采样盘的智能翻转要求。
HTML
-
图像获取的步骤分为害虫的诱杀收集和拍摄2步。害虫的诱杀通过打开图2的黑光灯引诱害虫,害虫飞至黑光灯边上的电网时,被电死掉落到下方漏斗状装置内部,然后滑落到采样盘上。摄像头在LED灯点亮后进行拍摄,采集图像大小为2592像素×1944像素。最后将拍摄的图像传送至控制系统内部进行图像处理。
-
本研究设备为Intel(R) Core(TM)i7-8750H CPU、16G 64位PC机和树莓派官方500万像素摄像头,系统和软件环境为Window10,Jupyter Notebook,Raspberry Pi3 B+。在实际装置托盘上方20 cm处使用装置内部的树莓派摄像头进行拍摄。研究样本为5种害虫在白底托盘和红底托盘上的实际图像。为了验证本研究的可靠性与有效性,共选用100张实际拍摄图像后运行算法,取平均值作为最后研究结果数据。因实际装置的硬件性能所限制,且实际装置对智能翻转的图像处理有一定的速度和精度需求,故排除与深度学习分割方法的对比。本研究选取了4种综合处理效果较好的经典算法作为比较。
使用不同算法对实际摄像头拍摄的图片白底样本进行分割。由图3可见:本研究算法与实际比率的接近程度明显高于其他算法。且在白底托盘中,本研究算法可以更好避免阴影的影响,分割出目标害虫的轮廓。比较图4和图5可知:大津算法(OTSU)出现了错误分割阴影的结果,它将较多的阴影区域分割,将会导致害虫比例严重误判。而本研究算法较好改善了该问题,至于仅剩的阴影噪声问题将通过改善拍摄条件弥补。
白底样本的分割结果(图5)进一步表明:HC算法无法识别害虫颜色与背景颜色对比度不高的害虫,而本研究算法在改进其算法后,可以较清晰地分割出这些原本分割效果不佳的害虫。
综合了白底样本采样盘易出现灯光照射以及阴影的干扰,且由于浅色害虫与白色采样盘背景对比度过于接近,更加不利于对害虫的分割,故改进装置的采样盘为红色。拍摄深色害虫与浅色害虫同时存在于采样盘上时的图像,作为红底样本,并使用不同算法对其进行分割处理。从图6和图7可见:其他算法主要完成了浅色害虫的分割,但均无法分割出深色害虫并计算害虫面积。本研究算法则完成了深浅害虫的同时分割,从图7可清晰观察到深色害虫的翅膀及触角等细节,证明本研究算法在多种颜色害虫存在时分割结果更精确可靠。
-
为了评价算法的分割图像效果优劣,本研究将采用平均分割时间、准确率和召回率对算法的分割结果进行衡量[17]。为了比较各算法的效率,将使其对每幅图像进行多次分割,然后取平均处理时间来作最终评价。准确率(P)和召回率(R)的公式如下:
式(8)~(9)中:N为像素个数;Gn表示基准图像第n个像素是否为分割目标像素;Sn表示分割图像第n个像素是否为分割目标像素,值为0或1。本研究取权重系数为0.3,来防止由于显著性检测导致召回率过高的问题。准确率表示目标分割的准确性,召回率为检测区域与基准图像区域的比值,表示算法分割的完整性。使用选取的5种算法对样本进行图像处理,并且将人工分割的图像作为基准图像,得到3个评价指标(表1)。
分割算法 准确率 召回率 分割速度 白底样本 红底样本 白底样本 红底样本 白底样本 红底样本 水平集算法 0.72 0.74 0.62 0.64 1.68 4.35 OTSU算法 0.70 0.77 0.63 0.70 0.36 0.84 阈值迭代算法 0.83 0.83 0.81 0.69 0.56 0.87 HC算法 0.86 0.88 0.86 0.63 0.43 0.98 本研究算法 0.92 0.95 0.95 0.89 0.66 1.05 Table 1. Comparison of accuracy recall, and segmentation speed
由表1可知:本研究算法的准确率及召回率最高,其他算法易出现分割阴影等非目标轮廓,或分割不出深色害虫。准确率相比其他4种算法均提高约13%。在召回率上,本研究算法提高了10%以上,最高达53%。准确率和召回率的提升,体现了本研究算法的精确性和可靠性。在分割速度方面,本研究算法高出水平集算法约3倍,且总耗时满足装置的实际需求。除水平集算法外,其他3种算法虽然分割时间短,但无法分割多种害虫同时存在的图像,故可以接受本研究算法小幅延长分割时间后,完成了更高要求的分割。