Volume 38 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

ZHANG Jiling, CHEN Gang, CAO Guangqiu, LIN Sizu, ZHENG Hong, LI Yong. Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2021, 38(2): 304-310. doi: 10.11833/j.issn.2095-0756.20200323
Citation: ZHANG Jiling, CHEN Gang, CAO Guangqiu, LIN Sizu, ZHENG Hong, LI Yong. Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2021, 38(2): 304-310. doi: 10.11833/j.issn.2095-0756.20200323

Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata

doi: 10.11833/j.issn.2095-0756.20200323
  • Received Date: 2020-05-13
  • Rev Recd Date: 2020-12-04
  • Available Online: 2021-04-01
  • Publish Date: 2021-04-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  / Tables(3)

Article views(607) PDF downloads(25) Cited by()

Related
Proportional views

Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata

doi: 10.11833/j.issn.2095-0756.20200323

Abstract:   Objective  With an analysis conducted of the relationship between the sprouting ability of Cunninghamia lanceolata (Chinese fir) clones and the activity of antioxidant enzymes under the treatment of mechanical injure as well as an elaboration on the sprouting mechanism of C. lanceolata from the metabolic physiology of enzyme activity, this study is aimed to provide theoretical basis for solving the sprouting problem of C. lanceolata clones.  Method  Using the 1-year-old cuttings of Chinese fir Clone Yang 020 as experimental materials, with pot experiment and treatments of topping removal and no topping set at depths of 0, 3 and 6 centimeters, the enzyme activity absorbance test was carried out to measure and analyze the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in different organs, such as branches and leaves, basal phloem and root tip.  Result  (1) With the increase of soil depth, the tillering capacity of seedlings of Chinese fir clones with and without mechanical damage at different soil depths decreased, and treatments of different soil depths could affect the activity of antioxidant enzymes. (2) With the increase of soil depth, SOD activity of branches and leaves of Chinses fir seedlings increased, while CAT activity decreased. (3) The soil depth of 6 centimeters was conducive to pod accumulation of branches and leaves and root tips.  Conclusion  In conclusion, the mechanical damage and treatments of different soil depths had impact on the clonal tillering of Chinese fir. Of the same soil depth, the tillering of Chinese fir with the removal of topping is higher than the one without the removal. Also, the antioxidant enzyme activity of different organs plants was one of the main factors that affect the mechanical damage of C. lanceolata clones and the tillering of treatments of different soil depths. [Ch, 3 fig. 3 tab. 18 ref.]

ZHANG Jiling, CHEN Gang, CAO Guangqiu, LIN Sizu, ZHENG Hong, LI Yong. Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2021, 38(2): 304-310. doi: 10.11833/j.issn.2095-0756.20200323
Citation: ZHANG Jiling, CHEN Gang, CAO Guangqiu, LIN Sizu, ZHENG Hong, LI Yong. Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2021, 38(2): 304-310. doi: 10.11833/j.issn.2095-0756.20200323
  • 杉木Cunninghamia lanceolata是中国南方最重要速生树种之一,具有较强的萌芽能力[1-2]。随着现代林业的发展,无性林业成为当今社会林业发展的一个主要方向。随着近十几年来的杉木苗木繁育技术的研究,杉木无性繁殖取得了较大的突破,无性系造林面积越来越大。组培和扦插是杉木无性繁育的2个主要途径。由于杉木组培工厂化育苗过程中还普遍存在增殖系数低、生根率低等问题,扦插繁殖是杉木无性繁育的最主要途径。杉木采穗圃是提供穗条的最主要场所,为促进杉木的萌蘖能力,提高穗条的产量,去顶、压弯及基部损伤处理是常用的几种措施。目前,对母树的弯干、截干、浅栽、施肥等方面进行了研究[3-4]。机械损伤后,植物产生一系列次生代谢产物,如酚类、黄酮类、萜类、生物碱等,它们集中在伤口及其附近,参与伤口愈合反应,抵抗昆虫或病原体的入侵[5]。抗氧化酶在催化这一途径中起着非常重要的作用,对植物生长发育、紫外线辐射防治、抗虫害和植物支持系统的形成具有重要的意义和价值,其活性可作为衡量植物抗逆性强弱的指标[6]。酚类物质在植物抗生物胁迫机制中起着重要作用。机械损伤也被认为是诱导植物防御的重要手段之一[7]。虽然近年来对机械损伤影响植物防御酶的影响研究较多,但是关于机械损伤和不同埋土深度处理对杉木无性系萌蘖抗氧化酶活性的机制研究却鲜少报道。本研究以萌蘖能力较强的杉木无性系洋020扦插苗为研究对象,通过室内盆栽试验,分析机械损伤和不同埋土深度对无性系萌蘖能力及不同器官抗氧化酶活性的影响,为揭示杉木萌蘖机制以及杉木人工林的高效培育奠定理论依据。

  • 材料为福建省洋口国有林场提供的1年生杉木洋020扦插苗。挑选生长健壮、长势一致、无病虫害的苗木,平均苗高30 cm,地径为5 mm。盆栽土壤为山地黄心土,有机质49.00 g·kg−1,全氮1.09 g·kg−1,水解氮1.32 mg·kg−1,速效磷2.30 mg·kg−1,速效钾151.30 mg·kg−1

  • 试验在福建农林大学国家林业草原杉木工程技术研究中心田间实验室内进行。2019年3月中旬将杉木无性系洋020扦插苗种植于花盆(21 cm×26 cm×27 cm)中,3株·盆−1。培养基为黄心土。采用随机区组试验,6个处理,处理1为去顶埋土深度0 cm (TP1),处理2为去顶埋土深度3 cm (TP2),处理3为去顶埋土深度6 cm (TP3),处理4为未去顶埋土深度0 cm (ck1),处理5为未去顶埋土深度3 cm (ck2),处理6为未去顶埋土深度6 cm (ck3);去顶处理为苗木培养7 d后剪去顶稍1 cm;每个处理40盆,共240盆。盆栽后定期调查不同处理杉木基部的萌芽数。培养期间定期给苗木浇自来水,保持土壤含水率在65%左右;定期除草。2019年6月30日(萌蘖初期)、7月31日(萌蘖中期)、8月31日(萌蘖后期)取已萌芽的洋020扦插苗的枝叶、基部皮及根尖样品,每个处理采集9株,每3株混成1个待测样,每个部位待测样3个重复。不同部位样品取样后迅速放入液氮中,置于−80 ℃超低温冰箱中保存待测。

  • 2019 年4月30日、5月31日、6月30日、7月31日、8月31日分别调查不同处理幼苗的萌蘖数。

  • 参照李合生的方法[8]取叶片、基部皮及根尖0.2 g,加入0.05 mol·L−1 pH 7.8磷酸缓冲液228.75 mL,母液B(NaH2PO4)21.25 mL,用蒸馏水稀释至1 000 mL。在冰浴中用研钵研磨成匀浆,稀释至4 mL刻度离心管,在4 ℃下以10 000 r·min−1的速度冷冻离心20 min,并将上清液置于4 ℃冰箱中冷藏。超氧化物歧化酶(SOD)活性测定参照丁红等[9]方法,以抑制氮蓝四唑(NBT)光还原的50%为1个酶活性单位。过氧化物酶(POD)和过氧化氢酶(CAT)活性参照SHALATA等[10]的方法测定。

  • 数据用Excel 2010和SPSS 22.0软件进行整理和相关性分析。

  • 表1结果显示:随着培养时间的延长,杉木萌蘖均呈上升趋势,随着埋土深度的增加,杉木萌蘖能力呈逐渐下降的趋势,在相同埋土深度条件下,去顶处理比未去顶处理杉木萌蘖能力更强。萌蘖后期(8月),埋土深度0、3、6 cm去顶处理苗的萌蘖数与同一埋土深度未去顶处理相比分别提高15.11%、6.73%及3.49%;去顶处理苗埋土深度6 cm处理的萌蘖数分别比埋土深度3及0 cm处理降低5.67%及34.29%,未去顶处理苗埋土深度6 cm处理的萌蘖数分别比埋土深度3及0 cm处理降低4.21%及25.87%。

    处理萌蘖/株
    2019-06-302019-07-312019-08-31
    TP10.65 ± 0.08 ab2.90 ± 0.20 bc3.50 ± 0.50 ac
    TP20.54 ± 0.06 bc2.40 ± 0.18 a3.10 ± 0.30 b
    TP30.43 ± 0.03 a2.13 ± 0.16 b2.54 ± 0.30 a
    ck11.50 ± 0.02 b2.89 ± 0.40 a3.35 ± 0.42 b
    ck21.20 ± 0.11 a2.20 ± 0.30 b3.00 ± 0.40 a
    ck30.80 ± 0.06 a2.10 ± 0.20 b2.20 ± 0.30 a
      说明:同列不同小写字母表示差异显著(P<0.05)

    Table 1.  Difference of tillering of Chinese fir clones treated by mechanical damage and different soil depth

  • 图1看出:在萌蘖后期,杉木幼苗基部皮SOD活性除TP2较低外,其余处理均显著高于前期和中期。ck1、ck2、ck3、TP1、TP3的杉木幼苗枝叶萌蘖后期SOD活性相比于前期分别提高36.08%、45.76%、63.65%、31.56%、57.27%,相比于中期分别提高了41.99%、25.77%、49.59%、49.00%、21.23%。杉木幼苗枝叶SOD活性普遍以TP1较低,在萌蘖前期、中期和后期分别为300.99、343.08、354.89×16.67 nkat·g−1。在后期,ck3、ck2和TP3的杉木幼苗枝叶SOD活性相比于前期和中期显著上升,其中相比于前期分别提升了40.57%、54.06%和76.00%,相比于中期分别提升了18.28%、46.95%和45.86%。而杉木幼苗不同机械损伤和不同埋土深度间处理下的杉木幼苗根尖SOD活性则不具有明显规律。

    Figure 1.  SOD activity of Chinese fir seedlings under mechanical damage and different soil depth treatments

  • 图2可以看出:在萌蘖前期,杉木幼苗枝叶、基部皮和根尖CAT活性,从高到低排序均为TP3、TP2、TP1,ck1、ck2和ck3。TP3处理杉木枝叶CAT活性相比于TP2、TP1、ck3、ck2和ck1分别高出了459.29%、1 004.03%、366.34%、81.98%和20.30%,基部皮分别高出了419.75%、241.20%、204.15%、86.01%和43.44%;根尖分别高出了1 123.06%、933.10%、125.46%、63.93%和23.83%。在中期和后期,杉木幼苗枝叶、基部皮和根尖CAT活性均迅速下降,在中期,TP3、TP2、TP1、ck3、ck2和ck1的杉木叶片CAT活性相比于前期分别下降了36.35%、41.02%、57.08%、85.01%、89.90%和90.82%,杉木基部皮CAT活性相比于前期分别下降了20.56%、66.32%、84.29%、94.55%、85.56%和95.33%,杉木根尖CAT活性相比于前期分别下降了−47.49%、−18.77%、88.11%、92.36%、87.91%、4.52%。杉木幼苗枝叶CAT活性在中期ck2和ck1较高,在后期TP2、TP1、ck2和ck1较高。在中期和后期,杉木幼苗基部皮和根尖CAT活性规律较为统一,且总体处于较低水平。基部皮CAT活性在中、后期从高到低排序为ck2、TP3、ck3、ck1、TP1、TP2,根尖CAT活性在中、后期从高到低排序为ck2、ck3、TP3、TP2、ck1、TP1

    Figure 2.  CAT activity of Chinese fir seedlings under mechanical damage and different soil depth treatments

  • 图3可以看出:在萌蘖前期,未去顶的杉木枝叶、基部皮和根尖POD活性高于中期和后期。杉木枝叶POD活性前期ck1、ck2和ck3比中期分别提高了109.85%、61.63%和102.35%,比后期分别提高了135.99%、62.85%和115.02%;杉木基部皮POD活性前期ck1、ck2和ck3比中期分别提高了147.98%、141.16%和187.70%,比后期分别提高了59.14%、22.82%和61.56%;杉木根尖POD活性前期ck1、ck2和ck3比中期分别提高了174.74%、107.14%和134.69%,比后期分别提高了143.91%、45.47%和85.89%。在萌蘖前期,未去顶的杉木苗枝叶、基部皮和根尖POD活性普遍较高,POD活性从高到低依次为ck1、ck3、ck2。在中期,杉木幼苗基部皮和根尖POD活性以TP2、TP3较高。

    Figure 3.  POD activity of young Chinese fir treated with mechanical damage and different soil depth

  • 由多因素方差分析(表2)可知:不同时期、不同机械损伤和不同部位之间SOD和POD活性具有极显著差异(P<0.01),且3种因素之间具有极显著的交互作用(P<0.01)。不同时间、不同机械损伤、不同埋土深度和不同部位之间CAT活性具有极显著差异(P<0.01),4种因素之间具有极显著的交互作用(P<0.01)。

    因素SOD活性CAT活性POD活性
    均方F均方F均方F
    时期82 807.91535.981**97 192.403734.535**34 187.29654.764**
    机械损伤44 879.39319.501**19 211.774145.194**43 239.49669.264**
    埋土深度6 918.1063.0062 910.45421.996**2 831.0714.535*
    器官部位114 489.45449.747**2 658.56920.092**54 248.12786.899**
    时期×机械损伤5 232.7122.27431 600.742238.824**92 412.000148.032**
    时期×埋土深度25 120.65510.915**3 616.95027.335**2 911.3184.664**
    时期×器官部位41 964.81818.234**2 074.81315.680**4 762.1977.628**
    机械损伤×埋土深度5 197.3252.2582 605.10619.688*2 015.7233.229*
    机械损伤×器官部位4 442.0491.930978.8747.398**1 977.1183.167*
    埋土深度×器官部位1 881.6790.8181 063.0938.034**1 069.2961.713
    时期×机械损伤×埋土深度1 147.7520.4992 396.59018.112**7 094.74711.365**
    时期×机械损伤×器官部位23 470.57210.198**761.7695.757**3 770.8596.040**
    时期×埋土深度×器官部位7 876.3663.422**402.7103.043**1 433.9272.297**
    机械损伤×埋土深度×器官部位9 597.7204.170**331.1242.502*1 302.1482.086
    时期×机械损伤×埋土深度×器官部位10 678.3064.640**179.3721.3562 428.7583.891**
      说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上极显著相关

    Table 2.  Variance analysis of SOD, CAT and POD enzyme activities in Chinese fir seedlings

  • 表3可见:萌蘖数与机械损伤呈极显著负相关(P<0.01);萌蘖数与萌蘖时期呈极显著正相关(P<0.01),SOD活性与萌蘖时期呈极显著正相关(P<0.01);SOD活性与萌蘖数呈显著正相关(P<0.05),CAT活性与机械损伤呈极显著正相关(P<0.01);CAT活性与萌蘖时期、萌蘖数和SOD活性呈极显著负相关(P<0.01),POD活性与萌蘖时期、萌蘖数呈显著正相关(P<0.05);POD活性与SOD活性呈极显著正相关(P<0.01),POD与CAT活性呈显著负相关(P<0.05)。

    项目机械损伤萌蘖时期萌蘖数SOD活性CAT活性POD活性
    机械损伤1.000
    萌蘖时期0.0001.000
    萌蘖数 −0.613**0.540**1.000
    SOD活性0.0170.445**0.125*1.000
    CAT活性0.293**−0.670**−0.614**−0.387**1.000
    POD活性0.1090.239*0.082*0.290**−0.269*1.000
      说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)

    Table 3.  Correlation between mechanical damage and tillering enzyme activity of Chinese fir clones under different soil depth treatments

  • 本研究表明:随着培养时间的延长,杉木萌蘖均呈上升趋势;随着埋土深度的增加,杉木萌蘖能力逐渐呈下降的趋势。在萌蘖后期,TP1、TP2和TP3的萌蘖数与同一埋土深度ck1、ck2和ck3相比分别提高15.11%、6.73%及3.49%。说明适度的机械损伤对杉木萌蘖影响较大,利于无性系的繁殖。植物通过自然选择和人工选择,逐渐形成相应的防御机制,有助于损伤部位的愈合,并诱发全株反应,防止进一步损伤的发生。可以根据植物对机械损伤的特殊反应强化植物的抗虫抗病能力,减少施药对人类健康以及生态环境的损害,也可以探索防御反应的发生机制,以期遏制植株的“过度反应”,减少生产上的经济损失[1112]

    生物转化是利用细胞、器官或酶等生物体系进行催化的反应。由于生物转化的多样性涉及到许多酶,SOD活性过高,会影响某些正常的氧化代谢过程[13]。由于SOD具有亲核性和还原性,一定微环境下,具有很强的氧化损伤作用[14]。低CAT活性的植株对过氧化氢(H2O2)胁迫更加敏感,CAT作为植物体内重要活性氧清除酶,可与质膜透性一起表征植物受逆境伤害的程度,两者在胁迫发生后一段时间内的变化态势,可反映植物自身修复过程中的一些信息[15-16]。POD在回收过程中具有双重功能。一方面,POD可以在逆境或衰老的早期表达以去除H2O2,是活性氧保护酶系统的成员之一;另一方面,POD也可以在逆境或衰老的后期表达以参与活性氧的产生和叶绿素的降解,引起膜脂过氧化,这是植物衰老的产物,可以作为衰老的指标。本研究表明:去顶后埋土3 cm和去顶后埋土6 cm处理下的杉木幼苗叶片SOD活性相比于萌蘖前期和后期明显上升,不同部位中CAT活性总体呈下降趋势,叶、基部皮和根尖中POD活性呈增长趋势。李惠梅等[17]研究了增强UV-B辐射对麻花龙胆Gentiana straminea抗氧化酶系统的影响。结果表明:UV-B处理后,麻花龙胆叶片中SOD和POD活性在处理初期升高,但随着处理时间的延长,SOD和POD活性降低,CAT活性显著降低。这与本研究结果有一致和不同之处。生物代谢中酶活性的变化反映了环境物理化学变化,可以为环境变化提供早期预测。因此,越来越多的学者关注逆境下植物体内酶的变化,试图利用酶的变化来判断植物对环境的响应[18]。不同植物对逆境的应激方式不尽相同,适应逆境的机制十分复杂。

  • 随着埋土深度的增加,不同埋土深度杉木无性系苗萌蘖能力均呈降低的趋势,同一埋土深度下机械损伤处理无性系苗萌蘖力高于未机械损伤。随着埋土深度的增加,杉木幼苗枝叶SOD活性呈上升趋势,CAT活性呈下降趋势;埋土6 cm处理有利于枝叶及根尖POD的积累;杉木幼苗不同器官植物抗氧化酶活性的差异应与杉木对机械损伤和埋土深度处理的生理应答机制有关。本研究结果在一定程度上反映机械损伤和不同埋土深度处理后杉木无性系萌蘖SOD、CAT和POD活性的变化规律,但在杉木萌蘖过程中抗氧化酶活性之间如何维持平衡,以及如何协同作用调控杉木萌蘖等的机制尚不清楚,这有待于今后进一步深入研究。

Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return