Volume 40 Issue 6
Nov.  2023
Turn off MathJax
Article Contents

ZHENG Xiao, WANG Tong, PANG Chunmei, SONG Sijing, DING Shan, YU Shuquan. Dynamic study on tree layer of deciduous broad-leaved forest in Mount Tianmu from 1996 to 2017 under climate change[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1250-1260. doi: 10.11833/j.issn.2095-0756.20230185
Citation: ZHENG Xiao, WANG Tong, PANG Chunmei, SONG Sijing, DING Shan, YU Shuquan. Dynamic study on tree layer of deciduous broad-leaved forest in Mount Tianmu from 1996 to 2017 under climate change[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1250-1260. doi: 10.11833/j.issn.2095-0756.20230185

Dynamic study on tree layer of deciduous broad-leaved forest in Mount Tianmu from 1996 to 2017 under climate change

doi: 10.11833/j.issn.2095-0756.20230185
  • Received Date: 2023-03-01
  • Accepted Date: 2023-06-15
  • Rev Recd Date: 2023-06-12
  • Available Online: 2023-11-23
  • Publish Date: 2023-11-23
  •   Objective  This study aims to investigate the effect of climate change from 1996 to 2017 on the community composition and structure, biodiversity, and flora of trees with diameter at breast height (DBH)≥10 cm in the deciduous broad-leaved forest layer of Mount Tianmu.  Method  A sample plot survey was conducted on 25 sample plots of 400 m2 of deciduous broad-leaved forest in the National Nature Reserve of Mount Tianmu, Zhejiang Province, China. Phase 2 (1996 and 2017) survey data and meteorological data of Mount Tianmu from 1996 to 2017 were used to analyze the dynamics of the tree layer in a deciduous broad-leaved forest.  Result  (1) The composition of life form of tree species in the tree layer changed significantly. The proportion of evergreen tree species increased from 17.5% to 35.5%, an increase of 102.9%, and the proportion of deciduous tree species decreased from 82.5% to 64.5%, which decreased by 21.8%. (2) The tree species in the tree layer changed drastically, with an exit of 8 species in 6 genera of 4 families, and entry of 4 species in 3 genera of 1 family. The exit and entry tree species reached 27.3%. The exit and entry of rare and occasional species were the keys to the change in species number in the tree layer. (3) The role of evergreen tree species in the tree layer was increasing. The variation range of the top 17 dominant tree species in the important value was 47.1%. Among them, the important value of Daphniphyllum macropodum, an evergreen tree species, increased from 1.88% in the 19th place to 10.36% in the 3rd place. The proportion of important values of evergreen tree species increased from 22.6% to 36.3%. (4) The α diversity of the tree layer decreased slightly, and the decline in various indices ranged from −9.1% to −3.1%. The α diversity index of evergreen tree species increased, ranging from −3.0% to 51.8%. (5) The flora tended to be tropical. The proportion of tropical components in the family increased from 55.6% to 58.3%. The proportion of tropical elements in the genus increased from 25.0% to 30.3%. (6) The diameter class structure showed an inverted J type, and the community was stable. The number of small-diameter evergreen tree species increased by 165.3%, while the number of medium-diameter evergreen tree species increased by 45.5%. There was no significant change in the large-diameter species. In 1996, there were 11 growth-type tree species, 1 stable-type tree species, and 4 declining-type tree species. In 2017, there were 7 growth-type tree species, and 5 stable-type tree species, and declining-type tree species did not change. Tilia chingiana, Cyclocarya paliurus, Cladrastis wilsonii, and Acer pictum changed from growth-type to stable-type. The growth potential of Pinus taiwanensis, Cyclobalanopsis shennongii, Cornus kousa ssp. chinensis, Daphniphyllum macropodum and Acer sinopurpurascens increased.   Conclusion  Under climate warming and humidification, the dynamic change of the tree layer in the deciduous broad-leaved forest in Mount Tianmu is very significant. The appearance of the tree layer in the deciduous broad-leaved forest has transitioned from the dominance of deciduous tree species to the balanced state between evergreen and deciduous trees, with a slight decrease in biodiversity and a trend towards tropical elements in the flora. [Ch, 7 tab. 39 ref.]
  • [1] HU Ruiqi, FANG Weijun, WANG Yiping.  Population diversity and temporal dynamics of large moths at different altitudes in Mount Tianmu . Journal of Zhejiang A&F University, 2024, 41(): 1-7. doi: 10.11833/j.issn.2095-0756.20230469
    [2] SONG Sijing, DING Shan, PANG Chunmei, ZHENG Xiao, WANG Tong, YU Shuquan.  Population structure and spatial distribution pattern of Cyclobalanopsis gracilis in the evergreen and deciduous broad-leaved forest in Mount Tianmu . Journal of Zhejiang A&F University, 2023, 40(5): 1073-1081. doi: 10.11833/j.issn.2095-0756.20220784
    [3] ZHAO Saisai, TANG Mengping, TANG Sijia, ZHANG Jun, LI Lan, PANG Chunmei, ZHAO Mingshui.  Visualization for a Phyllostachys edulis stands . Journal of Zhejiang A&F University, 2016, 33(5): 826-833. doi: 10.11833/j.issn.2095-0756.2016.05.014
    [4] NIU Xiaodong, JIANG Hong, FANG Chengyuan, CHEN Xiaofeng, SUN Heng.  Water vapor flux features of an evergreen and deciduous broadleaf mixed forest in Mount Tianmu area . Journal of Zhejiang A&F University, 2016, 33(2): 216-224. doi: 10.11833/j.issn.2095-0756.2016.02.005
    [5] ZHENG Shiwei, JIANG Hong, TANG Minzhong.  Research on the characteristics and dynamics of acid deposition in Mount Tianmu . Journal of Zhejiang A&F University, 2015, 32(2): 188-194. doi: 10.11833/j.issn.2095-0756.2015.02.004
    [6] FAN Peipei, WEI Xinliang, GUO Ruyi, TANG Mengping.  Forest tree spatial characteristics of a coniferous, broad-leaf mixed forest on Mount Tianmu . Journal of Zhejiang A&F University, 2015, 32(5): 675-682. doi: 10.11833/j.issn.2095-0756.2015.05.004
    [7] WANG Jing, WEI Xinliang, XU Jian, FAN Peipei.  Spatial distribution patterns of a coniferous-broadleaved mixed forest in Mount Tianmu, China . Journal of Zhejiang A&F University, 2014, 31(5): 668-675. doi: 10.11833/j.issn.2095-0756.2014.05.002
    [8] FANG Guojing, TANG Mengping.  Spatial continuity for DBH in dominant populations of an evergreen broadleaved forest in National Nature Reserve of Mount Tianmu, China . Journal of Zhejiang A&F University, 2014, 31(5): 663-667. doi: 10.11833/j.issn.2095-0756.2014.05.001
    [9] XU Jian, WEI Xinliang, WANG Jing, WANG Xianting, YU Lipeng.  Intraspecific and interspecific competition of dominant species in a deciduous, broadleaf forest of Longwang Mountain . Journal of Zhejiang A&F University, 2014, 31(6): 868-876. doi: 10.11833/j.issn.2095-0756.2014.06.007
    [10] HUANG Yiming, YANG Shuzhen, ZHAO Mingshui, CHEN Jiaqi, WU Jianqi, WEN Guosheng.  Cryptomeria fortunei tumor disease and a removal method . Journal of Zhejiang A&F University, 2013, 30(6): 910-913. doi: 10.11833/j.issn.2095-0756.2013.06.016
    [11] ZHANG Zhi-hua, WEI Xin-liang, TANG Meng-ping, LUO Wen-jian, WANG Jing.  Structural characteristics of Liquidambar formosana for a mixed coniferous-broadleaf forest in Mount Tianmu . Journal of Zhejiang A&F University, 2012, 29(6): 867-874. doi: 10.11833/j.issn.2095-0756.2012.06.010
    [12] DENG Ying-ying, TANG Meng-ping, XU Wen-bing, CHEN Yong-gang, LOU Ming-hua, ZHAO Ming-shui.  Spatial structure of bamboo culm of an almost natural,pure Phyllostachys pubescens forest in Mount Tianmu . Journal of Zhejiang A&F University, 2011, 28(2): 173-179. doi: 10.11833/j.issn.2095-0756.2011.02.001
    [13] YANG Shu-zhen, LI Guo-hui, DU Qing-zhou, WEN Guo-sheng.  Effects of transfusion of nutrient solution to Cryptomeria fortunei on Mount Tianmu . Journal of Zhejiang A&F University, 2009, 26(6): 810-814.
    [14] FANG Guo-jing, TANG Meng-ping, ZHANG Xue-lian.  The mingling index with evergreen broadleaf forests on Mount Tianmu . Journal of Zhejiang A&F University, 2008, 25(2): 216-220.
    [15] JIANG Ting, TANG Meng-ping.  Quantitative relationships with competition of dominant tree populations in an evergreen broad-leaved forest on Mount Tianmu . Journal of Zhejiang A&F University, 2008, 25(4): 444-450.
    [16] XIA Ai-mei, DA Liang-jun, ZHU Hong-xia, ZHAO Ming-shui.  Community structure and regeneration pattern of Cryptomeria fortunei in Mount Tianmu of Zhejiang , China . Journal of Zhejiang A&F University, 2004, 21(1): 44-50.
    [17] JIN Ze-xin.  Dominant population structure and trend of deciduous broad-leaved forest in the Tiantai Mountains of Zhejiang . Journal of Zhejiang A&F University, 2001, 18(3): 245-251.
    [18] YANG Shu-zhen, CHENG Ai-xing.  Report on butterflies in Mount Tianmu . Journal of Zhejiang A&F University, 2000, 17(3): 255-261.
    [19] ZHAO Ming-shui, ZHOU Zhong-hui, CHENG Xiao-yuan, YANG Feng-chun.  Function of water-retention and soil-improvement of Schima superba fire forest belts in National Nature Reserve of Mount Tianmu . Journal of Zhejiang A&F University, 2000, 17(1): 42-45.
    [20] Chen Guorui, Ye Lin, Wang Wei, Yu Yiwu, Li Tianyou..  Regulation Effects of Two Kinds of Forests in Northern Zhejiang on Temperature and Humidity . Journal of Zhejiang A&F University, 1994, 11(2): 143-150.
  • [1]
    DAI Siwei, NI Ying. Analysis of climate change and sustainable development based on the IPCC Fifth Assessment Report [J]. Journal of Jiangsu Second Normal University (Natural Sciences), 2014, 30(11): 12 − 14.
    [2]
    SUN Hongyu, WANG Changyao, NIU Zheng, et al. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data [J]. National Remote Sensing Bulletin, 1998, 2(3): 204 − 210.
    [3]
    LI Xia, LI Xiaobing, WANG Hong et al. Impact of climate change on temperate grassland in northern China [J]. Journal of Beijing Normal University (Natural Science), 2006, 42(6): 618 − 623.
    [4]
    FANG Jingyun. Ecoclimatological analysis of the forest zones in China [J]. Acta Ecologica Sinica, 1991, 11(4): 377 − 387.
    [5]
    ZHANG Yuandong, ZHANG Xiaohe, LIU Shirong. Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in southwest China [J]. Chinese Journal of Applied Ecology, 2011, 22(2): 323 − 330.
    [6]
    PARMESAN C, YOHE G. A globally coherent fingerprint of climate change impacts across natural systems [J]. Nature, 2003, 421(6918): 37 − 42.
    [7]
    SAXE H, CANNELL M G R, JOHNSEN Ø, et al. Tree and forest functioning in response to global warming [J]. New Phytologist, 2002, 149(3): 369 − 399.
    [8]
    KOVACH R P, MUHLFELD C C, WADE A A, et al. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout [J]. Global Change Biology, 2015, 21(7): 2510 − 2524.
    [9]
    WU Yu. The Response of Carbon Pools and Plant Communities to Climate Change in a Mid-subtropical Forest: a Case Study in the Sangzhi County [D]. Wuhan: University of Chinese Academy of Sciences, 2020.
    [10]
    KLEIN J A, HARTE J, ZHAO Xinquan. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau [J]. Ecology Letters, 2004, 7(12): 1170 − 1179.
    [11]
    WALKEL M D, WAHREN C H, HOLLISTER R, et al. Plant community responses to experimental warming across the tundra biome [J]. Proceedings of the National Academy of Sciences, 2006, 103(5): 1342 − 1346.
    [12]
    BAI Cheng, YOU Shixue, KU Weipeng, et al. Life form dynamics of the tree layer in evergreen and deciduous broad-leaved mixed forest during 1996−2017 in Tianmu Mountains, eastern China [J/OL]. Silva Fennica, 2020, 54(2): 54[2023-02-01]. doi: 10.14214/sf.10167.
    [13]
    BAI Cheng. Community Dynamics of Tree Layer in Evergreen and Deciduous Broad-leaved Mixed Forest in Tianmu Mountain[D]. Hangzhou: Zhejiang A&F University, 2019.
    [14]
    WANG Shengwei. Plant Diversity and Floristic Research in Tropical East Africa [D]. Wuhan: University of Chinese Academy of Sciences, 2020.
    [15]
    ZHANG Xiaochen, YANG Junke, PENG Xi, et al. Floristic Characteristics and dynamic prediction of seed plants in Baohuashan [J]. Central South Forest Inventory and Planning, 2022, 41(1): 43 − 50.
    [16]
    LI Feng, ZHOU Guangsheng, CAO Mingchang. Responses of Larix gmelinii geographical distribution to future climate change: a simulation study [J]. Chinese Journal of Applied Ecology, 2006, 17(12): 2255 − 2260.
    [17]
    YOU Shixue, ZHANG Chao, KU Weipeng, et al. Community dynamics of arbor layer in the mixed evergreen and deciduous broad-leaved forests during 1996−2012 in Tianmu Mountain [J]. Scientia Silvae Sinicae, 2016, 52(10): 1 − 9.
    [18]
    FANG Guojing, TANG Mengping. Spatial continuity for DBH in dominant populations of an evergreen broadleaved forest in National Nature Reserve of Mount Tianmu, China [J]. Journal of Zhejiang A&F University, 2014, 31(5): 663 − 667.
    [19]
    Committee for the Preparation of the Third National Assessment Report on Climate Change. Third National Assessment Report on Climate Change [M]. Beijing: Science Press, 2015.
    [20]
    CHEN Dongji. Quantitative analysis of forest vertical forest zones in the Nature Reserve of Mount West Tianmu [J]. Journal of Zhejiang Forestry College, 1992, 9(1): 17 − 26.
    [21]
    DING Bingyang, PAN Chengwen. Practice Handbook of Botany in Tianmushan [M]. Hangzhou: Zhejiang University Press, 2003
    [22]
    Zhejiang Flora Editing Committee. Zhejiang Flora [M]. Hangzhou: Zhejiang Science and Technology Press, 1993.
    [23]
    DING Bingyang. Flora of Tianmushan [M]. Hangzhou: Zhejiang University Press, 2009.
    [24]
    GIVNISH T J. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox [J/OL]. Silva Fennica, 2002, 36(3)[2023-02-01]. doi: 10.14214/sf.535.
    [25]
    HUBBELL S P. Plant Ecology [M]. New Jersey: Princeton University Press, 1986.
    [26]
    HE Fangliang, LEGENDRE P, LAFRANKIE J V. Distribution patterns of tree species in a Malaysian tropical rain forest [J]. Journal of Vegetation Science, 1997, 8(1): 105 − 114.
    [27]
    XIA Yanju, ZHANG Jing, ZOU Shun, et al. Dynamics of structural diversity and carbon storage along a successional gradient in South subtropical forests [J]. Ecology and Environmental Sciences, 2018, 27(3): 424 − 431.
    [28]
    GUO Ke, FANG Jingyun, WANG Guohong, et al. A revised scheme of vegetation classification system of China [J]. Chinese Journal of Plant Ecology, 2020, 44(2): 111 − 127.
    [29]
    MAGURRAN A E. Ecological Diversity and Its Measurement [M]. New Jersey: Princeton University Press, 1988.
    [30]
    WU Zhengyi. Revision of the Areal-types of the World Families of Seed Plants [J]. Acta Botanica Yunnanica, 2003, 17(5): 535 − 538.
    [31]
    WU Zhengyi, ZHOU Zhekun, LI Dezhu, et al. Floristics of Seed Plants from China [M]. Beijing: Science Press, 2010.
    [32]
    MENG Xianyu. Forest Mensuration [M]. 3th ed. Beijing: China Forestry Publishing House, 2006.
    [33]
    ZHOU Chongguang. The ecological characteristics of forest biodiversity of Tianmu mountain and its sustainability [J]. Journal of Zhejiang Forestry Science and Technology, 1996, 16(5): 1 − 7.
    [34]
    LOU Yikai, FAN Yi, DAI Qilin, et al. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve [J]. Acta Ecologica Sinica, 2021, 41(21): 8568 − 8577.
    [35]
    WU Yangyang, GUO Chunzi, NI Jian. Dynamics of major forest vegetations in Tiantong National Forest Park during the last 30 years [J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1547 − 1554.
    [36]
    MA Teng. The Research on Population Characters and Evaluated Genetic Diversity of China Wild Pyrus ussuriensis Maxim[D]. Changsha: Central South University of Forestry & Technology, 2011.
    [37]
    CHENG Hongmei. Life table and survival analysis of Tilia breviflora population in Dashu Mountain [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(3): 341 − 347.
    [38]
    ZHANG Gaolei, DU Fan, WANG Huan, et al. Study on tree layer dynamic in Xishuangbanna montane rain forest based on 20 years’ monitoring [J]. Acta Ecologica Sinica, 2015, 35(12): 4053 − 4062.
    [39]
    LI Jianquan, LI Zhiyong, YI Haoruo. Interaction relation between forest and global climate change [J]. Journal of Northwest Forestry University, 2010, 25(4): 23 − 28.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(7)

Article views(166) PDF downloads(39) Cited by()

Related
Proportional views

Dynamic study on tree layer of deciduous broad-leaved forest in Mount Tianmu from 1996 to 2017 under climate change

doi: 10.11833/j.issn.2095-0756.20230185

Abstract:   Objective  This study aims to investigate the effect of climate change from 1996 to 2017 on the community composition and structure, biodiversity, and flora of trees with diameter at breast height (DBH)≥10 cm in the deciduous broad-leaved forest layer of Mount Tianmu.  Method  A sample plot survey was conducted on 25 sample plots of 400 m2 of deciduous broad-leaved forest in the National Nature Reserve of Mount Tianmu, Zhejiang Province, China. Phase 2 (1996 and 2017) survey data and meteorological data of Mount Tianmu from 1996 to 2017 were used to analyze the dynamics of the tree layer in a deciduous broad-leaved forest.  Result  (1) The composition of life form of tree species in the tree layer changed significantly. The proportion of evergreen tree species increased from 17.5% to 35.5%, an increase of 102.9%, and the proportion of deciduous tree species decreased from 82.5% to 64.5%, which decreased by 21.8%. (2) The tree species in the tree layer changed drastically, with an exit of 8 species in 6 genera of 4 families, and entry of 4 species in 3 genera of 1 family. The exit and entry tree species reached 27.3%. The exit and entry of rare and occasional species were the keys to the change in species number in the tree layer. (3) The role of evergreen tree species in the tree layer was increasing. The variation range of the top 17 dominant tree species in the important value was 47.1%. Among them, the important value of Daphniphyllum macropodum, an evergreen tree species, increased from 1.88% in the 19th place to 10.36% in the 3rd place. The proportion of important values of evergreen tree species increased from 22.6% to 36.3%. (4) The α diversity of the tree layer decreased slightly, and the decline in various indices ranged from −9.1% to −3.1%. The α diversity index of evergreen tree species increased, ranging from −3.0% to 51.8%. (5) The flora tended to be tropical. The proportion of tropical components in the family increased from 55.6% to 58.3%. The proportion of tropical elements in the genus increased from 25.0% to 30.3%. (6) The diameter class structure showed an inverted J type, and the community was stable. The number of small-diameter evergreen tree species increased by 165.3%, while the number of medium-diameter evergreen tree species increased by 45.5%. There was no significant change in the large-diameter species. In 1996, there were 11 growth-type tree species, 1 stable-type tree species, and 4 declining-type tree species. In 2017, there were 7 growth-type tree species, and 5 stable-type tree species, and declining-type tree species did not change. Tilia chingiana, Cyclocarya paliurus, Cladrastis wilsonii, and Acer pictum changed from growth-type to stable-type. The growth potential of Pinus taiwanensis, Cyclobalanopsis shennongii, Cornus kousa ssp. chinensis, Daphniphyllum macropodum and Acer sinopurpurascens increased.   Conclusion  Under climate warming and humidification, the dynamic change of the tree layer in the deciduous broad-leaved forest in Mount Tianmu is very significant. The appearance of the tree layer in the deciduous broad-leaved forest has transitioned from the dominance of deciduous tree species to the balanced state between evergreen and deciduous trees, with a slight decrease in biodiversity and a trend towards tropical elements in the flora. [Ch, 7 tab. 39 ref.]

ZHENG Xiao, WANG Tong, PANG Chunmei, SONG Sijing, DING Shan, YU Shuquan. Dynamic study on tree layer of deciduous broad-leaved forest in Mount Tianmu from 1996 to 2017 under climate change[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1250-1260. doi: 10.11833/j.issn.2095-0756.20230185
Citation: ZHENG Xiao, WANG Tong, PANG Chunmei, SONG Sijing, DING Shan, YU Shuquan. Dynamic study on tree layer of deciduous broad-leaved forest in Mount Tianmu from 1996 to 2017 under climate change[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1250-1260. doi: 10.11833/j.issn.2095-0756.20230185
  • 联合国政府间气候变化专门委员会(IPCC)第5次评估报告指出:在1880—2012年的132 a,全球表面平均温度上升了0.85 ℃。古气候资料显示:1983—2012年可能是过去1 400多年来温度最高的29 a[1],且至少到2050年,全球平均温度仍呈现不断上升趋势。植物是生态系统的生产者,也是连接水分、土壤和大气的关键,在全球气候变化研究中起指示生物作用[23]。气候是影响植物及植物分布的主导因素[4],如温度、降水等作为植物生长发育的必要环境因子,对植物的生长和物候等具有重要影响[5],气候变化必然影响植物的生长环境,进而影响植物的生长状态[6]。相关研究表明:气候变化已对森林群落组成与结构[79]、生物多样性[1012]以及植物区系[1315]造成明显的影响。天目山国家级自然保护区是以维护动植物多样性和森林生态系统为主的自然保护区,是联合国教科文组织人与生物圈计划的重要保护区网络组成成员。该区的地理位置与自然环境资源条件良好,生物多样性丰富,为中国南部地区难得的“物种基因库”和“文化遗产宝库”,有高等植物2 351种、野生动物5 024种,其中以“天目”命名的生物有172种,誉为“天然植物园”、世界模式标本产地。

    当前快速恢复和生长的中亚热带森林,有望在全球气候变化中发挥重要调节作用。建立长期固定样地,监测群落组成与结构、生物多样性和植物区系等动态特征,对中亚热带森林如何响应全球气候变化做出系统性评估,有助于制定应对未来气候变化的森林保护、经营管理措施,对森林可持续健康发展具有重要意义[9]。从当前文献看,相关的研究地区和森林类型存在明显的不平衡和不充分。研究地区大部分在东北和西南,研究的森林类型大多是青藏高原林、寒温带落叶针叶林和温带针阔混交林;对华中、华东和华南地区研究不足,对亚热带常绿阔叶林、亚热带落叶阔叶林、热带季雨林和热带雨林研究较少。气候变化会导致山地植被的垂直地带性向高海拔迁移[16],使得落叶阔叶林面积持续减少,甚至消失。本研究以天目山国家级自然保护区25个400 m2落叶阔叶林样方1996和2017年2期调查数据为基础,探究21 a中气候变化对天目山落叶阔叶林乔木层的动态影响,为天目山国家级自然保护区落叶阔叶林保护和该群落乔木层动态对气候变化的响应等提供基础数据支撑[17]

    • 天目山国家级自然保护区位于浙江省西北部杭州市临安区境内(30°18′30″~30°24′55″N,119°24′11″~119°28′21″E),属中亚热带向北亚热带过渡地带,面积为4 284 hm2,最高海拔为1 506 m[18]。据天目山龙峰尖气象站(海拔1 129 m)资料,该区年平均气温为12.0 ℃,年平均降水量为1 736.4 mm。区内季风强盛,四季分明,光照适宜,雨水充沛,气候温和。

      对龙峰尖气象站1996—2017年的气温和降水数据进行分析,发现天目山的年平均气温有明显的上升趋势,2011年后上升的趋势逐渐明显;最热月平均气温与最冷月平均气温也呈上升趋势,且最热月平均气温上升趋势略大于最冷月平均气温;降水量也呈明显的上升趋势[13],与中国发布的《第3次气候变化国家评估报告》[19]中气候变化趋势一致。

      该区地质历史古老,土壤分布具有明显垂直地带性,随海拔升高由红壤向棕黄壤过渡,红壤分布于海拔600 m以下和一些山前低丘地区,黄壤分布于海拔600~1 200 m,棕黄壤分布于海拔1 200 m以上[20]。植被类型也具有明显垂直地带性,随海拔升高由常绿林向落叶林过渡。常绿阔叶林分布于海拔850 m以下,主要包括杉木Cunninghamia lanceolata、紫楠Phoebe sheareri、榧Torreya grandis和青钱柳Cyclocarya paliurus等;常绿与落叶阔叶混交林分布于海拔850~1 100 m,主要包括细叶青冈Cyclobalanopsis shennongii、杉木和柳杉 Cryptomeria fortunei和青钱柳等;落叶阔叶林分布于海拔1 100~1 380 m,主要包括大柄冬青Ilex macropoda、枹栎Quercus serrata、小叶白辛树Pterostyrax corymbosus和台湾松Pinus taiwanensis等;落叶矮林分布于海拔1 380~1 506 m,主要包括秋子梨Pyrus ussuriensis、小叶石楠Photinia parvifolia、川榛Corylus heterophylla var. sutchuanensis和 四照花Cornus kousa subsp. chinensis[21]

    • 1996年在天目山国家级自然保护区建立25个400 m2总共1 hm2的长期固定监测样地。样地所属森林类型为落叶阔叶林,中心位于30°20′42″N,119°25′45″E,海拔1 228.6 m。以西南角作为原点(O),东西向为横轴(x),南北向为纵轴(y)。1996年样地建成后,对样地内胸径(DBH)≥10 cm的木本植物挂牌,并记录其种名(研究区内的木本植物依据植物智http://www.iplant.cn/、《浙江植物志》[22]、《天目山植物志》[23]),胸径,树高,枝下高,冠幅和生长状况及位置坐标等。2017年调查方法与1996年相同。

    • 对乔木层中DBH≥10 cm的植株(不含藤本植物)数据进行处理,分析群落组成与结构、生物多样性和植物区系动态特征。

    • 常绿与落叶是植物应对不同的气候条件,表现出不同的生态策略,也是群落的两大重要生活型与功能群。在区域尺度,气温、降水等被认为会影响植物的生活型。本研究根据树冠1 a中是否常有叶片分为常绿树种与落叶树种两大类型[24]

    • 如果样地内物种个体为N,当N≤1株·hm−2时,则该物种被定义为稀有种;当1株·hm−2N≤10株·hm−2时,该物种被定义为偶见种;当N>10株·hm−2时,该物种被定义为常见种[2526]。物种的变幅=(退出物种数+进入物种数)/原有物种数。

    • 重要值是全面衡量某个树种在群落中的地位和作用的指标,这些树种决定了群落的结构和外貌。树种重要值计算公式[27]VI =(Fr+Sr+Dr)/3。其中:Fr为相对频度;Sr为相对显著度;Dr为相对密度。相对频度(Fr)=(该种的频度/所有种的频度总和)×100%;相对显著度(Sr)=(每个树种所有个体胸径断面积/所有种个体胸径断面积)×100%;相对密度(Dr)=(每个树种所有个体数目/所有种个体数目)×100%。

    • 过去天目山森林类型大多依据海拔高度划分,各类林型的概念没有严格区分,使用较为随意,不同的森林类型处于同一个海拔高度可能被定义为相同的森林类型。在本研究中,群落常绿树种重要值大于75%时定义为常绿阔叶林,群落常绿树种重要值为25%~75%时定义为常绿与落叶阔叶混交林,群落常绿树种重要值小于25%时定义为落叶阔叶林[28]

    • 多样性指数是用来定量描述某一群落物种的多样性。α多样性又称生境内多样性,是用来表达均质群落内物种组成状况的指标,包括物种总数以及个体在物种上的分配状况。一般用Simpson多样性指数、Shannon-Wiener指数、Pielou均匀度指数和丰富度指数来计算和分析。计算方法详见参考文献[29]。

    • 依据参考文献[3031]对植物科和属进行划分。

    • 以10 cm为划分区间,将乔木划分为10 cm≤DBH<20 cm,20 cm≤DBH<30 cm,30 cm≤DBH<40 cm,40 cm≤DBH<50 cm,50 cm≤DBH<60 cm和DBH≥ 60 cm等6个径级[32]。再根据样地实际情况,将乔木层分为小径级(10 cm≤DBH<20 cm)、中径级(20≤DBH<40 cm)和大径级(DBH≥40 cm)等3个径级。

    • 根据样地内实际情况,将样地树种划分为3种类型树种。小径级的株数大于中径级的株数为增长型树种;小径级的株数和中径级的株数相差不大为稳定型树种;小径级的株数小于中径级的株数为衰退型树种。

    • 采用Excel 2003等进行数据处理、绘图。

    • 表1可以看出:1996—2017年,常绿树种的株数从109株增加到207株,增加了89.9%;常绿树种的株数占比从17.5%提高至35.5%,提高了102.9%。落叶树种的株数从514株减少至375株,减少了27.0%;落叶树种的株数占比从82.5%下降至64.5%,下降了21.8%。样地的总株数从623株减少至583株,下降了6.4%。增加的植株多为常绿树种,减少的植株多为落叶树种。

      生活型 1997年 2017年
      株数/株 比例/% 株数/株 比例/%
      常绿 109 17.5 207 35.5
      落叶 514 82.5 375 64.5

      Table 1.  Changes in the number and proportion of evergreen and deciduou stree species

    • 表2可以看出:1996年乔木层有27科36属44种。其中稀有种7种,占总种数的15.9%,偶见种20种,占总种数的45.5%,常见种17种,占总种数的38.6%。2017年乔木层有24科33属40种。其中稀有种7种,占总种数的17.5%,偶见种21种,占总种数的52.5%,常见种12种,占总种数的30.0%。相较于1996年,2017年乔木层的稀有种、偶见种和常见种变幅分别为171.4%、105.0%和41.2%。21 a来,从乔木层退出4科6属8种,稀有种2种,偶见种6种;1科3属4种进入乔木层,稀有种3种,偶见种1种;乔木层整体退出和进入5科9属12种,科、属和种变幅分别为18.5%、25.0%和27.3%。

      1996年株数/株2017年株数/株
      安息香科Styracaceae 白辛树属Pterostyrax 小叶白辛树Pterostyrax corymbosus 53 45
      安息香属Styrax 玉铃花Styrax obassia 1 2
      八角枫科Alangiaceae 八角枫属Alangium 毛八角枫Alangium kurzii 2 0
      刺篱木科Flacourtiaceae 山桐子属Idesia 毛叶山桐子Idesia polycarpa var. vestita 3 4
      大戟科Euphorbiaceae 野桐属Mallotus 野桐Mallotus tenuifolius 8 2
      白背叶M. apeltus 1 0
      蝶形花科Papilionaceae 香槐属Cladrastis 香槐Cladrastis wilsonii 16 19
      冬青科Aquifoliaceae 冬青属Ilex 大柄冬青Ilex macropoda 97 64
      杜鹃花科Ericaceae 杜鹃花属Rhododendron 杜鹃Rhododendron simsii 4 1
      椴树科Tiliaceae 椴树属Tilia 短毛椴Tilia chingiana 20 3
      胡桃科Juglandaceae 青钱柳属Cyclocarya 青钱柳Cyclocarya paliurus 15 3
      化香树属Platycarya 化香树Platycarya strobilacea 3 0
      胡桃属Juglans 胡桃楸Juglans mandshurica 0 1
      虎耳草科Saxifragaceae 绣球属Hydrangea 圆锥绣球Hydrangea paniculata 2 0
      虎皮楠科Daphniphyllaceae 交让木属Daphniphyllum 交让木Daphniphyllum macropodum 11 89
      桦木科Betulaceae 鹅耳枥属Carpinus 雷公鹅耳枥Carpinus viminea 35 31
      华千金榆C. cordata var. chinensis 0 1
      壳斗科Fagaceae 青冈属Cyclobalanopsis 细叶青冈Cyclobalanopsis shennongii 48 63
      褐叶青冈C. stewardiana 6 6
      柯属Lithocarpus 短尾柯Lithocarpus brevicaudatus 13 17
      栎属Quercus 枹栎Quercus serrata 51 40
      锐齿槲栎Q. aliena var. acuteserrata 26 18
      栗属Castanea 茅栗Castanea seguinii 9 5
      苦木Simaroubaceae 苦树属Picersma 苦木Picersma quassioides 1 5
      木兰科Magnoliaceae 玉兰属Yulania 黄山玉兰Yulania cylindrica 3 1
      漆树科Anacardiaceae 黄连木属Pistacia 黄连木Pistacia chinensis 3 0
      漆树属Toxicodendron 毛漆树Toxicodendron trichocarpum 2 0
      木蜡树T. sylvestre 4 0
      槭树科Aceraceae 槭属Acer 建始槭Acer henryi 1 3
      天目槭A. sinopurpurascens 10 23
      稀花槭A. pauciflorum 5 1
      色木槭A. pictum 14 2
      蔷薇科Rosaceae 李属Prunus 橉木Prunus buergeriana 6 6
      梨属Pyrus 秋子梨Pyrus ussuriensis 21 6
      山楂属Crataegus 湖北山楂Crataegus hupehensis 10 2
      清风藤科Sabiaceae 泡花树属Meliosma 红柴枝Meliosma oldhamii 0 3
      忍冬科Caprifoliaceae 锦带花属Weigela 半边月Weigela japonica var. sinica 1 0
      山茶科Theaceae 柃木属Eurya 微毛柃Eurya hebeclados 3 3
      山矾科Symplocaceae 山矾属Symplocos 白檀Symplocos tanakana 1 1
      山茱萸科Cornaceae 山茱萸属Cornus 四照花Cornus kousa subsp. chinensis 46 61
      灯台树C. controversa 13 6
      省沽油科Staphyleaceae 野鸦椿属Euscaphis 野鸦椿Euscaphis japonica 1 2
      松科Pinaceae 金钱松属Pseudolarix 金钱松Pseudolarix amabilis 2 2
      松属Pinus 台湾松Pinus taiwanensis 28 29
      五加科Araliaceae 刺楸属Kalopanax 刺楸Kalopanax septemlobus 7 5
      榆科Ulmaceae 朴属Celtis 天目朴树Celtis chekiangensis 3 2
      樟科Lauraceae 木姜子属Litsea 天目木姜子Litsea auriculata 0 1
      山胡椒属Lindera 红果山胡椒Lindera erythrocarpa 14 5
        说明:株数为1表示稀有种,2~10为偶见种,>10为常见种;1996年株数为0,表示1996年没有的种;2017年株数为0,表示2017年没有的种。

      Table 2.  Changed in species composition

    • 表3可以看出:1996年重要值排前17位占群落总重要值为80.21%,2017年重要值排前11位占群落总重要值为80.08%。1996—2017年优势树种数变幅达47.1%,其中短毛椴、青钱柳、红果山胡椒和色木槭退出前17位,交让木、天目槭、橉木和褐叶青冈进入前17位。短毛椴、青钱柳和色木槭分别下降14、14和16个位次,交让木和天目槭上升16和12个位次。从重要值变化值看,重要值变化值<−2.00%的有4个树种,分别是落叶树种青钱柳、短毛椴、大柄冬青和秋子梨;−2.00%<重要值变化值<−1.00%的有2个树种,分别是落叶树种红果山胡椒和色木槭;−1.00%<重要值变化值<0的有5个树种,分别是落叶树种灯台树、锐齿槲栎、刺楸、小叶白辛树和枹栎;0<重要值变化值<1.00%的有2个树种,分别是落叶树种雷公鹅耳枥和常绿树种短尾柯;1.00%<重要值变化值<2.00%的有2个树种,分别是常绿树种台湾松和落叶树种香槐;重要值变化值>2.00%的有4个树种,分别是落叶树种天目槭和四照花,常绿树种细叶青冈和交让木。枹栎、小叶白辛树、锐齿槲栎和雷公鹅耳枥等的株数变化不大,它们的重要值变化值为−1.00%~1.00%;有12种重要值变化值<−1.00%或重要值变化值>1.00%的物种对乔木层动态影响较大,分别是大柄冬青、台湾松、细叶青冈、四照花、秋子梨、短毛椴、青钱柳、红果山胡椒、香槐、色木槭、交让木和天目槭。从生活型总重要值看,21 a来,常绿树种重要值占比从22.6%提高至36.3%;落叶树种重要值占比从77.4%下降至63.7%。可见,样地森林类型从落叶阔叶林演变为常绿与落叶阔叶混交林。

      位次种名1996年
      重要值/%
      2017年
      重要值/%
      位次
      变化
      重要值
      变化值/%
      生活型 位次种名1996年
      重要值/%
      2017年
      重要值/%
      位次
      变化
      重要值
      变化值/%
      生活型
      1大柄冬青 10.197.89−4−2.30落叶 11青钱柳  2.550.51−14−2.04落叶
      2台湾松  9.9911.0711.08常绿12短尾柯  2.352.6300.28常绿
      3枹栎   8.978.95−1−0.02落叶13红果山胡椒2.301.07−5−1.23落叶
      4小叶白辛树7.006.83−3−0.17落叶14香槐   2.243.8141.57落叶
      5细叶青冈 6.8710.4933.62常绿15色木槭  2.070.41−16−1.66落叶
      6锐齿槲栎 5.644.79−3−0.85落叶16灯台树  2.031.11−1−0.92落叶
      7四照花  5.047.3812.34落叶17刺楸   1.931.121−0.81落叶
      8雷公鹅耳枥4.755.0100.26落叶19交让木  1.8810.36168.48常绿
      9秋子梨  3.691.33−5−2.36落叶23天目槭  1.363.50122.14落叶
      10短毛椴  2.600.53−14−2.07落叶
        说明:重要值变化值=2017年重要值−1996年重要值。

      Table 3.  Changed in the top 17 tree species of important values

    • 表4可以看出:21 a来,乔木层物种Simpson多样性指数从0.94下降至0.92;Shannon-Wiener指数从3.13下降至2.88;Pielou均匀度指数从0.83下降至0.78。丰富度指数从44下降至40。

      生活型 Simpson指数 Shannon-Wiener指数 Pielou指数
      1997年 2017年 1997年 2017年 1997年 2017年
      常绿 0.99 0.96 0.56 0.85 0.31 0.47
      落叶 0.95 0.96 2.57 2.12 0.71 0.57
      乔木 0.94 0.92 3.13 2.88 0.83 0.78

      Table 4.  Changed of α diversity in tree layer

    • 表4可以看出:21 a来,常绿树种Simpson多样性指数从0.99下降至0.96;Shannon-Wiener指数从0.56提高至0.85;Pielou均匀度指数从0.31提高至0.47;丰富度指数未发生变化。落叶树种Simpson多样性指数从0.95提高至0.96;Shannon-Wiener指数从2.57下降至2.12;Pielou均匀度指数从0.71下降至0.57。丰富度指数从38下降至34。

    • 表5可以看出:在科水平上热带成分占优势,表现出样地内植物科的区系起源于热带性质。21 a来,科的世界分布占比从14.8%下降至12.5%;科的热带成分占比从55.6%提高至58.3%;科的温带成分占比从29.6%下降至29.2%。在属水平上温带成分占优势,表现出样地内植物属的区系起源于温带性质。21 a来,属的热带成分占比从25.0%提高至30.3%;属的温带成分占比从72.2%下降至66.7%;属的中国特有占比从2.8%提高至3.0%。

      项目年份世界分
      布/%
      热带成
      分/%
      温带成
      分/%
      中国特
      有/%
      199614.855.629.6
      201712.558.329.2
      199625.072.22.8
      201730.366.73.0
        说明:−表示没有分布的科或属。

      Table 5.  Changed in the proportion of distribution types of families and genera          

    • 表6可以看出:1996年小径级乔木有404株,中径级有178株,大径级有41株。2017年小径级乔木有384株,中径级有155株,大径级有18株。21 a来,各径级常绿树种的株数变化分别为81、15和2株;各径级落叶树种的株数变化分别为−101、−38和1株。小径级的变化率最大,常绿树种的株数提高了165.3%,落叶树种的株数下降了28.5%,常绿树种的株数变化剧烈。小径级个体竞争加剧且常绿树种竞争能力不断加强;中径级常绿树种的株数提高了45.5%,落叶树种的株数下降了26.2%;变化率最低的是大径级,常绿树种的株数提高了7.4%,落叶树种的株数提高了7.1%。1996和2017年,乔木层径级结构均呈倒“J”型,小径级个体能保证乔木层的更新,大径级个体又能维持乔木层的稳定性,说明群落更新能力良好。

      径级/cm 1996年株数/株 2017年株数/株
      常绿 落叶 常绿 落叶
      [10, 20) 49 355 130 254
      [20, 30) 19 104 31 75
      [30, 40) 14 41 17 32
      [40, 50) 14 11 12 141
      [50, 60) 8 2 12 1
      ≥60 5 1 0 5

      Table 6.  Diameter structure in 1996 and 2017

      表7是根据样地中实际株数≥20株和影响乔木层动态的16种乔木树种所绘制的径级结构表。可以看出:1996年乔木层增长型树种有11种,分别是落叶树种大柄冬青、小叶白辛树、四照花、雷公鹅耳枥、短毛椴、青钱柳、红果山胡椒、香槐、色木槭和天目槭,常绿树种交让木;稳定型树种有1种,常绿树种细叶青冈;衰退型树种有4种,分别是常绿树种台湾松,落叶树种枹栎、锐齿槲栎和秋子梨。2017年乔木层增长型树种有7种,短毛椴、青钱柳、香槐和色木槭退出;稳定型树种有5种,短毛椴、青钱柳、香槐和色木槭进入;衰退型树种未发生变化。21 a来,各树种的生长潜力除台湾松、细叶青冈、四照花、交让木和天目槭增强外其余树种均有一定程度的减弱。

      树种1996年株数/株2017年株数/株树种1996年株数/株2017年株数/株
      小径级中径级大径级类型小径级中径级大径级类型小径级中径级大径级类型小径级中径级大径级类型
      大柄冬青 87 10 增长型 56 8 增长型 青钱柳 12 3 增长型 3 3 稳定型
      小叶白辛树 38 15 增长型 31 14 增长型 香槐 11 5 增长型 8 11 稳定型
      四照花 45 1 增长型 59 2 增长型 色木槭 13 1 增长型 2 2 稳定型
      雷公鹅耳枥 29 6 增长型 21 10 增长型 细叶青冈 25 22 1 稳定型 32 28 3 稳定型
      红果山胡椒 14 增长型 5 增长型 台湾松 3 25 衰退型 2 3 24 衰退型
      交让木 8 3 增长型 78 10 1 增长型 枹栎 10 39 2 衰退型 5 29 6 衰退型
      天目槭 9 1 增长型 16 7 增长型 锐齿槲栎 6 15 衰退型 2 4 衰退型
      短毛椴 17 3 增长型 2 1 稳定型 秋子梨 5 13 8 衰退型 3 8 7 衰退型
        说明:−表示该径级中没有该树种。

      Table 7.  Changed in diameter structure of sixteen tree species

    • 天目山国家级自然保护区自1956年开始采取禁伐等保护措施。在研究期间乔木层没有发生过人为干扰。1996年调查发现天目山各垂直带谱中分布的森林类群,除少量外,大多数均处于较稳定的状态,已达到了演替顶极,成为顶极群落[33],群落物种组成和结构相对稳定。对研究区1996—2017年气象数据分析发现:天目山国家级自然保护区气候呈现暖湿化趋势。从各树种径级结构变化可知:喜湿润和荫蔽的树种,如细叶青冈、交让木和四照花等生长潜力逐渐增强,其他喜光植物,如青钱柳、短毛椴和秋子梨等,即使是增长型树种,生长潜力逐渐减弱,进而从乔木层退出。在此背景下,从2期研究数据可以看出:天目山落叶阔叶林是多种群的复杂群落。1996年有27科36属44种,稀有种、偶见种和常见种分别为7、20和17种;2017年有24科33属40种,稀有种、偶见种和常见种分别为7、21和12种。21 a来,稀有种和偶见种占比从61.4%提高至70.0%。稀有种退出6种,进入6种;偶见种退出10种,进入11种;常见种退出6种,进入1种。整体从乔木层退出4科6属8种,稀有种2种均为喜光树种,偶见种6种均为喜光植物;1科3属4种进入乔木层,稀有种3种,其中2种为喜荫湿树种,偶见种1种为喜荫湿树种。乔木层种的变幅为27.3%,发现喜光的稀有种和偶见种的退出和喜荫湿的稀有种和偶见种的进入是引起乔木层物种数量变化的原因,也是对天目山气候暖湿化的一种响应。楼一恺等[34]发现:稀有种和偶见种对森林群落生物多样性的维持和构建具有重要作用,可为森林群落应对气候变化提供更多的适应机会,有助于森林群落应对外界的干扰,所以给予稀有种和偶见种一定的保护和生存空间,对森林群落的可持续发展具有重要意义。

    • 对乔木层α多样性综合分析发现:乔木层α多样性无明显变化,甚至稍有减少,常绿树种α多样性显著增加,表明群落处于常绿生活型占比增加的演替阶段。吴洋洋等[35]发现:气温升高,群落生物多样性和常绿成分均增加,认为气候变化与其演替和发展存在一定潜在正相关。多数研究表明:增温会降低植物群落物种多样性[1011],因此,该群落中乔木层α多样性的变化,是否可以理解为是植物对该区域气候暖湿化的一种响应,有待进一步对比研究与探讨。

      乔木层α多样性只能用来测度均质群落内物种总数及个体在物种上的分配状况,无法具体体现乔木层动态情况。乔木层结构的改变能影响群落演替方向,乔木层不同常绿树种和落叶树种的组成占比能反映群落外貌特征,乔木层结构和外貌改变体现了有关生境的变化。影响乔木层动态的物种有12种,再结合它们的径级结构分析发现:大径级的台湾松喜光,在湿润环境中生长良好,重要值上升,树种衰退减弱,生长潜力增强。中径级植物株数较多且大多位于林分上层,能够显著影响林下光照条件。秋子梨共有21株,在中径级,株数从15株下降至4株,重要值下降。马腾[36]对野生秋子梨的研究表明:随着气候变化,秋子梨的生境改变导致大龄植株生长状况较差,种群自然更新能力弱;细叶青冈、香槐、交让木和天目槭株数稍有增加,这4种植物均为喜荫湿树种,生长较好。小径级乔木郁闭度较大,光照不充足。细叶青冈、四照花和天目槭株数明显增加,重要值上升,是增长型树种且生长潜力逐渐增强,因为这3种植物均适宜在森林偏下层生长,对光照无强烈要求。交让木从8株提高至78株,占小径级总数的20.3%,交让木是增长型树种,其重要值从1.88%提高至10.36%,增长潜力急剧加强。而样地环境不利于喜光的大柄冬青、短毛椴、青钱柳、红果山胡椒和色木槭林下幼树更新,它们的株数和重要值均下降,即使是增长型树种,生长潜力逐渐减弱,且它们的成熟个体到达生理年龄时,与其他种群间竞争加剧,对光照、养分和土壤等的需求增加,导致成熟个体死亡率较高[37]。同时,短毛椴和青钱柳种子休眠期较长,萌发率低。气候暖湿化和自身的生理特性使得林下短毛椴、青钱柳和色木槭等幼树严重缺乏,更新困难。台湾松、细叶青冈和交让木生长潜力增强导致常绿树种的株数占比从17.5%提高至35.5%,除四照花和天目槭外,其余落叶树种生长潜力逐渐减弱,乔木层外貌从落叶树种占优势向常绿与落叶树种均衡状态发展。

    • 科的分布区类型在1996和2017年均呈现热带成分占优势,表明样地植物科起源于热带性质。属的分布区类型在1996和2017年均呈现温带成分占优势,表明样地植物属起源于温带性质。属的分布区类型能够比较具体地反映植物在演变过程中的分化情况和区域特点,从而比科更能反映植物区系的特征[31]。但由于大多数乔木树种的个体是非常少的,只有少数种类有较多个体,在演替过程中,个体少的树种一旦死亡就较易导致它们所属的科和属消失[38],所以稀有种和偶见种的退出和进入能较大影响乔木层植物科和属的组成。笔者认为:用植株数量结合属分布区类型可更精确表达样地植物区系变化。可以看出:样地植物的热带成分占比从28.7%提高至41.0%,温带成分占比从68.9%下降至58.5%,中国特有占比从2.4%,下降至0.5%。气候暖湿化导致适应热带地区生存的树种株数越多,不适应热带地区生存的树种退出乔木层,表明样地的植物区系趋于热带成分。多数气候变化模型预测和观测研究[39]中均表明:气候暖湿化使得树种适宜生境范围呈明显向高海拔地区扩展的趋势。

    • 1996—2017年,天目山落叶阔叶林乔木层物种数量变化剧烈,其中稀有种、偶见种和常见种变幅分别为171.4%、105.0%和41.2%,总体4科6属8种退出,1科3属4种进入。乔木层整体种的变幅为27.3%。稀有种和偶见种的退出和进入能较大影响植物区系组成。笔者认为:用植物株数结合属分布区类型会更精确表达样地植物区系变化。分析结果表明:样地的植物区系趋于热带成分。从乔木层多样性看,乔木层α多样性无明显变化,常绿树种α多样性增加。进一步分析发现:随着气候暖湿化,常绿树种台湾松在大径级中生长较好;落叶树种秋子梨生境改变,在小、中径级生长状况较差;常绿树种交让木和细叶青冈,落叶树种四照花、香槐和天目槭,在小径级生长良好;落叶树种大柄冬青、短毛椴、青钱柳、红果山胡椒和色木槭在小径级更新困难。乔木层外貌从落叶树种占优势向常绿与落叶树种均衡状态发展。

Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return