-
干旱是对农作物生长影响最大的非生物胁迫因子之一。在中国,干旱半干旱区占国土面积的50%,无灌溉条件的旱地占耕地总面积的52%[1],由于干旱造成的农作物产量损失几乎等同于其他所有环境因子所造成损失的总和[2]。近几十年,干旱胁迫现象急剧增加[3],提高作物的耐旱性或抗旱性成为备受关注的焦点。大量研究表明,植物的显微结构在干旱胁迫下发生明显变化,如叶表皮细胞变小,细胞壁加厚,叶肉栅栏组织增加,海绵组织相对减少,细胞间隙减小等,以此适应水分短缺环境[4-5]。张禄等[6]发现,干旱胁迫下豇豆Vigna unguiculata幼苗的心叶和成熟叶的显微结构都呈现出栅栏组织细胞失水、变形,排列紊乱,根的中柱细胞收缩、变形,皮层薄壁细胞萎缩、干瘪等现象。王顺才等[7]报道了干旱胁迫下3种苹果属Malus植物叶片厚度、栅栏组织厚度及叶肉组织结构紧密度都显著减少,而海绵组织厚度与叶肉组织结构疏松度均显著增加。吴建慧等[8]研究干旱胁迫对绢毛委陵菜Potentilla sericea的影响时发现,随着干旱胁迫程度加剧,叶片栅栏组织和海绵组织均变薄,栅栏组织与海绵组织的比值大于未受干旱胁迫的对照植物。黄瓜Cucumis sativus是世界性的重要蔬菜作物,在中国蔬菜产业中占有重要地位,深受人们喜爱;黄瓜对水分变化敏感,干旱严重影响其生长、产量和品质。本研究通过在营养液中添加聚乙二醇(PEG-6000)模拟干旱胁迫,研究了不同程度干旱胁迫对黄瓜组织细胞结构的影响,以期为黄瓜耐旱品种筛选和抗旱栽培提供参考。
Histological structure of cucumber seedlings with drought stress
-
摘要: 为研究不同程度干旱胁迫对黄瓜Cucumis sativus幼苗营养器官中组织和细胞结构的影响,以‘津优1号’‘Jinyou No.1’黄瓜幼苗为试材,分别在营养液中添加质量分数为5%和10%的聚乙二醇(PEG-6000),模拟干旱胁迫条件。结果表明:随着干旱胁迫程度的增加,黄瓜幼苗组织结构变化程度逐渐加剧。在质量分数为5%的PEG-6000处理下,幼苗组织出现根皮层薄壁细胞减少、茎木质部导管萎缩、叶片栅栏组织排列更紧密等特征;而在质量分数为10%的PEG-6000处理下,黄瓜幼苗组织和细胞已发生严重变形、萎缩、排列紊乱、表皮破裂。试验结果表明:黄瓜通过一定程度的组织结构变化适应轻度干旱胁迫,而在重度干旱胁迫下组织结构受到了严重破坏,最终导致器官、组织或细胞功能的丧失。Abstract: To determine the effect of drought stress on cucumber histological structure, the Cucumis sativus 'Jinyou No.1' seedlings were cultured in a nutrient solution under drought stress simulated by 5% and 10% PEG-6000. Results showed that the degree of deformation in the structure of cucumber seedlings gradually intensified with an increase in the degree of drought stress and differed compared to normal seedling growth. The 5% PEG-6000 treatment decreased the number of root cortex parenchyma cells, stem xylem conduit atrophy, and more closely arranged the leaf palisade tissue. With the 10% PEG-6000 treatment, cucumber seedlings showed serious deformation, shrinkage, disordered arrangement, and broken skin in the tissues and cells. To a certain extent cucumbers could adapt to mild drought stress through a change in histological structure; however, with severe drought stress the organizational structure suffered damage ultimately resulting in a loss in function of organs, tissues, or cells. This study provided a reference for screening drought-tolerant varieties and for drought cultivation of cucumber.
-
Key words:
- horticulture /
- cucumber /
- drought stress /
- histology /
- characteristics
-
[1] 崔艳桃. 干旱胁迫对4种委陵菜属植物结构和生理的影响[D]. 哈尔滨: 东北林业大学, 2013. CUI Yantao. The Effects of Drought Stress on Structure and Physiology of Four Potentilla Plants[D]. Harbin:Northeast Forestry University, 2013. [2] 谢小玉, 张兵, 张霞, 等.干旱胁迫下油菜消减文库的构建及分析[J].作物学报, 2013, 39(4):744-752. XIE Xiaoyu, ZHANG Bing, ZHANG Xia, et al. Construction and analysis of SSH library in rapeseed (Brassica napus L.) under drought stress[J]. Acta Agrono Sin, 2013, 39(4):744-752. [3] DIANAT M, SAHARKHIZ M J, TAVASSOLIAN I. Salicylic acid mitigates drought stress in Lippia citriodora L.:effects on biochemical traits and essential oil yield[J]. Biocata Agric Biotechnol, 2016, 8(10):286-293. [4] 蔡永立, 宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学(Ⅰ)叶片解剖特征的比较[J].植物生态学报, 2001, 25(1):90-98. CAI Yongli, SONG Yongchang. Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China(Ⅰ) leaf anatomical characters[J]. Acta Phytoecol Sin, 2001, 25(1):90-98. [5] 李芳兰, 包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报, 2005, 22(增刊):118-127. LI Fanglan, BAO Weikai. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Chin Bull Bot, 2005, 22(suppl):118-127. [6] 张禄, 康利平.干旱胁迫对豇豆幼苗叶片及根显微结构的影响[J].中国蔬菜, 2012(10):66-74. ZHANG Lu, KANG Liping. Effect of drought stress on micro-structure of cowpea seedling's leaves and roots[J]. China Veget, 2012(10):66-74. [7] 王顺才, 邹养军, 马锋旺.干旱胁迫对3种苹果属植物叶片解剖结构、微形态特征及叶绿体超微结构的影响[J].干旱地区农业研究, 2014, 32(3):15-23. WANG Shuncai, ZOU Yangjun, MA Fengwang. Influence of drought stress on leaf anatomical structure and micro morphology traits and chloroplast ultrastructure of three Malus species[J]. Agric Res Arid Area, 2014, 32(3):15-23. [8] 吴建慧, 郭瑶, 赵倩竹, 等.干旱胁迫对绢毛委陵菜叶片解剖结构和生理指标的影响[J].草业科学, 2012, 29(8):1229-1234. WU Jianhui, GUO Yao, ZHAO Qianzhu, et al. Effects of drought stress on anatomical structures and physiological indexes of Potentilla sericea leaves[J]. Pratacult Sci, 2012, 29(8):1229-1234. [9] 何燕红, 艾叶, 吴颖, 等.孔雀草花芽分化和花药发育[J].华中农业大学学报, 2013, 32(2):18-24. HE Yanhong, AI Ye, WU Ying, et al. Flower bud differentiation and anther development of Tagetes patula L.[J]. J Huazhong Agric Univ, 2013, 32(2):18-24. [10] 李和平.植物显微技术[M]. 2版.北京:科学出版社, 2009. [11] 朱慧森, 张垚, 董宽虎, 等.干旱胁迫下偏关苜蓿显微结构响应特征研究[J].草地学报, 2015, 23(4):771-779. ZHU Huisen, ZHANG Yao, DONG Kuanhu, et al. Effect of drought stress on microstructural characteristic changes of Medicago sativa 'Pianguan'[J]. Acta Agrestia Sin, 2015, 23(4):771-779. [12] 康利平. 干旱胁迫对豇豆幼苗生理生化及其显微结构的影响[D]. 呼和浩特: 内蒙古农业大学, 2004. KANG Liping. Effect of Drought Stress on Physiological-biochemistry and Microstructure in Vigna sinensis Endl[D]. Huhhot:Inner Mongolia Agricultural University, 2004. [13] 杨春雪, 卓丽环, 柳参奎.植物显微及超微结构变化与其抗逆性关系的研究进展[J].分子植物育种, 2008, 6(2):341-346. YANG Chunxue, ZHUO Lihuan, LIU Shenkui. Research progress on the relationship between plant microstructrue and ultrastructure changes and its tolerance[J]. Mol Plant Breed, 2008, 6(2):341-346. [14] 丁菲, 杨帆, 李德龙, 等.构树解剖结构特征与抗旱性研究[J].安徽农业科学, 2010, 38(36):49-52. DING Fei, YANG Fan, LI Delong, et al. Studies on the anatomical structure characteristics and drought resistance of Broussonetia papyrifera[J]. J Anhui Agric Sci, 2010, 38(36):20949-20952. [15] 于海秋, 王晓磊, 蒋春姬, 等.土壤干旱下玉米幼苗解剖结构的伤害进程[J].干旱地区农业研究, 2008, 26(5):143-147. YU Haiqiu, WANG Xiaolei, JIANG Chunji, et al. Injured process on anatomical structure of maize seedling under soil drought[J]. Agric Res Arid Area, 2008, 26(5):143-147. [16] 刘忠静, 郭延奎, 林少航, 等.外源过氧化氢对干旱胁迫下温室黄瓜叶绿体超微结构和抗氧化酶的影响[J].园艺学报, 36(8):1140-1146. LIU Zhongjing, GUO Yankui, LIN Shaohang, et al. Effects of exogenous hydrogen peroxide on ultrastructure of chloroplasts and activities of antioxidant enzymes in greenhouse-ecotype cucumber under drought stress[J]. Acta Hortic Sin, 2009, 36(8):1140-1146. [17] 刘洋. 6种园林草本花卉的抑菌性与抗旱性研究[D]. 杨凌: 西北农林科技大学, 2009. LIU Yang. The Research of Antibacterial Activity and Drought Resistance from Six Landscape Herbaceous Plants[D]. Yangling:Northwest A & F University, 2009. [18] 陈健辉, 李荣华, 郭培国, 等.干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响[J].植物学报, 2011, 46(1):28-36. CHEN Jianhui, LI Ronghua, GUO Peiguo, et al. Impact of drought stress on the ultrastructure of leaf cells in three barley genotypes differing in level of drought tolerance[J]. Chin Bull Bot, 2011, 46(1):28-36. [19] 刘球, 吴际友, 李志辉.干旱胁迫对植物叶片解剖结构影响研究进展[J].湖南林业科技, 2015, 42(3):101-104. LIU Qiu, WU Jiyou, LI Zhihui. Research progress of leaf anatomical structure of plants under drought stress[J]. J Hunan For Sci Technol, 2015, 42(3):101-104. [20] 高蕾, 刘丽君, 董守坤, 等.干旱胁迫对大豆幼苗叶片生理生化特性的影响[J].东北农业大学学报, 2009, 48(8):1-4. GAO Lei, LIU Lijun, DONG Shoukun, et al. Effect of drought stress on physiological and biochemical characteristics in leaves of soybean seedling[J]. J Northeast Agric Univ, 2009, 48(8):1-4. [21] 陈丽, 艾军, 王振兴, 等.干旱胁迫对葡萄生理特性及显微结构影响的研究进展[J].北方园艺, 2011(6):205-209. CHEN Li, AI Jun, WANG Zhenxing, et al. Research progress on effect of drought stress on the physiological property and microstructure in grapevine[J]. Northern Hortic, 2011(6):205-209. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.06.024