-
在温室、大棚等设施栽培系统中,温度、湿度、通气状况等均与露地栽培条件不同[1],土壤缺少雨水淋洗,且设施栽培又具有高度集约化、高复种指数、高肥料施用量的特点,与之相适宜的水肥管理措施的缺乏和特殊的生态环境导致产生诸多土壤问题,其中土壤次生盐渍化问题较为突出。土壤次生盐渍化已经成为了设施栽培中普遍存在问题,导致蔬菜作物产量和品质下降,对设施蔬菜生产的可持续发展产生了严重不利的影响。黄瓜 Cucumis sativus在中国蔬菜设施栽培中占有重要地位,是设施栽培的主要蔬菜之一,对土壤次生盐渍化敏感[2]。土壤次生盐渍化导致黄瓜植株生长受到抑制,盐和盐离子的大量积累诱导植物体发生生化反应,如活性氧(reactive oxygen species,ROS)积累等,造成脂质过氧化反应产生,使植物受到氧化胁迫伤害[3-4]。ROS最重要的形式是羟基自由基、单线态氧、超氧阴离子和过氧化氢。植物可产生一系列的内源机制,如低分子量的非酶抗氧化物质和酶的组分,来保护植物抵御ROS的毒害作用[5]。超氧化物歧化酶(superoxide dismutase,SOD)是一种金属蛋白,催化超氧化物自由基歧化形成过氧化氢和氧气[6],然后过氧化氢被过氧化氢酶(catalase,CAT)和多种过氧化物酶(peroxidases,POD)所清除,转化成水和氧气。SOD,POD,CAT是细胞膜系统免受ROS伤害的保护酶[7-8],在植物体中广泛存在,其活性的高低可在一定程度上反应植物抗逆性的强弱。盐胁迫还导致黄瓜果实品质变差,如可溶性蛋白、总糖、抗坏血酸(Vc)等均受到显著影响,产量下降[9],因此,选育耐盐黄瓜品种和研究其耐盐机制是十分重要的。在前人研究基础上,本研究以黄瓜为材料,采用营养液水培,研究了盐(NaCl)胁迫对黄瓜幼苗叶片、根系和韧皮部渗出液SOD,POD和CAT同工酶活性表达的影响,以期为黄瓜设施栽培及耐盐性强黄瓜品种的选育提供理论依据和支撑。
NaCl stress on antioxidant enzyme isozymes expressed in cucumber seedling leaves, phloem exudates, and roots
-
摘要: 黄瓜Cucumis sativus在设施生产中经常受到盐害,严重影响了黄瓜的产量和品质。以盐敏感黄瓜品种‘优1号’ Cucumis sativus ‘Jinyou No. 1’和相对较耐盐品种‘新泰密刺’ Cucumis sativus ‘Xintai Mici’为试材,采用水培,研究了氯化钠胁迫对幼苗叶片、根系和韧皮部渗出液超氧化物歧化酶(SOD),过氧化物酶(POD)和过氧化氢酶(CAT)同工酶表达影响。结果显示:叶片中共检测到9条超氧化物歧化酶,4条过氧化物酶和2条过氧化氢酶同工酶条带,盐胁迫抑制了‘新泰密刺’叶片超氧化物歧化酶、过氧化物酶和过氧化氢酶同工酶表达,而‘优1号’叶片超氧化物歧化酶和过氧化氢酶同工酶表达增强。韧皮部渗出液有3条超氧化物歧化酶,2条过氧化物酶和1条过氧化氢酶同工酶条带;盐胁迫增强了‘新泰密刺’韧皮部渗出液中3种抗氧化酶同工酶表达,而抑制了‘优1号’韧皮部渗出液中3种同工酶表达。在根系中共发现6条超氧化物歧化酶,7条过氧化物酶和1条过氧化氢酶同工酶条带,盐胁迫下2个品种根系过氧化氢酶同工酶的表达均增强,过氧化物酶同工酶在‘优1号’中6条表达减弱,1条增强,在‘新泰密刺’中均增强,2个品种中3条相同超氧化物歧化酶同工酶在盐胁迫下表达减弱,2条在‘优1号’中表达增强而‘新泰密刺’中无变化,1条在‘优1号’中表达无变化而‘新泰密刺’中表达减弱。综上所述,3种抗氧化酶同工酶与其耐盐性均有密切关系,并暗示抗氧化酶同工酶响应盐胁迫的变化趋势具有品种及组织特异性。韧皮部渗出液中3种同工酶变化趋势在2个品种中完全相反,说明韧皮部是黄瓜幼苗响应盐胁迫的重要组织。Abstract: Cucumis sativus (cucumber) is frequently subjected to salinity in facility production, which seriously affects cucumber yield and quality. To determine the effect of NaCl stress on cucumber, the salt-sensitive cultivar Cucumis sativus ‘Jinyou No. 1’ and relative salt-tolerant cultivar Cucumis sativus ‘Xintai Mici’ were used as experimental materials in this experiment. Seedlings were cultivated hydroponically with superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) isozyme expression being tested in cucumber seedling leaves, phloem exudates, and roots. Results for the leaves showed nine SOD isozyme bands, four POD isozyme bands, and two CAT isozyme bands being detected. With NaCl stress in ‘Xintai Mici’ leaves, SOD, POD, and CAT isozymes were inhibited, but in ‘Jinyou No. 1’ leaves they were enhanced. In phloem exudates, isozyme bands of three SOD, two POD, and one CAT were detected with NaCl stress enhanced in exudates of ‘Xintai Mici’, but inhibited in ‘Jinyou No. 1’. In roots, isozyme bands from six SOD, seven POD, and one CAT were detected. The CAT isozyme expression in the roots of the two cultivars were enhanced; the six POD isozyme bands in ‘Jinyou No. 1’ were enhanced, and one POD isozyme band was inhibited, but in ‘Xintai Mici’ the expression of all POD isozyme bands was enhanced. With NaCl stress three SOD isozymes were inhibited in both varieties, two SOD isozyme bands were enhanced in the ‘Jinyou No. 1’ and they had no change in ‘Xintai Mici’, and one SOD isozyme band had no change in ‘Jinyou No. 1’ and its expression in the ‘Xintai Mici’ was inhibited. Thus, the three antioxidant enzymes were related to salt tolerance to some extent implying that the antioxidant enzyme response to salt stress possessed variety and tissue specificity; whereas, changes in the three isozymes for phloem exudates were completely opposite in two cultivars suggesting that the phloem was an important tissue in response to salt stress of cucumber seedlings.
-
Key words:
- botany /
- Cucumis sativus (cucumber) /
- antioxidant enzyme isozyme /
- salt stress
-
-
[1] 殷永娴,刘鸿雁. 设施栽培下土壤中硝化、反硝化作用的研究[J]. 生态学报,1996,16(3):246-250. YIN Yongxian, LIU Hongyan. Investigation on nitrification and denitrification of soil under installing cultivation conditions[J]. Acta Ecol Sin, 1996, 16(3):246-250. [2] 杨秀玲,郁继华,李雅佳. NaCl胁迫对黄瓜种子萌发及幼苗生长的影响[J]. 甘肃农业大学学报,2004,39(1):6-9. YANG Xiuling, YU Jihua, LI Yajia. Effects of NaCl stress on seed germination and seedling growth of Cucumis sativus[J]. J Gansu Agric Univ, 2004, 39(1):6-9. [3] FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809):239-247. [4] MOLDOVAN L, MOLDOVAN N I. Oxygen free radicals and redox biology of organelles[J]. Histochem Cell Biol, 2004, 122(4):395-412. [5] AGARWAL S, PANDEY V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia[J]. Biol Plantarum, 2004, 48(4):555-560. [6] BOWLER C, van MONTAGU M, INZÉD. Superoxide dismutase and stress tolerance[J]. Ann Rev Plant Physiol Plant Mol Biol, 1992, 43(4):83-116. [7] 苏维埃,宓容钦,王文英,等. 植物冷锻炼对于胁强敏感度的影响[J]. 植物生理学报,1990,16(3):284-292. SU Weiai, MI Rongqin, WANG Wenying, et al. The influence of cold hardening on plant stress sensitivity[J]. Acta Phytophysiol Sin, 1990, 16(3):284-292. [8] ALSCHER R G, DONAHUE J L, CRAMER C L. Reactive oxygen species and antioxidants:relationship in green cells[J]. Physiol Plant, 1997, 100(2):224-233. [9] 韩冰,郭世荣,贺超兴,等. 丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J]. 应用生态学报, 2012,23(1):154-158. HAN Bing, GUO Shirong, HE Chaoxing, et al. Effects of arbuscular mycorrhiza fungi (AMF) on the plant growth, fruit yield, and fruit quality of cucumber under salt stress[J]. Chin J Appl Ecol, 2012, 23(1):154-158. [10] MITCHELL D E, MADORE M A. Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.)(Ⅰ) diurnal patterns[J]. Plant Physiol, 1992, 99(3):959-965. [11] LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259):680-685. [12] FIELDING J L, HALL J L. A biochemical and cytochemical study of pcroxidasc activity in roots of Pisum sativum(Ⅱ) distribution of enzymes in relation to root development[J]. J Exp Bot, 1978, 29(4):983-991. [13] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase:improved assays and an asasy applicable to acrylamide gels[J]. Anal Biochem, 1971, 44(1):276-287. [14] WOODBURY W, SPENCER A K, STAHMANN M A. An improved procedure using ferricyanide for detecting catalase isozymes[J]. Anal Biochem, 1971, 44(1):301-305. [15] 刘俊,周一峰,章文华,等. 外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响[J]. 西北植物学报,2006,26(2):254-258. LIU Jun, ZHOU Yifeng, ZHANG Wenhua, et al. Effects of exogenous polyamines on chloroplast-bound polymine content and photosynthesis of corn suffering salt stress[J]. Acta Bot Boreal-Occident Sin, 2006, 26(2):254-258. [16] 陈明. 外源一氧化氮供体SNP对盐胁迫下小麦(Triticum aestivum L.)幼苗根生长及氧化损伤的调节作用[D]. 南京:南京农业大学,2004. CHEN Ming. The Role of Exogenous Nitric Oxide Donor Snp in Modulating Root Growth and Oxidative Damage in Wheat (Triticum aestivum L.) Seedling Under Salt Stress[D]. Nanjing:Nanjing Agricultural University, 2004. [17] 张巍巍,郑飞翔,王效科,等. 大气臭氧浓度升高对水稻叶片膜脂过氧化及保护酶活性的影响[J]. 应用生态学报, 2008,19(11):2485-2489. ZHANG Weiwei, ZHENG Feixiang, WANG Xiaoke, et al. Effects of elevated ozone on rice leaf lipid peroxidation and antioxidant system[J]. Chin J Appl Ecol, 2008, 19(11):2485-2489. [18] 周永斌,殷有,苏宝玲,等. 外源一氧化氮供体对几种植物种子的萌发和幼苗生长的影响[J]. 植物生理学通讯, 2005,41(3):316-318. ZHOU Yongbin, YIN You, SU Baoling, et al. Effects of exogenous nitric oxide donor on seed germination and seedling growth of several plant species[J]. Plant Physiol Comm, 2005, 41(3):316-318. [19] 唐玉海,罗一鸣,张枫,等. 有机化学[M]. 北京:化学工业出版社,2011:461-462. [20] 周珩,郭世荣,邵慧娟,等. 等渗NaCl和Ca(NO3)2胁迫对黄瓜幼苗生长和生理特性的影响[J]. 生态学报,2014,34(7):1880-1890. ZHOU Heng, GUO Shirong, SHAO Huijuan, et al. Effects of iso-smotic Ca(NO3)2 and NaCl stress on growth and physiological characteristics of cucumber seedlings[J]. Acta Ecol Sin, 2014, 34(7):1880-1890. [21] DUAN Jiuju, LI Juan, GUO Shirong, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J]. J Plant Physiol, 2008, 165(15):1620-1635. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.04.014