-
单核细胞增生性李斯特菌Listeria monocytogenes(以下简称单增李斯特菌)是一种重要的食源性人畜共患病原菌,人类的感染能够引发脑膜炎、败血症和流产等疾病。李斯特菌病因其较高的致死率使其成为仅次于沙门氏菌Salmonella感染的致命食源性疾病,尤其对孕妇、婴儿、老人等免疫力低下人群风险极高[1-2]。单增李斯特菌的危险性目前已引起了世界各国的关注,中国与其他许多国家将其列为进出口食品的必检项目。根据美国食品网的调查显示[3],美国每年约2 600人感染单增李斯特菌,造成约260人死亡,在所有食源性疾病引起的死亡中,李斯特菌病占30%。据报道,中国大部分省市每年均有人和动物感染单增李斯特菌[4]。单增李斯特菌广泛存在于自然界中,主要以食物为传播媒介,特别在食品储运及加工过程中极易受单增李斯特菌污染。人类的李斯特菌病大多是通过食用受污染的肉类、蛋类、禽类、海产品、速冻食品、乳制品和蔬菜等多种食品所致[5]。单增李斯特菌的致病力与其血清型密切相关。目前,在食物和环境中发现的单增李斯特菌血清型有16种,与人类疾病相关的血清型主要有4b,1/2a和1/2b[6],但不同来源的分离株其毒力、致病性、耐药性等也存在较大差异[7]。鉴于李斯特菌病对人类健康构成极大的威胁,预防和控制这类疾病需要建立一个长期的追踪和调查方案,采用细菌溯源技术,通过亚种分型,能够准确、迅速地确定单增李斯特菌分离株的来源,鉴定比较致病菌株间的差别,为致病菌的溯源和疾病防控提供明晰可靠的科学资料[8-9]。近年来,食源性致病菌分子溯源分型技术发展较快,主要分为3类:①基于酶切技术的分型方法,包括脉冲场凝胶电泳(pulsed-field gel electrophoresis,PFGE)分型;②基于DNA测序技术的分型方法,包括多位点序列分型(multi-locus sequence typing,MLST)和全基因组测序(whole-genome sequencing,WGS);③基于聚合酶链式反应(PCR)扩增技术的分型方法,包括多位点可变数串联重复序列分析(multi-locus variable-number of tandem repeats analysis,MLVA),DiversiLab系统和CRISPR-Cas(clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins)系统。本文就以上述3类基因分型方法在单增李斯特菌监测溯源中的应用做一综述。
Application of genotyping methods to monitoring and source-tracking of Listeria monocytogenes
-
摘要: 单核细胞增生性李斯特菌Listeria monocytogenes是一种重要的食源性人畜共患病原菌,能引起人和多种动物流产、脑膜炎、肠胃炎、败血症、死胎等病症。与传统基于表型的分型方法相比,基因分型方法具有简单快速、分辨率高、敏感性强、重复性好等特点,在李斯特菌病病原菌的监测和溯源中具有重要的应用价值。对单核细胞增生性李斯特菌的3类基因分型方法:酶切技术,DNA测序技术和聚合酶链式反应(PCR)扩增技术进行了概述,从分型成本、样本通量、分辨力、灵敏度、重复性、快捷性和普及性等方面比较了3类基因分型方法的主要特点,重点评述了这些方法在单核细胞增生性李斯特菌暴发监测和溯源上的应用案例,为研究不同基因分型方法在单核细胞增生性李斯特菌暴发诊断、分型检测及感染溯源等方面的应用提供参考。
-
关键词:
- 动物细胞学 /
- 单核细胞增生性李斯特菌 /
- 基因分型 /
- 监测溯源 /
- 综述
Abstract: As an important food-borne zoonotic pathogen, Listeria monocytogenes could cause people and various animals abortion, meningitis, gastroenteritis, sepsis, stillbirth and other diseases of listeriosis. Compared with the traditional phenotypic typing methods, the genotyping methods were characterized by simplicity and rapidity, high resolution, strong sensitivity and good reproducibility, thus having important application value in the monitoring and source-tracking of L. monocytogenes. In this research, three types of genotyping methods for L. monocytogenes, namely, enzyme digestion, DNA sequencing and PCR amplification were reviewed. The main features of these methods were compared in terms of the genotyping cost, sample throughput, resolution, sensitivity, reproducibility, rapidity and popularity, especially focusing on the application of these methods to the monitoring and source-tracking of L. monocytogenes. The research provided reference for the study of applying different genotyping methods to the diagnosis, typing and source-tracking of L. monocytogenes.-
Key words:
- zoocytology /
- Listeria monocytogenes /
- genotyping /
- monitoring and source-tracking /
- review
-
[1] MELO J, ANDREW P W, FALEIRO M L. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge:the role of stress responses[J]. Food Res Int, 2015, 67:75-90. [2] FERREIRA V, WIEDMANN M, TEIXEIRA P, et al. Listeria monocytogenes persistence in food-associated environments:epidemiology, strain characteristics, and implications for public health[J]. J Food Prot, 2014, 77(1):150-170. [3] KAWAMATA R, TAKAHASHI N, YADA Y, et al. Cytokine profile of a premature infant with early onset listeriosis[J]. Pediatr Int Off Jpn Fediatr Soc, 2011, 53(3):386-388. [4] 连凯, 谈卫军, 赵丹, 等. 2002-2012年人和动物李斯特菌感染报告数据流行病学分析[J].中国人兽共患病学报, 2014, 30(10):1033-1038. LIAN Kai, TAN Weijun, ZHAO Dan, et al. Epidemiology of listeriosis infection in humans and animals, China, 2002-2012[J]. Chin J Zoonoses, 2014, 30(10):1033-1038. [5] 杨修军, 赵薇, 刘桂华, 等. 2011-2015年吉林省食品中单增李斯特菌的监测数据分析[J].食品安全质量检测学报, 2017, 8(1):105-110. YANG Xiujun, ZHAO Wei, LIU Guihua, et al. Analysis on the monitoring data of Listeria monocytogenes in food of Jilin Province in 2011-2015[J]. J Food Saf Qual, 2017, 8(1):105-110. [6] ORSI R H, den BAKKER H C, WIEDMANN M. Listeria monocytogenes lineages:genomics, evolution, ecology, and phenotypic characteristics[J]. Int J Med Microbiol, 2011, 301(2):79-96. [7] LIU Dongyou, AINSWORTH A J, AUSTIN F W, et al. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes[J]. J Med Microbiol, 2003, 52(12):1065-1070. [8] GAGE R, CRIELLY A, BAYSINGER M, et al. Outbreaks of Escherichia coli O157:H7 infections among children associated with farm visits-Pennsylvania and Washington, 2000[J]. Can Commun Dis Rep, 2001, 27(14):117-120. [9] GOUVEIA S, PROCTOR M E, LEE M S, et al. Genomic comparisons and shiga toxin production among Escherichia coli O157:H7 isolates from a day care center outbreak and sporadic cases in southeastern Wisconsin[J]. J Clin Microbiol, 1998, 36(3):727-733. [10] GALVÃO N N, CHIARINI E, DESTRO M T, et al. PFGE characterisation and adhesion ability of Listeria monocytogenes isolates obtained from bovine carcasses and beef processing facilities[J]. Meat Sci, 2012, 92(4):635-643. [11] FOX E M, WALL P G, FANNING S. Control of Listeria species food safety at a poultry food production facility[J]. Food Microbiol, 2015, 51:81-86. [12] LEONG D, ALVAREZ-ORDOÑEZ A, JORDAN K. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland[J]. Front Microbiol, 2014, 5:436. doi:10.3369/fmicb. 2014. 00436. [13] FUGETT E B, SCHOONMÁKERBOPP D, DUMAS N B, et al. Pulsed-field gel electrophoresis (PFGE) analysis of temporally matched Listeria monocytogenes isolates from human clinical cases, foods, ruminant farms, and urban and natural environments reveals source-associated as well as widely distributed PFGE types[J]. J Clin Microbiol, 2007, 45(3):865-873. [14] LOMONACO S, VERGHESE B, GERNER-SMIDT P, et al. Novel epidemic clones of Listeria monocytogenes, United States, 2011[J]. Emerg Infect Dis, 2013, 19(1):147-150. [15] GERNER-SMIDT P, HISE K, KINCAID J, et al. PulseNet USA:a five-year update[J]. Foodborne Pathog Dis, 2006, 3(1):9-19. [16] HALPIN J L, GARRETT N M, RIBOT E M, et al. Re-evaluation, optimization, and multilaboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for Listeria monocytogenes[J]. Foodborne Pathog Dis, 2010, 7(3):293-298. [17] BURALL L S, GRIM C J, MAMMEL M K, et al. Whole genome sequence analysis using jspecies tool establishes clonal relationships between Listeria monocytogenes strains from epidemiologically unrelated listeriosis outbreaks[J]. PLoS One, 2016, 11(3):e0150797. doi:10.1371/journal.pone. 0150797. [18] ANNETTE F, SOLVEIG L, BJØRN C T, et al. Genome analysis of Listeria monocytogenes sequence type 8 strains persisting in salmon and poultry processing environments and comparison with related strains[J]. PLoS One, 2016, 11(3):e0151117. doi:10.1371/journal.pone. 0151117. [19] RUPPITSCH W, PIETZKA A, PRIOR K, et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes[J]. J Clin Microbiol, 2015, 53(9):2869-2876. [20] KWONG J C, McCALLUM N, SINTCHENKO V, et al. Whole genome sequencing in clinical and public health microbiology[J]. Pathology, 2015, 47(3):199-210. [21] PULLINGER G D, LȎPEZBENAVIDES M, COFFEY T J, et al. Application of multilocus sequence typing:analysis of the population structure detected among environmental and bovine isolates from New Zealand and the United Kingdom[J]. Appl Environ Microbiol, 2006, 72(2):1429-1436. [22] PARISI A, LATORRE L, NORMANNO G, et al. Amplified fragment length polymorphism and multi-locus sequence typing for high-resolution genotyping of Listeria monocytogenes from foods and the environment[J]. Food Microbiol, 2010, 27(1):101-108. [23] KNABEL S J, REIMER A, VERGHESE B, et al. Sequence typing confirms that a predominant Listeria monocytogenes clone caused human listeriosis cases and outbreaks in Canada from 1988 to 2010[J]. J Clin Microbiol, 2012, 50(5):1748-1751. [24] WANG Yan, ZHAO Ailan, ZHU Renfa, et al. Genetic diversity and molecular typing of Listeria monocytogenes in China[J]. BMC Microbiol, 2012, 12(1):119. doi:10.1186/1471-2180-12-119. [25] WU Shi, WU Qingping, ZHANG Jumei, et al. Analysis of multilocus sequence typing and virulence characterization of Listeria monocytogenes isolates from chinese retail ready-to-eat food[J]. Front Microbiol, 2016, 7:168. doi:10.3389/fmicb. 2016. 00168. [26] LI Xiujuan, HUANG Bixing, EGLEZOS S, et al. Identification of an optimized panel of variable number tandem-repeat (VNTR) loci for Listeria monocytogenes typing[J]. Diagn Microbiol Infect Dis, 2013, 75(2):203-206. [27] SALEH-LAKHA S, ALLEN V G, LI J, et al. Subtyping of a large collection of historical Listeria monocytogenes strains from Ontario, Canada, by an improved multilocus variable-number tandem-repeat analysis (MLVA)[J]. Appl Environ Microbiol, 2013, 79(20):6472-6480. [28] LUNESTAD B T, TRUONG T T, LINDSTEDT B A. A multiple-locus variable-number tandem repeat analysis (MLVA) of Listeria monocytogenes isolated from Norwegian salmon-processing factories and from listeriosis patients[J]. Epidemiol Infect, 2013, 141(10):1-10. [29] DASS S C, ABU-GHANNAM N, ANTONY-BABU S, et al. Ecology and molecular typing of L. monocytogenes in a processing plant for cold-smoked salmon in the Republic of Ireland[J]. Food Res Int, 2010, 43(5):1529-1536. [30] WERNER G, FLEIGE C, NEUMANN B, et al. Evaluation of DiversiLa®, MLST and PFGE typing for discriminating clinical Enterococcus faecium isolates[J]. J Microbiol Methods, 2015, 118:81-84. [31] 郑晶, 唐中伟, 陈彬, 等.禽肉制品中单增李斯特菌的DiversiLab分型[J].食品科学, 2015, 36(24):220-223. ZHENG Jing, TANG Zhongwei, CHEN Bin, et al. DiversiLab typing research of Listeria monocytogenes isolated from poultry products[J]. Food Sci, 2015, 36(24):220-223. [32] 郑晶, 唐中伟, 陈彬, 等.对同一地区分离的单增李斯特菌进行DiversiLab分型及同源性分析[J].中国卫生检验杂志, 2016, 26(1):9-11, 15. ZHENG Jing, TANG Zhongwei, CHEN Bin, et al. DiversiLab typing and homology analysis of Listeria monocytogenes isolated from the same place[J]. Chin J Health Lab Technol, 2016, 26(1):9-11, 15. [33] 劳华均, 李如松, 孙萍, 等. DiversiLab系统用于食品中单增李斯特菌同源性分析[J].食品工业, 2013, 34(8):154-156. LAO Huajun, LI Rusong, SUN Ping, et al. Homologous analysis of Listeria monocytogenes by DiversiLab system[J]. Food Ind, 2013, 34(8):154-156. [34] ROUSSEL S, FÉLIX B C, COLARNÉN C, et al. Semi-automated repetitive-sequence-based polymerase chain reaction compared to pulsed-field gel electrophoresis for Listeria monocytogenes subtyping[J]. Foodborne Pathog Dis, 2010, 7(9):1005-1012. [35] LIGOZZI M, FONTANA R, ALDEGHEN M, et al. Comparative evaluation of an automated repetitive-sequence-based PCR instrument versus pulsed-field gel electrophoresis in the setting of a Serratia marcescens nosocomial infection outbreak[J]. J Clin Microbiol, 2010, 48(5):1690-1695. [36] PITOUT J D D, CAMPBELL L, CHURCH D L, et al. Using a commercial DiversiLab semiautomated repetitive sequence-based PCR typing technique for identification of Escherichia coli clone ST131 producing CTX-M-15[J]. J Clin Microbiol, 2009, 47(4):1212-1215. [37] DEPLANO A, DENIS O, RODRIGUEZ-VILLALOBOS H, et al. Controlled performance evaluation of the DiversiLab repetitive-sequence-based genotyping system for typing multidrug-resistant health care-associated bacterial pathogens[J]. J Clin Microbiol, 2011, 49(10):3616-3620. [38] SNYDER J C, BATESON M M, LAVIN M, et al. Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples[J]. Appl Environ Microbiol, 2010, 76(21):7251-7258. [39] FABRE L, ZHANG Jian, GUIGON G, et al. CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections[J]. PLoS One, 2012, 7(5):e36995. doi:10.1371/journal.pone.0036995. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.04.024
计量
- 文章访问数: 2783
- HTML全文浏览量: 611
- PDF下载量: 605
- 被引次数: 0