-
棉纤维是由外珠被表皮层的单细胞分化发育而成,分为长绒(lint)和短绒(fuzz)2种,长绒是高级棉纱纺织品的主要原材料,短绒主要用做制作纤维素、絮棉、纸张及纺织品的原料。在已有的四倍体棉种中,陆地棉Gossypium hirsutum和海岛棉Gossypium barbadense已经被驯化为栽培种[1-3]。目前世界上97%的棉纤维都产自陆地棉,产量高且适应性广,但是纤维品质中等;海岛棉产量低,适应性差,栽培范围不广泛,但是其纤维更长且品质高。如何获得优质高产的棉种,一直是遗传育种学家关注的焦点。而随着遗传学、细胞学和分子生物学等学科的交叉融合,棉纤维生长发育分子机制已成为国内外研究的热点。探明棉花种子表皮细胞生长发育的分子基础,对于提高棉花产量及改良纤维品质至关重要。早期有关棉纤维发育研究大多集中于遗传定位。大量与纤维品质和产量相关的数量性状位点(QTL)通过图位克隆的方法被发现于各个染色体[4-5],而光子显性基因Li1,Li2,N1和Fbl以及光子隐性基因n2,sma-4(fz)和sma-4(ha)[6]等一直备受关注。近年来,深度测序技术的兴起,对棉纤维发育的分子机制的研究起了有效的推动作用。随着深度测序技术的不断革新,棉花全基因组测序不断完善[7],全基因组微卫星序列得以注释[8],单核苷酸多态性(SNP)芯片的开发成为可能[9],使得遗传定位工作更加便捷[9-10]。转录组学、蛋白组学及表观遗传学领域三方位的深度测序有效构建了核糖核酸(RNA)水平和蛋白质水平、编码区域和非编码序列之间的联系,并发现一系列的转录因子、编码转脂蛋白的基因、钙信号转导相关基因、多糖合成相关蛋白、大量的微核糖核酸(miRNA)以及脱氧核糖核酸(DNA)甲基化作用等共同参与棉纤维发育过程[11-16]。本文将从棉纤维发育各时期的形态结构变化及特征,经典遗传学研究,深度测序技术在转录组学、蛋白组学及表观遗传学领域的运用,以及棉纤维发育各个时期所涉及的相关调控基因等4个方面对棉纤维发育机制的研究进展进行综述。
-
遗传规律研究和基因遗传定位是经典遗传学中2项重要的基础工作。在棉纤维遗传规律研究中发现,相同性状的材料基因型不同,其遗传模式也不同,而棉纤维发育相关基因的遗传定位又可被分成质量性状和数量性状(QTL)的定位。
-
CARVER[32]和KEARNEY等[33-34]研究发现棉花光子性状主要由2对独立的位点控制,显性光子基因(N1)和隐性光子基因(n2),宋丽等[35]证实这2种光子基因均符合单基因遗传模型。既无长绒也无短绒的L40突变体的光子性状为不完全显性[36]。既无长绒也无短绒的突变体Xu142 fl的短绒的发育受N1和n2 2对基因控制,长绒的发育受Li3基因位点控制[37]。陆地棉短绒突变体Li1和Li2均为单基因显性遗传[38-40]。孙亚莉等[41]选取大量的陆地棉和海岛棉的光子材料对棉花光子性状进行了遗传分析,其研究发现棉花短绒多少与生态环境有关系,且不同品种光子材料的遗传模式也不同,不论海岛棉还是陆地棉材料均存在显性、部分显性和隐性遗传。对3个陆地棉隐性性状的材料进一步研究表明:这3个材料的遗传规律均不同,‘库光子’的光子性状由2对隐性等位基因控制,并且有互补效应;‘陆无絮’的光子性状由2对隐性等位基因控制,基因间呈积加作用;SA65的光子性状由单隐性基因控制。
-
纤维品质性状包括长度、整齐度、伸长率、强度、细度、颜色和马克隆值等多个方面。随着分子标记的不断开发与应用,在棉花染色体A组和D组染色体上都有大量棉纤维品质和产量相关的QTL被发现(表 1)。从表 1可知:纤维品质和产量性状的QTL几乎遍布了每一条染色体,且不同实验室使用不同的群体所得到的结果也有很大差异。同时,研究也发现这些性状受环境的影响很大,某些QTL在不同环境条件下有变化,甚至检测不到,导致已定位的QTL间重复性差[10, 42],这也说明纤维品质及产量性状的遗传非常复杂。研究也发现了一些稳定的主效QTL,如第10号染色体的棉纤维强度主效QTL(FS1),解释了超过30.00%的表型变异[43];第19号染色体影响衣分的QTL(qLI17),解释24.30%的表型变异[34];第8号染色体上颜色相关QTL(Ge6_Rd_8_3_10.60_[+]),解释48.00%的表型变异[5];以及第14号染色体上与长度相关的QTL(qFL-Chr14-3),解释15.05%的表型变异[10],等等。此外,有些QTL虽然微效,但在不同环境下都能稳定存在,比如WANG等[42]在8,11,12和21号染色上发现的6个QTL:qFL-A8-1(长度相关),qFS-A8-1(强度相关),qFS-A12-1(强度相关),qFS-A12-2(强度相关),qFS-D11-1(强度相关)和qFM-A11-1(马克隆值相关)。这些稳定存在的QTL都值得科研工作者进一步关注和研究。
表 1 不同群体中与棉纤维品质和产量相关的QTL分布
Table 1. QTL related to cotton fiber quality and yield in different populations
性状 QTL所在染色体或连锁群 检出限(LOD) 变异率1% 群体 出处 长度 Chr04,Chrl8,Chr22 2.00~2.74 7.80~12.60 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr20,LGA02(Chr08),LGA03 (Chr11),LGA05 2.63~5.40 2.90~13.70 陆地棉Siv’ on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr04 3.50 24.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr03,Chr04,Chr06,Chr09,Chr13,Chr14,Chr18,Chr19,Chr20,Chr21,Chr23,Chr24,Chr26 3.30~9.50 6.00~40.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr11,Chr12,Chr19,Chr21,Chr23,Chr26 4.57~6.05 2.47~8.49 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr10,Chr14,Chr15 2.50~7.71 6.21~15.05 陆地棉HS46 ×陆地棉MAR CABU-CAG8US-1-88 RIL LI等[10] 整齐度 Chr04,Chr14,Chr15,Chr22,LGA03 (Chr11),LGA05 1.65~3.79 2.10~13.30 陆地棉Siv’on×海岛棉F-177的F2和F3群0体 PATERSON等[4] Chr05,Chr09,Chr12,Chr15,Chr16,Chr18,Chr19,Chr20,Chr23,Chr26 3.50~7.80 9.00~32.00 陆地棉Guazuncho-2×海岛棉VH8-4602 RIL LACAPE等[5] Chr09 2.68~4.17 5.58~10.94 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88的RIL LI等[10] 伸长率 Chr05,Chr10,Chr15,Chr23,LGA02 (Chr8),LGA03(Chr11),LGD07 2.32~5.77 3.40~8.90 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Chr09 5.16 42.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr02,Chr06,Chr09,Chr10,Chr12,Chr13,Chr15,Chr19,Chr20,Chr21,Chr23,Chr26 3.40~6.70 6.00~21.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr14,Chr20,Chr24 2.49~7.80 5.35~32.28 陆地棉HS46 ×陆地棉MARCABU-CAG8US-1-88 RIL LI等[10] 强度 Chr03,Chr14,Chr15,Chr25 2.08~2.69 10.40~23.10 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[10] Chr10 4.79~5.80 53.00~53.80 异质棉7235×陆地棉TM-1的F2群体 ZHANG等[43] Chr01,Chr04,Chr14,Chr17,Chr18,Chr20,Chr22,Chr23,Chr25,LGA01 (Chr13),LGA02(Chr08),LGA03(Chr11),LGA05,LGD02(Chr21),LGD03(Chr24),LGD04,LGD07 0.21~6.22 2.50~17.40 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr03,Chr04,Chr05,Chr07,Chr09,Chr12,Chr14,Chr15,Chr16,Chr18,Chr19,Chr21,Chr23,Chr26 3.30~8.50 7.00~31.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr09,Chr11,Chr12,Chr13,Chr14,Chr15,Chr16,Chr17,Chr18,Chr21,Chr23 7.32~22.54 5.07~15.82 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] 细度 Chr01,Chr02,Chr03,Chr12,Chr16,LGD01 2.16~4.04 16.70~43.90 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr02,Chr04,Chr05,Chr06,Chr09,Chr14,Chr15,Chr17,Chr20,Chr23,Chr25,LGA01 (Chr13),LGA05,LGA06,LGD01,LGD02(Chr2l),LGD03(Chr24),LGD04,LGD05,LGD07 2.21~9.78 2.20~30.30 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Not determined 5.11 43.20 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr02,Chr03,Chr04,Chr05,Chr06,Chr08,Chr09,Chr10,Chr12,Chr15,Chr16,Chr17,Chr18,Chr19,Chr20,Chr21,Chr22,Chr23,Chr24,Chr25,Chr26 3.30~8.90 6.00~41.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 颜色 Chr06,Chr09,Chr14,Chr17,Chr18,Chr22,Chr25,LGA01,LGA02,LGA03,LGD02(Chr21) 2.66~11.67 2.50~14.90 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr01,Chr02,Chr06,Chr07,Chr08,Chr09,Chr11,Chr14,Chr15,Chr17,Chr18,Chr19,Chr21,Chr22,Chr25 3.30~10.60 6.00~48.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 马克隆值 Chr05,Chr06,Chr09,Chr11,Chr12,Chr15,Chr16,Chr19,Chr21,Chr22 4.56~9.09 0.80~8.03 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr14,Chr16 2.51~4.23 5.52~9.20 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88 RIL LI等[10] 产量 A02(Chr08),A03(Chr11),Chr14,Chr23,Chr25,LG5 3.00~5.28 13.01~28.35 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 衣分 D08(Chr19) 3.45 24.34 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 然而,棉纤维相关性状QTL的分离和克隆仍然很少。有研究发现在第12条染色体上(A12/D12)与棉纤维品质相关的QTL附近的GhHOX3基因对棉纤维长度起重要调控作用[47],以及定位于同源染色体A8(chr08)和D8(chr24)上的GhSusA1基因过表达可以增强纤维长度和强度[48]。
-
在光子显性基因定位中发现,N1和Fbl基因位于chr12上[6],其中N1基因被鉴定为转录因子MYB25-like[49]。光子隐性基因定位研究表明:n2定位在chr26上,sma-4(fz)位于L.G.A3的端部,sma-4(ha)位于L.G.A3中部[6]。超短纤维突变体Li1基因位于chr22上,并已通过精细定位被克隆到,是一个肌动蛋白家族基因[50-53];而Li2基因则位于chr18上[6, 53]。
Genetic characteristics and research advances of genes related to cotton fiber development
-
摘要: 棉纤维是纺织工业的重要原材料,在国民经济发展中具有举足轻重的地位。棉纤维细胞发育进程是一个多基因调控的、有序的系统发生过程,包括纤维起始期、伸长期、次生壁合成与加厚期和脱水成熟期等4个时期。随着遗传学、细胞学和分子生物学等学科的交叉融合,棉纤维生长发育调控分子机制的研究已成为研究热点。目前大多研究集中在运用遗传定位、基因克隆以及近年来兴起的深度测序等技术对棉纤维生长发育的调控机制进行解析。为了更加系统地了解棉纤维的发育过程,详细描述了棉纤维发育各时期的形态结构变化及特征,概述了经典遗传学在棉纤维遗传规律和基因定位方面的工作,以及从转录组学、蛋白组学及表观遗传学领域总结了近年来深度测序技术在棉花纤维组学研究方面的运用和取得的进展,并简述了棉纤维发育各个时期所涉及的相关调控基因。纤维的产量由棉纤维发育起始期决定,长度由伸长期决定,且伸长期的生化反应最为活跃,是影响纤维品质的关键时期。棉纤维遗传规律的研究发现,性状相同而基因型不同的材料,其棉纤维遗传模式也不同。纤维品质和产量相关的数量性状位点(QTL)遍布各个染色体,一些稳定的主效QTL(如FS1,qLI17和qFL-Chr14-3等)值得科研工作者进一步关注并有望在分子辅助选择中进行应用;质量性状基因的最新进展明确了显性基因Li1和N2,分别是肌动蛋白编码基因和转录因子MYB25-like。转录组学、蛋白组学及表观遗传学领域三方位的深度测序有效建立了RNA水平和蛋白质水平、编码区域和非编码序列之间的联系,并发现一系列的转录因子、编码转脂蛋白的基因、钙信号转导相关基因、多糖合成相关蛋白、大量的miRNA以及DNA甲基化作用等共同参与棉纤维发育过程。Abstract: Cotton fiber is a major raw textile material which plays an essential role in the national economic development. The developmental process of cotton fiber cell is an orderly and systematically multi-gene controlled process including the fiber initiation, elongation, secondary wall thickening and the finally maturation process. With highly integrated studies of genetics, cytology and molecular biology, the molecular mechanisms of cotton fiber growth have become a popular focus both abroad and domestically. Most of the research is on the genetic mapping, gene cloning and high throughout sequencing areas in recent years. In order to systematically understand the development of cotton fibers, this paper summarized the morphological changes and characteristics during cotton fiber development and the classical genetics mapping research on the cotton fiber related genes, and took an overview of the application and progress of deep sequencing technology in cotton fiber development from transcriptome, proteomics and epigenetics field, and untangled the related genes in different periods of cotton fiber development. The previous studies had proved that the fiber yield was determined by the initial stage of cotton fiber development; the fiber length was determined by the elongation stage which was the most active period of biochemical reaction and critical to the fiber quality. The studies of the genetic law of cotton fiber showed that the genetic patterns of the same fiber-trait cotton differed in diverse genotypes. Quantitative trait loci (QTL) related to fiber quality and yield were distributed in the whole cotton genome. Some stable major QTL (such as FS1, qLI17 and qFL-Chr14-3) deserved further attention from researchers and were expected to be used in molecular aided selection application. Recent advances in the quality trait genes had clarified that Ligon lintless-1 (Li1) mutant was an acting gene, and the N1 was a transcription factor named as MYB25-like. The deep sequencing in the fields of transcriptomics, proteomics and epigenetics effectively established the connection between RNA levels and protein levels, coding regions and non-coding regions, and found a series of genes and processes, such as transcription factors, lipid transfer protein encoding genes, genes involved in calcium signaling, genes related to polysaccharide synthesis, abundant miRNAs, and DNA methylation and so on, were all involved in cotton fiber development. This paper will provide a more comprehensively theoretical understanding for further research on the development mechanism and gene regulatory network of cotton fiber.
-
Key words:
- plant genetics /
- cotton /
- fiber development /
- genomics /
- proteomics /
- epigenetics /
- functional genes /
- review
-
表 1 不同群体中与棉纤维品质和产量相关的QTL分布
Table 1. QTL related to cotton fiber quality and yield in different populations
性状 QTL所在染色体或连锁群 检出限(LOD) 变异率1% 群体 出处 长度 Chr04,Chrl8,Chr22 2.00~2.74 7.80~12.60 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr20,LGA02(Chr08),LGA03 (Chr11),LGA05 2.63~5.40 2.90~13.70 陆地棉Siv’ on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr04 3.50 24.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr03,Chr04,Chr06,Chr09,Chr13,Chr14,Chr18,Chr19,Chr20,Chr21,Chr23,Chr24,Chr26 3.30~9.50 6.00~40.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr11,Chr12,Chr19,Chr21,Chr23,Chr26 4.57~6.05 2.47~8.49 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr10,Chr14,Chr15 2.50~7.71 6.21~15.05 陆地棉HS46 ×陆地棉MAR CABU-CAG8US-1-88 RIL LI等[10] 整齐度 Chr04,Chr14,Chr15,Chr22,LGA03 (Chr11),LGA05 1.65~3.79 2.10~13.30 陆地棉Siv’on×海岛棉F-177的F2和F3群0体 PATERSON等[4] Chr05,Chr09,Chr12,Chr15,Chr16,Chr18,Chr19,Chr20,Chr23,Chr26 3.50~7.80 9.00~32.00 陆地棉Guazuncho-2×海岛棉VH8-4602 RIL LACAPE等[5] Chr09 2.68~4.17 5.58~10.94 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88的RIL LI等[10] 伸长率 Chr05,Chr10,Chr15,Chr23,LGA02 (Chr8),LGA03(Chr11),LGD07 2.32~5.77 3.40~8.90 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Chr09 5.16 42.00 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr02,Chr06,Chr09,Chr10,Chr12,Chr13,Chr15,Chr19,Chr20,Chr21,Chr23,Chr26 3.40~6.70 6.00~21.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr14,Chr20,Chr24 2.49~7.80 5.35~32.28 陆地棉HS46 ×陆地棉MARCABU-CAG8US-1-88 RIL LI等[10] 强度 Chr03,Chr14,Chr15,Chr25 2.08~2.69 10.40~23.10 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[10] Chr10 4.79~5.80 53.00~53.80 异质棉7235×陆地棉TM-1的F2群体 ZHANG等[43] Chr01,Chr04,Chr14,Chr17,Chr18,Chr20,Chr22,Chr23,Chr25,LGA01 (Chr13),LGA02(Chr08),LGA03(Chr11),LGA05,LGD02(Chr21),LGD03(Chr24),LGD04,LGD07 0.21~6.22 2.50~17.40 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr03,Chr04,Chr05,Chr07,Chr09,Chr12,Chr14,Chr15,Chr16,Chr18,Chr19,Chr21,Chr23,Chr26 3.30~8.50 7.00~31.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] Chr05,Chr07,Chr08,Chr09,Chr11,Chr12,Chr13,Chr14,Chr15,Chr16,Chr17,Chr18,Chr21,Chr23 7.32~22.54 5.07~15.82 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] 细度 Chr01,Chr02,Chr03,Chr12,Chr16,LGD01 2.16~4.04 16.70~43.90 陆地棉TM-1×海岛棉3-79的F2群体 KOHEL等[44] Chr02,Chr04,Chr05,Chr06,Chr09,Chr14,Chr15,Chr17,Chr20,Chr23,Chr25,LGA01 (Chr13),LGA05,LGA06,LGD01,LGD02(Chr2l),LGD03(Chr24),LGD04,LGD05,LGD07 2.21~9.78 2.20~30.30 陆地棉Siv’on×海岛棉F-l77的F2和F3群体 PATERSON等[4] Not determined 5.11 43.20 陆地棉Acala 44×海岛棉Pima S-7的F2群体 MEI等[45] Chr01,Chr02,Chr03,Chr04,Chr05,Chr06,Chr08,Chr09,Chr10,Chr12,Chr15,Chr16,Chr17,Chr18,Chr19,Chr20,Chr21,Chr22,Chr23,Chr24,Chr25,Chr26 3.30~8.90 6.00~41.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 颜色 Chr06,Chr09,Chr14,Chr17,Chr18,Chr22,Chr25,LGA01,LGA02,LGA03,LGD02(Chr21) 2.66~11.67 2.50~14.90 陆地棉Siv’on×海岛棉F-177的F2和F3群体 PATERSON等[4] Chr01,Chr02,Chr06,Chr07,Chr08,Chr09,Chr11,Chr14,Chr15,Chr17,Chr18,Chr19,Chr21,Chr22,Chr25 3.30~10.60 6.00~48.00 陆地棉Guazuncho-2×海岛棉VH8-4602RIL LACAPE等[5] 马克隆值 Chr05,Chr06,Chr09,Chr11,Chr12,Chr15,Chr16,Chr19,Chr21,Chr22 4.56~9.09 0.80~8.03 陆地棉TM-1×海岛棉Hai7124的CSILs群体 WANG等[42] Chr14,Chr16 2.51~4.23 5.52~9.20 陆地棉HS46 ×陆地棉MARCABU- CAG8US-1-88 RIL LI等[10] 产量 A02(Chr08),A03(Chr11),Chr14,Chr23,Chr25,LG5 3.00~5.28 13.01~28.35 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] 衣分 D08(Chr19) 3.45 24.34 陆地棉Handan 208×海岛棉Pima 90的F2群体 HE等[46] -
[1] WENDEL J F, CRONN R C. Polyploidy and the evolutionary history of cotton[J]. Adv Agron, 2003, 78(2):139-186. [2] WENDEL J F, SCHNABEL A, SEELANAN T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression[J]. Mol Phylog Evol, 1995, 4(3):298-313. [3] WENDEL J F. New World tetraploid cottons contain Old World cytoplasm[J]. Proc Natl Acad Sci USA, 1989, 86(11):4132-4136. [4] PATERSON A H, SARANGA Y, MENZ M, et al. QTL analysis of genotype×environment interactions affecting cotton fiber quality[J]. Theor Appl Genet, 2003, 106(3):384-396. [5] LACAPE J M, LLEWELLYN D, JACOBS J, et al. Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum×G. barbadense RIL population[J]. Bmc Plant Biol, 2010, 10(1):132-156. [6] RONG Junkang, PIERCE G J, WAGHMARE V N, et al. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton[J]. Theor Appl Genet, 2005, 111(6):1137-1146. [7] ZHANG Tianzhen, HU Yan, JIANG Wenkai, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nat Biotechnol, 2015, 33(5):531-537. [8] WANG Qiong, FANG Lei, CHEN Jiedan, et al. Genome-wide mining, characterization, and development of microsatellite markers in Gossypium species[J]. Sci Rep, 2015, 5:10638. doi:10.1038/srep10638. [9] HULSE-KEMP A M, LEMM J, PLIESKE J, et al. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp.[J]. Genetics, 2015, 5(6):1187-1209. [10] LI Cong, DONG Yating, ZHAO Tianlun, et al. Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population[J]. Front Plant Sci, 2016, 7:1356. doi:10.3389/fpls.2016.01356. [11] KIM H J, HINCHLIFFE D J, TRIPLETT B A, et al. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta[J]. PLoS One, 2015, 10(4):e0125046. doi:org/10.1371/journal.pone.0125046. [12] HU Guanjing, KOH J, YOO M J, et al. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense[J]. New Phytol, 2013, 200(2):570-582. [13] MA Qifeng, WU Chunhui, WU Man, et al. Integrative transcriptome, proteome, phosphoproteome and genetic mapping reveals new aspects in a fiberless mutant of cotton[J]. Sci Rep, 2016, 6:24485. doi:10.1038/srep24485. [14] CHEN Xuemei, GAO Wenhua, ZHANG Jinfa, et al. Linkage mapping and expression analysis of miRNAs and their target genes during fiber development in cotton[J]. BMC Genom, 2013, 14:706. doi:10.1186/1471-2164-14-706. [15] SONG Qingxin, GUAN Xueying, CHEN Z J, et al. Dynamic roles for small RNAs and DNA methylation during ovule and fiber development in allotetraploid cotton[J]. PLoS Genet, 2015, 11(12):e1005624. doi:10.1371/journal.pgen.1005724. [16] ZOU Changsong, WANG Qiaolian, LU Cairui, et al. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum)[J]. Sci China Life Sci, 2016, 59(2):164-171. [17] 张辉, 汤文开, 谭新, 等.棉纤维发育及其相关基因表达调控研究进展[J].植物学通报, 2007, 24(2):127-133. ZHANG Hui, TANG Wenkai, TAN Xin, et al. Progresses in the study of gene regulation of cotton fiber development[J]. Chin Bull Bot, 2007, 24(2):127-133. [18] FERGUSON D L, TURLEY R B, TRIPLET B A, et al. Comparison of protein profiles during cotton (Gossypium hirsutum L.) fiber cell development with partial sequences of two proteins[J]. J Agric Food Chem, 1997, 44(12):4022-4027. [19] WANG Haiyun, YU Yi, CHEN Zhiling, et al. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells:characterization of in vivo functions of a cotton profilin gene[J]. Planta, 2005, 222(4):594-603. [20] 杜雄明, 潘家驹, 汪若海.棉纤维细胞分化和发育[J].棉花学报, 2000, 12(4):212-217. DU Xiongming, PAN Jiaju, WANG Ruohai. Differentiation and development of fiber cells on the ovules in cotton[J]. Acta Gossyp Sin, 2000, 12(4):212-217. [21] LEE J J, WOODWARD A W, CHEN Z J. Gene expression changes and early events in cotton fibre development[J]. Ann Bot, 2007, 100(7):1391-1401. [22] RAMSEY J C, BERLIN J D. Ultrastructure of early stages of cotton fiber differentiation[J]. Bot Gazet, 1992, 137(1):11-19. [23] GUAN Xueying, LEE Jinsuk J, PANG Mingxiong, et al. Activation of Arabidopsis seed hair development by cotton fiber-related genes[J]. PLoS One, 2011, 6(7):e21301. doi:10.1371/journal.pone.0021301. [24] QIN Yongmei, ZHU Yuxian. How cotton fibers elongate:a tale of linear cell-growth mode[J]. Curr Opion Plant Biol, 2011, 14(1):106-111. [25] 王水平, 沈曾佑, 张志良, 等.棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系[J].植物生理学报, 1985, 11(4):409-417. WANG Shuiping, SHEN Zengyou, ZHANG Zhiliang, et al. A study of elongation of the cotton fider cell[J]. Acta Phytophysiol Sin, 1985, 11(4):409-417. [26] KIM H J, TRIPLETT B A. Cotton fiber growth in planta and in vitro:models for plant cell elongation and cell wall biogenesis[J]. Plant Physiol, 2001, 127(4):1361-1366. [27] ARPAT A B, WAUGH M, SULLIVAN J P, et al. Functional genomics of cell elongation in developing cotton fibers[J]. Plant Mol Biol, 2004, 54(6):911-929. [28] WLLKINS T A. Vacuolar H+-ATPase 69-kilodalton catalytic subnit cDNA from developing cotton (Gossypium hirsutum) ovules[J]. Plant Physiol, 1993, 102(2):679-680. [29] MEINERT M C, DELMER D P. Changes in biochemical composition of the cell wall of the cotton fiber during development[J]. Plant Physiol, 1977, 59(6):1088-1097. [30] NOLTE K D, HENDRIX D L, RADIN J W, et al. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules[J]. Plant Physiol, 1995, 109(4):1285-1293. [31] 薛宇.雷蒙德氏棉HD-Zip基因家族进化及选择性剪接分析[D].杭州: 浙江农林大学, 2014. XUE Yu. Genome-wide Analysis of Evolution and Alternative Splicing Event of HD-Zip Gene Family in Gossypium ramondii[D]. Hangzhou: Zhejiang A&F University, 2014. [32] CARVER W. The inheritance of certain seed, leaf and flower characters in Gossypium hirsutum and some of their genetic interrelations[J]. J Am Soc Agron, 1929, 21(4):467-480. [33] KEARNEY T H, HARRISON G J. The inheritance of smoothness seeds in cotton[J]. J Agric Res, 1927, 35:193-217. [34] WARE J. Inheritance of lint percentage in cotton[J]. J Am Soc Agron, 1929, 21(9):876-894. [35] 宋丽, 郭旺珍, 秦鸿德, 等.棉花光子基因N1和n2的遗传分析及染色体定位的分子证据[J].南京农业大学学报, 2010, 33(1):21-26. SONG Li, GUO Wangzhen, QIN Hongde, et al. Genetic analysis and molecular validation of chromosome assignment for fuzzless genes N1 and n2 in cotton[J]. J Nanjing Agric Univ, 2010, 33(1):21-26. [36] MUSAEV D A, BBZALOV M M. Some questions concerning the inheritance of fuzzy in cotton seeds (G. hirsutum hirsutum L.)[J]. Genetika, 1972, 8(1):7-16. [37] 张天真, 潘家驹.一个陆地棉无絮突变体的遗传分析[J].江苏农业学报, 1991, 7(3):13-16. ZHANG Tianzhen, PAN Jiaju. Genetic analysis of a fuzzless-lintless mutant in Gossypium hirsutum L.[J]. Jiangsu J Agric Sci, 1991, 7(3):13-16. [38] GRIFFEE F, LIGON L L. Occurrence of 'lintless' cotton plants and the inheritance of the character 'lintless'[J]. J Amer Soc Agron, 1929, 21(7):711-717. [39] KOHEL R J, BENEDICT C R, JIVIDEN G M. Incorporation of glucose into crystalline cellulose in aberrant fibers of a cotton mutant[J]. Crop Sci, 1993, 33(5):1036-1040. [40] NARBUTH E V, KOHEL R J. Inheritance and linkage analysis of a new fiber mutant in cotton[J]. J Hered, 1990, 81(2):131-133. [41] 孙亚莉, 贾银华, 何守朴, 等.棉花种质资源光子性状的遗传分析[J].遗传, 2012, 34(8):1073-1078. SUN Yali, JIA Yinhua, HE Shoupu, et al. Genetic analysis of fuzzless in cotton germplasm[J]. Hereditas, 2012, 34(8):1073-1078. [42] WANG Peng, ZHU Yajuan, SONG Xianliang, et al. Inheritance of long staple fiber quality traits of Gossypium, barbadense in G. hirsutum background using CSILs[J]. Theor Appl Genet, 2012, 124(8):1415-1428. [43] ZHANG Tianzhen, YUAN Youlu, YU John, et al. Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection[J]. Theor Appl Genet, 2003, 106(2):262-268. [44] KOHEL R J, YU J, PARK Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton[J]. Euphytica, 2001, 121(2):163-172. [45] MEI M, SYED N H, GAO W, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)[J]. Theor Appl Genet, 2004, 108(2):280-291. [46] HE Daohua, LIN Zhongxu, ZHANG Xianlong, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica, 2005, 144(1/2):141-149. [47] SHAN Chunmin, SHANGGUAN Xiaoxia, ZHAO Bo, et al. Control of cotton fiber elongation by a homeodomain transcription factor GhHOX3[J]. Nat Commun, 2014, 5:5519. doi:10.1038/ncomms6519. [48] JIANG Yanjie, GUO Wangzhen, ZHU Huayu, et al. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality[J]. Plant Biotechnol J, 2012, 10(3):301-312. [49] LIANG Wenhua, LEI Fang, DAN Xiang, et al. Transcriptome analysis of short fiber mutant Ligon lintless-1(Li1) reveals critical genes and key pathways in cotton fiber elongation and leaf development[J]. PLoS One, 2015, 10(11):e0143503. doi:10.1371/journal.pone.0143503. [50] KARACA M, SAHA S, JENKINS J N, et al. Simple sequence repeat (SSR) markers linked to the Ligon lintless (Li1) mutant in cotton[J]. J Hered, 2002, 93(3):221-224. [51] JIANG Yurong, DING Mingquan, CAO Yuefen, et al. Genetic fine mapping and candidate gene analysis of the Gossypium hirsutum Ligon lintless-1(Li1) mutant on chromosome 22(D)[J]. Mol Genet Genom, 2015, 290(6):2199-2211. [52] THYSSEN G N, FANG D D, TURLEY R B, et al. A Gly65Val substitution in an actin, GhACT_Li1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants[J]. Plant J, 2017, 90(1):111-120. [53] THYSSEN G N, FANG D D, TURLEY R B, et al. Next generation genetic mapping of the Ligon-lintless-2(Li2) locus in upland cotton[J]. Theor Appl Genet, 2015, 127(10):2183-2192. [54] HOVAV R, UDALL J A, HOVAV E, et al. A majority of cotton genes are expressed in single-celled fiber[J]. Planta, 2008, 227(2):319-329. [55] BOLTON J J, SOLIMAN K M, WILKINS T A, et al. Aberrant expression of critical genes during secondary cell wall biogenesis in a cotton mutant, Ligon Lintless-1(Li1)[J]. Comp Funct Genom, 2014, 2009(1):659301. doi:10.1155/2009/659301. [56] FANG Lei, TIAN Ruiping, CHEN Jiedan, et al. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments[J]. PLoS One, 2014, 9(4):e94642. doi:10.1371/journal.pone.0094642. [57] YANG S S, CHEUNG F, LEE J J, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton[J]. Plant J, 2010, 47(5):761-775. doi:10.1111/j.1365-313X.2006.02829.x. [58] WANG Shui, WANG Jiawei, YU Nan, et al. Control of plant trichome development by a cotton fiber MYB gene[J]. Plant Cell, 2004, 16(9):2323-2334. [59] SUO Jinfeng, LIANG Xiaoe, PU Li, et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.)[J]. Biochim Biophys Acta, 2003, 1630(1):25-34. [60] HUMPHRIES J A, WALKER A, TIMMIS J N, et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENTTESTA GLABRA1(TTG1) gene[J]. Plant Mol Biol, 2005, 57(1):67-81. [61] GUAN Xueying, LI Qianjin, SHAN Chunmin, et al. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2[J]. Physiol Plant, 2008, 134(1):174-182. [62] PU Li, LI Qun, FAN Xiaoping, et al. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development[J]. Genetics, 2008, 180(2):811-820. [63] LOGUERICO L L, ZHANG Jiqiang, WILKINS T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.)[J]. Mol Gener Genet, 1999, 261(4/5):660-671. [64] WALFORD S A, WU Yingru, LLEWELLYN D J, et al. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1[J]. Plant J, 2012, 71(3):464-478. [65] 辛婧.海岛棉纤维发育相关转录因子GbSBP8的克隆及表达研究[D].上海: 上海交通大学, 2007. XIN Jing. Cloning and Expression Analyses of the Transcription Factor GbSPB8 Involved in Fiber Development of Sea-Island Cotton (Gossypium barbadense)[D]. Shanghai: Shanghai Jiao Tong University, 2007. [66] MA D P, LIU H C, TAN H, et al. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells[J]. Biochim Biophys Acta, 1997, 1344(2):111-114. [67] 李锡花, 吴嫚, 于霁雯, 等.棉花纤维发育早期RNA-Seq转录组分析[J].棉花学报, 2013, 25(3):189-196. LI Xihua, WU Man, YU Jiwen, et al. Transcription analysis of early developing cotton fiber by RNA-seq[J]. Cotton Sci, 2013, 25(3):189-196. [68] 赵存鹏, 郭宝生, 王凯辉, 等.通过转CaM基因提高了棉花抗寒性[J].棉花学报, 2016, 28(3):234-241. ZHAO Cunpeng, GUO Baosheng, WANG Kaihui, et al. Improving cold resistance by transferring the CaM gene into cotton plants[J]. Cotton Sci, 2016, 28(3):234-241. [69] GAPPER C, DOLAN L. Control of plant development by reactive oxygen species[J]. Plant Physiol, 2006, 141(2):341-345. [70] CHENG Yuan, LU Lili, YANG Zhaoen, et al. GhCaM7-like, a calcium sensor gene, influences cotton fiber elongation and biomass production[J]. Plant Physiol Biochem, 2016, 109(11):128-136. [71] HUANG Quansheng, WANG Haiyun, GAO Peng, et al. Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development[J]. Plant Cell Rep, 2008, 27(12):1869-1875. [72] ZHANG Fei, ZUO Kaijing, ZHANG Jieqiong, et al. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development[J]. J Exp Bot, 2010, 61(13):3599-3613. [73] HSU C Y, JENKINS J, SAHA S, et al. Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein[J]. Plant Sci, 2005, 168(1):167-181. [74] DELMER D P, PEAR J R, ANDRAWIS A, et al. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers[J]. Mol Gen Genet, 1995, 248(1):43-51. [75] ZHAO Xinping, SI Yang, HANSON R E, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton[J]. Genome Res, 1998, 8(5):479-492. [76] 杨郁文, 何冰, 张保龙, 等.一个棉花类受体蛋白激酶基因的克隆与表达分析[J].棉花学报, 2011, 23(1):15-21. YANG Yuwen, HE Bing, ZHANG Baolong, et al. Molecular cloning and expression analysis of a receptor-like protein kinase gene in upland cotton[J]. Cotton Sci, 2011, 23(1):15-21. [77] XU Bing, GOU Jinying, LI Fuguang, et al. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production[J]. Mol Plant, 2012, 6(3):945-958. doi:10.1093/mp/sss112. [78] 范作晓.棉纤维发育过程中的细胞程序性死亡及植物生长调节剂调控的研究[D].泰安: 山东农业大学, 2007. FAN Zuoxiao. Research on Programmed Cell Death and Regulation of PCD with Plant Growth Regulators during the Development of Cotton Fiber[D]. Tai'an: Shangdong Agricultural University, 2007. [79] JANGA M R, CAMPBELL L M, RATHORE K S. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.)[J]. Plant Mol Biol, 2017, 94(4/5):349-360. [80] LI Chao, UNVER T, ZHANG Baohong. A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in cotton (Gossypium hirsutum L.)[J]. Sci Rep, 2017, 7:43902. doi:10.1038/srep43902. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.06.021