-
中国荒漠地区幅员辽阔,环境治理工作非常严峻。环境治理中一个非常重要的环节就是植被恢复,而植物的生长离不开土壤。植物可以通过产生或聚集土壤水分和养分来提高植物周边土壤资源的可利用性进而影响幼苗的生长发育[1],形成肥岛效应[2]。在干旱半干旱区,明确植被和土壤资源之间的反馈关系以及肥岛效应在生态系统中的生态功能非常重要[3-4],这不仅能为土地管理者提供重要植被和土壤的信息,还能避免在今后野外实验时采集的土壤形成空间自相关[5]。当前,国内外关于植物与土壤资源分布关系的研究多关注于土壤资源分布的斑块大小与植被冠层大小的对比,以此来判断土壤资源分布是否受到某一植物的影响。如GALLARDO[6]发现氮(N)和有机质(SOM)的斑块大小和分布格局与树冠相吻合,并且半方差范围与树冠直径相吻合,得出树木对氮和有机质有显著的影响。这一方法虽然容易理解,但并不是非常准确,并且土壤资源与植被关系的一些细节不易确定。相较而言,作为一种经典的统计学方法,空间点格局分析能反映多个研究对象相互之间的关联性和关联范围,它常常应用于分析各种不同尺度的种群分布格局及种间关系,以揭示植被的演替规律[7-10],而在植被与土壤空间分布的研究中,空间点格局分析的应用并不常见。为更深入分析内蒙古西部干旱区植被与土壤资源格局的相互关系,了解不同植被群落条件下,不同优势灌木物种的土壤资源聚集效应,本研究以内蒙古乌海周边地区为研究区,采用空间点格局分析方法,对不同群落条件下灌木物种与不同土壤养分间的点格局关系进行了分析,旨在揭示植物与不同土壤资源的聚集形式,对生态恢复中植物种的初步选择具有重要的意义。
-
研究区植被以灌木或半灌木和草本为主,主要有8种灌木和半灌木(表 1)。半灌木包括菊科的沙蒿;灌木包括蝶形花科的锦鸡儿Caragana sinica,狭叶锦鸡儿Caragana stenophylla,毛刺锦鸡儿Caragana tibetica和柠条锦鸡儿Caragana korshinskii;藜科Chenopodiaceae的梭梭Haloxylon ammodendron;蒺藜科Zygophyllaceae的白刺Nitraria tangutorum和霸王Sarcozygium xanthoxylon。
表 1 样方调查情况
Table 1. Investigation of the plots
群组号 优势物种 研究物种 盖度/% 研究物种数/株 研究物种平均冠幅/cm 草本种类/数量 1 沙蒿 沙蒿 28.7 12 79.0 1/7 2 沙蒿+白刺 沙蒿 49.8 11 58.5 1/2 3 锦鸡儿+白刺+霸王 锦鸡儿 24.6 20 31.8 4/8 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 28.5 4 95.4 5/11 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 51.5 2 122.0 4/14 6 沙蒿+柠条锦鸡儿 沙蒿 50.7 4 83.1 5/36 柠条锦鸡儿 2 210.3 7 毛刺锦鸡儿 毛刺锦鸡儿 36.2 23 47.1 6/24 8 沙蒿+锦鸡儿 沙蒿 47.6 20 61.6 7/43 锦鸡儿 30 10.6 9 沙蒿 沙蒿 44.0 19 93.1 1/20 研究灌木主要为菊科的沙蒿和蝶形花科的锦鸡儿属灌木。沙蒿主根明显,木质或半木质,侧根少数,主根在0~20 cm土层生物量最多;锦鸡儿主侧根发达,根幅扩展较宽,并具有成层现象;柠条锦鸡儿的根深且粗壮,可以分为独生根和簇生根2类,前者相对后者更适合在干旱半干旱地区生长,且氮富集量更大;狭叶锦鸡儿根系发达,主根和侧根均较粗壮,根蘖性很强[17-19]。
-
在草原化荒漠,沙蒿与全氮的关联尺度分别为75和100 cm,相对于沙蒿,该区域锦鸡儿属的灌木与全氮的关联尺度更大,其中以狭叶锦鸡儿关联尺度最大,为250 cm,其次为锦鸡儿,关联尺度230 cm,最后柠条锦鸡儿为150 cm,表明锦鸡儿属灌木对全氮的聚集范围大于沙蒿(表 2)。根据灌木与土壤全氮的聚集关系,在该区域可以考虑采用沙蒿和锦鸡儿属灌木聚集土壤全氮,一方面灌木对全氮的聚集作用能够有效改善土壤结构和营养组成[20];另一方面可以根据不同灌木与土壤全氮的关联尺度选择出适合在不同环境下进行植被恢复的物种,比如在土地非常贫瘠的荒漠区域可以采用锦鸡儿属灌木进行植被恢复,以较少的株数治理更大的范围;对于具有少许草本植物的荒漠区域可以采用沙蒿聚集氮素,以防止养分空间错位,引起群落不稳定从而影响草本植被生长[21]。
表 2 灌木与全氮的空间关联尺度
Table 2. Scale of spatial correlation between shrubs and TN
群组号 优势物种 与土壤参数有关联性的物种 关联尺度r/cm 1 沙蒿 沙蒿 100 2 沙蒿+白刺 沙蒿 75 3 锦鸡儿+白刺+霸王 锦鸡儿 230 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 250 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 150 6 沙蒿+柠条锦鸡儿 沙蒿 N 柠条锦鸡儿 N 7 毛刺锦鸡儿 毛刺锦鸡儿 N 8 沙蒿+锦鸡儿 沙蒿 N 锦鸡儿 N 9 沙蒿 沙蒿 N 说明:表中各灌木与土壤参数具有相关性的均为正相关;N表示植物空间分布与土壤养分无关 在荒漠草原,沙蒿+锦鸡儿,沙蒿+柠条锦鸡儿,毛刺锦鸡儿和沙蒿群组中锦鸡儿属灌木和沙蒿与全氮无关联,可能是因为研究区东部荒漠草原降水量多于西部草原化荒漠[22],使得东部草本数量较于西部更多,这点在调查中也反映出来,而草本植物对于灌木的肥岛效应有较大的干扰[23],由于草本对土壤养分分布的影响,使得荒漠草原的灌木的肥岛效应在该研究尺度下没有草原化荒漠显著。
-
土壤全磷仅与在草原化荒漠区域的锦鸡儿+白刺+霸王群组中的锦鸡儿有聚集关系,关联尺度为50 cm,其他植被群组中灌木与全磷无聚集关系,包括生长在荒漠草原的锦鸡儿在内,均为随机分布。这表明相较于其他锦鸡儿属灌木和沙蒿,锦鸡儿在草原化荒漠中对全磷具有聚集作用,但并不能聚集荒漠草原的全磷。全磷与锦鸡儿的2个关联尺度包含了较小和较大2个聚集范围,在草原化荒漠土壤非常贫瘠的区域或有少许草本植物的区域均可以考虑采用锦鸡儿聚集全磷(表 3)。
表 3 灌木与全磷的空间关联尺度
Table 3. Scale of spatial correlation between shrubs and TP
群组号 优势物种 与土壤参数有关联性的物种 关联尺度r/cm 1 沙蒿 沙蒿 N 2 沙蒿+白刺 沙蒿 N 3 锦鸡儿+白刺+霸王 锦鸡儿 50 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 N 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 N 6 沙蒿+柠条锦鸡儿 沙蒿 N 柠条锦鸡儿 N 7 毛刺锦鸡儿 毛刺锦鸡儿 N 8 沙蒿+锦鸡儿 沙蒿 N 锦鸡儿 N 9 沙蒿 沙蒿 N 说明:表中各灌木与土壤参数具有相关性的均为正相关;N表示植物空间分布与土壤养分无关 -
土壤有机质仅与沙蒿和毛刺锦鸡儿表现关联性。沙蒿在荒漠草原和草原化荒漠都聚集有机质,关联尺度分别为190和200 cm,但是聚集有机质的群组中只有沙蒿1种灌木,可以考虑构建沙蒿群落聚集有机质。毛刺锦鸡儿在荒漠草原区与有机质表现出45 cm的关联尺度,说明毛刺锦鸡儿在荒漠草原对有机质具有聚集作用,该区域也可以考虑采用毛刺锦鸡儿聚集有机质(表 4)。
表 4 灌木与有机质的空间关联尺度
Table 4. Scale of spatial correlation between shrubs and SOM
群组号 优势物种 与土壤参数有关联性的物种 关联尺度r/cm 1 沙蒿+白刺 沙蒿 N 2 沙蒿 沙蒿 200 3 锦鸡儿+白刺+霸王 锦鸡儿 N 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 N 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 N 6 沙蒿+柠条锦鸡儿 沙蒿 N 柠条锦鸡儿 N 7 毛刺锦鸡儿 毛刺锦鸡儿 45 8 沙蒿+锦鸡儿 沙蒿 N 锦鸡儿 N 9 沙蒿 沙蒿 190 说明:表中各灌木与土壤参数具有相关性的均为正相关;N表示植物空间分布与土壤养分无关
Relationship between shrubs and soil nutrients in Wuhai City
-
摘要: 植被与土壤资源的空间格局关系可以为植被恢复提供重要信息,对内蒙古乌海市周边地区的不同灌木与不同土壤养分(全氮、全磷、有机质)的空间聚集关系进行研究。在乌海市周边选取9个包含锦鸡儿属Caragana灌木或沙蒿Artemisia desertorum的植被群,在尺度为5 m×5 m样方中建立坐标系,记录每株灌木坐标点,并从坐标原点在样方范围内沿4个方向隔100 cm采集1份土样,测定土样中全氮、全磷和有机质质量分数,将灌木坐标点和每种养分质量分数前20%的土样坐标点代入点格局模型进行分析。结果表明:在草原化荒漠区域,狭叶锦鸡儿Caragana stenophylla(r=250 cm),锦鸡儿Caragana sinica(r=230 cm)和柠条锦鸡儿Caragana korshinskii(r=150 cm)与全氮的关联尺度相对于沙蒿(r=100 cm或r=75 cm)较大;与全磷存在聚集关系的仅有草原化荒漠区域的锦鸡儿(r=50 cm);在荒漠草原毛刺锦鸡儿Caragana tibetica(r=45 cm)与有机质存在聚集关系;而沙蒿在荒漠草原(r=190 cm)或草原化荒漠(r=200 cm)均能聚集有机质。将点格局模型运用到灌木与土壤养分的空间关系分析中,得到的关联尺度一定程度可以反映灌木的根冠范围,揭示灌木与土壤养分的空间格局关系。Abstract: In Wuhai, the environment was destroyed because of its own defects and the exploitation of many mining areas. Therefore, it is very necessary for the region to carry out targeted environmental governance, and the selections of plant species are very important for environmental governance. Soil is indispensable for plant growth. Understanding the spatial pattern relationships between different species and different soil resources is of great reference value for the preliminary selections of plant species, and can also provide very important information for the land managers. In order to achieve these objectives, a classical statistical method-spatial point pattern analysis-was used in this study. It can reflect the correlation and obtain relative scale of research objects. Nine communities were selected according to different vegetation groups in the surrounding area of Wuhai. Three plots of shrubs and three plots of herbage were selected from each group for investigation, and the most statistically significant plot was selected according to the principle of spatial point pattern analysis from the three shrubs plots which have investigated already. Soil samples were collected with the origin of a square coordinateaxis as the reference point. Every soil sample was separated from the other samples by 100 cm, a 0-20 cm soil sample of 1.0 kg was taken, and the specific coordinates of each shrub were determined and recorded. After determining the contents of total nitrogen (TN), total phosphorus (TP) and soil organic matter (SOM) of soil samples, The coordinates with the highest nutrient content of 20% of each resource and the coordinates of Caragana spp. or Artemisia desertorum were calculated by spatial point pattern analysis. Then an aggregated relationship and a relative scale were obtained. Results showed that in the steppe desert of Wuhai, there were aggregated relationships between TN and Caragana spp. or Artemisia desertorum. The relative scale was C. stenophylla (250 cm) > C. sinica (230 cm) > C. korshinskii (150 cm) > A. desertorum (100 cm) > A. desertorumina plot with A. desertorum + Nitraria tangutorum (75 cm). For the C. sinica aggregate with TP, the relative scale was 50 cm, and for the A. desertorum aggregate with SOM, the relative scale was 200 cm. In the desert grassland, the relative scale for C. tibetica aggregate with SOM was 45 cm, and the A. desertorum aggregate with SOM was 190 cm. The relative scale obtained by applying the spatial point pattern analysis to the spatial relationships between shrubs and soil nutrients can reflect the distribution range of roots and crowns of shrubs and reveal the spatial pattern relationship between shrubs and soil nutrients in depth.
-
Key words:
- forest ecology /
- arid area /
- point pattern /
- Artemisia desertorum /
- Caragana /
- soil nutrients
-
表 1 样方调查情况
Table 1. Investigation of the plots
群组号 优势物种 研究物种 盖度/% 研究物种数/株 研究物种平均冠幅/cm 草本种类/数量 1 沙蒿 沙蒿 28.7 12 79.0 1/7 2 沙蒿+白刺 沙蒿 49.8 11 58.5 1/2 3 锦鸡儿+白刺+霸王 锦鸡儿 24.6 20 31.8 4/8 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 28.5 4 95.4 5/11 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 51.5 2 122.0 4/14 6 沙蒿+柠条锦鸡儿 沙蒿 50.7 4 83.1 5/36 柠条锦鸡儿 2 210.3 7 毛刺锦鸡儿 毛刺锦鸡儿 36.2 23 47.1 6/24 8 沙蒿+锦鸡儿 沙蒿 47.6 20 61.6 7/43 锦鸡儿 30 10.6 9 沙蒿 沙蒿 44.0 19 93.1 1/20 表 2 灌木与全氮的空间关联尺度
Table 2. Scale of spatial correlation between shrubs and TN
群组号 优势物种 与土壤参数有关联性的物种 关联尺度r/cm 1 沙蒿 沙蒿 100 2 沙蒿+白刺 沙蒿 75 3 锦鸡儿+白刺+霸王 锦鸡儿 230 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 250 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 150 6 沙蒿+柠条锦鸡儿 沙蒿 N 柠条锦鸡儿 N 7 毛刺锦鸡儿 毛刺锦鸡儿 N 8 沙蒿+锦鸡儿 沙蒿 N 锦鸡儿 N 9 沙蒿 沙蒿 N 说明:表中各灌木与土壤参数具有相关性的均为正相关;N表示植物空间分布与土壤养分无关 表 3 灌木与全磷的空间关联尺度
Table 3. Scale of spatial correlation between shrubs and TP
群组号 优势物种 与土壤参数有关联性的物种 关联尺度r/cm 1 沙蒿 沙蒿 N 2 沙蒿+白刺 沙蒿 N 3 锦鸡儿+白刺+霸王 锦鸡儿 50 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 N 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 N 6 沙蒿+柠条锦鸡儿 沙蒿 N 柠条锦鸡儿 N 7 毛刺锦鸡儿 毛刺锦鸡儿 N 8 沙蒿+锦鸡儿 沙蒿 N 锦鸡儿 N 9 沙蒿 沙蒿 N 说明:表中各灌木与土壤参数具有相关性的均为正相关;N表示植物空间分布与土壤养分无关 表 4 灌木与有机质的空间关联尺度
Table 4. Scale of spatial correlation between shrubs and SOM
群组号 优势物种 与土壤参数有关联性的物种 关联尺度r/cm 1 沙蒿+白刺 沙蒿 N 2 沙蒿 沙蒿 200 3 锦鸡儿+白刺+霸王 锦鸡儿 N 4 狭叶锦鸡儿+霸王 狭叶锦鸡儿 N 5 柠条锦鸡儿+梭梭 柠条锦鸡儿 N 6 沙蒿+柠条锦鸡儿 沙蒿 N 柠条锦鸡儿 N 7 毛刺锦鸡儿 毛刺锦鸡儿 45 8 沙蒿+锦鸡儿 沙蒿 N 锦鸡儿 N 9 沙蒿 沙蒿 190 说明:表中各灌木与土壤参数具有相关性的均为正相关;N表示植物空间分布与土壤养分无关 -
[1] YAVITT J B, HARMS K E, GARCIA M N, et al. Spatial heterogeneity of soil chemical properties in a lowland tropical moist forest, Panama[J]. Austr J Soil Res, 2009, 47(7):674-687. [2] LI Jianwei, de B RICHTER D, MENDOZA A, et al. Effects of land-use history on soil spatial heterogeneity of macro-and trace elements in the Southern Piedmont USA[J]. Geoderma, 2010, 156(1/2):60-73. [3] SAUER T J, CAMBARDELLA C A, MEEK D W. Spatial variation of soil properties relating to plants changes[J]. Plant Soil, 2006, 280(1/2):1-5. [4] HOLDO R M, MACK M C. Functional attributes of savanna soils:contrasting effects of tree canopies and herbivores on bulk density, nutrients and moisture dynamics[J]. J Ecol, 2014, 102(5):1171-1182. [5] RODRÍGUEZ A, DURÁN J, FERNÁNDEZ-PALACIOS J M, et al. Spatial variability of soil properties under Pinus canariensis canopy in two contrasting soil textures[J]. Plant Soil, 2009, 322(1/2):139-150. [6] GALLARDO A. Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa[J]. Pedobiologia, 2003, 47(2):117-125. [7] 薛岑, 刘茂松, 康昕, 等.苏南丘陵山区典型次生森林群落的点格局分析[J].南京林业大学学报(自然科学版), 2016, 40(2):107-112. XUE Cen, LIU Maosong, KANG Xin, et al. Point pattern analyses on typical secondary forest communities in the mountainous region of southern Jiangsu Province[J]. J Nanjing For UnivNat Sci Ed, 2016, 40(2):107-112. [8] 张巍, 朱清科, 张婵婵, 等.陕北黄土区阳坡阔叶混交林结构及点格局分析[J].中国水土保持科学, 2017, 15(4):42-50. ZHANG Wei, ZHU Qingke, ZHANG Chanchan, et al. Stand structure characteristics of broad-leaved mixed forest and point pattern analysis in loess sunny slope, northern Shaanxi[J]. Sci Soil Water Conserv, 2017, 15(4):42-50. [9] 王磊, 孙启武, 郝朝运, 等.皖南山区南方红豆杉种群不同龄级立木的点格局分析[J].应用生态学报, 2010, 21(2):272-278. WANG Lei, SUN Qiwu, HAO Chaoyun, et al. Point pattern analysis of different age-class Taxus chinensis var. mairei individuals in mountainous area of southern Anhui Province[J]. Chin J Appl Ecol, 2010, 21(2):272-278. [10] 王潜, 李海涛, 梁涛, 等.鄱阳湖滨带优势灌木种群分布格局及其与土壤氮的关系[J].中国农学通报, 2011, 27(19):60-67. WANG Qian, LI Haitao, LIANG Tao, et al. Spatial distribution pattern of dominant shrub species in poyang lake zone and its relationship to soil nitrogen[J]. Chin Agric Sci Bull, 2011, 27(19):60-67. [11] 中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社, 1985:467. [12] 王旭东, 李忠, 包伟民, 等.乌海气候生产力对气候暖干化的响应[J].干旱区资源与环境, 2010, 24(12):100-105. WANG Xudong, LI Zhong, BAO Weimin, et al. Response of climatic productivity to climate warming-drying trend in Wuhai[J]. J Arid Land Resour Environ, 2010, 24(12):100-105. [13] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000:8-12. [14] 陈剑磊, 谢文霞, 崔育倩, 等. SmartChem 140全自动化学分析仪测定土壤全氮全磷的研究[J].分析科学学报, 2016, 32(1):84-88. CHEN Jianlei, XIE Wenxia, CUI Yuqian, et al. Research on the determination of total nitrogen and total phosphorus in soil using SmartChem 140 automatic chemical analyzer[J]. J Analyt Sci, 2016, 32(1):84-88. [15] RIPLEY B D. Modelling spatial pattern[J]. J Roy Stat Soc Ser B Stat Methodol, 1977, 39:172-212. [16] DIGGLE P J. Statistical Analysis of Spatial Point Patterns[M]. New York:Academic Press, 1983. [17] 傅坤俊.中国植物志:第42卷第1分册[M].北京:科学出版社, 1993:46-54. [18] 王辉, 孙栋元, 刘丽霞, 等.干旱荒漠区沙蒿种群根系生态特征研究[J].水土保持学报, 2007, 21(1):99-102. WANG Hui, SUN Dongyuan, LIU Lixia, et al. Ecological characteristics of roots of Artemisa arenaria population in arid desert area[J]. J Soil Water Conserv, 2007, 21(1):99-102. [19] 梁胜发, 茹豪, 雍鹏, 等.晋西北黄土丘陵区柠条锦鸡儿根系分布特征[J].东北林业大学学报, 2016, 44(8):24-28. LIANG Shengfa, RU Hao, YONG Peng, et al. Root distribution characteristics of Caragana korshinskii in the loess hilly area of northwestern Shanxi Province[J]. J Northeast For Univ, 2016, 44(8):24-28. [20] 赵玉洁, 张宇清.固氮类植物的生态功能及其在生态修复中的应用[J].干旱区资源与环境, 2012, 26(1):179-183. ZHAO Yujie, ZHANG Yuqing. The ecological functions of nitrogen-fixing plants and their applications in ecological restoration[J]. J Arid Land Resour Environ, 2012, 26(1):179-183. [21] 张晓蕾.塔干南缘骆驼刺和柽柳幼苗根系生长分布特征对不同水分处理的响应[D].北京: 中国科学院研究生院, 2010. ZHANG Xiaolei. Effects of Different Soil Moisture Treatments on Root Growth and Distribution of the Seedlings of Alhagi sparsifolia Shap. and Tamarix ramosissima Ledeb. in the Taklimakan Desert[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010. [22] 尚宗波, 高琼, 杨奠安.利用中国气候信息系统研究年降水量空间分布规律[J].生态学报, 2001, 21(5):689-694. SHANG Zongbo, GAO Qiong, YANG Dianan. Spatial pattern analysis of annual precipitation with Climate Information System of China[J]. Acta Ecol Sin, 2001, 21(5):689-694. [23] 陈广生, 曾德慧, 陈伏生, 等.干旱和半干旱地区灌木下土壤"肥岛"研究进展[J].应用生态学报, 2003, 14(12):2295-2300. CHEN Guangsheng, ZENG Dehui, CHEN Fusheng, et al. A research review on "fertile islands" of soils under shrub canopy in arid and semi-arid regions[J]. Chin J Appl Ecol, 2003, 14(12):2295-2300. [24] SARDANS J, PEÑUELAS J. Plants-soil interactions in Mediterranean forest and shrublands:impacts of climatic change[J]. Plant Soil, 2013, 365(1/2):1-33. [25] 张武, 杨琳, 王紫娟.生物固氮的研究进展及发展趋势[J].云南农业大学学报, 2015, 30(5):810-821. ZHANG Wu, YANG Lin, WANG Zijuan. Advance and development trend of biological nitrogen fixation research[J]. J Yunnan Agric Univ, 2015, 30(5):810-821. [26] ROLO V, LÓPEZ-DÍAZ M L, MORENO G. Shrubs affect soil nutrients availability with contrasting consequences for pasture understory and tree overstory production and nutrient status in Mediterranean grazed open woodlands[J]. Nutr Cycl Agroecosyst, 2012, 93(1):89-102. [27] 孙保平.荒漠化防治工程学[M].北京:中国林业出版社, 2001:27-28. [28] 陆文龙, 曹一平, 张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用[J].应用生态学报, 1999, 10(3):379-382. LU Wenlong, CAO Yiping, ZHANG Fusuo. Role of root-exuded organic acids in mobilization of soil phosphorus and micronutrients[J]. Chin J Appl Ecol, 1999, 10(3):379-382. [29] 陈凯, 马敬, 曹一平, 等.磷亏缺下不同植物根系有机酸的分泌[J].中国农业大学学报, 1999, 4(3):58-62. CHEN Kai, MA Jing, CAO Yiping, et al. Exudation of organic acids by the roots of different plant species under phosphorus deficiency[J]. J China Agric Univ, 1999, 4(3):58-62. [30] 张勇, 庞学勇, 包维楷, 等.土壤有机质及其研究方法综述[J].世界科技研究与发展, 2005, 27(5):72-78. ZHANG Yong, PANG Xueyong, BAO Weikai, et al. A review of soil organic matter and its research methods[J]. World Sci-Tech R&D, 2005, 27(5):72-78 -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.05.015