留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干扰对固沙樟子松林凋落物特征及持水性的影响

王东丽 郝可欣 梁潇洒 方祥 汤家喜 连昭 赵艳 沈海鸥

王东丽, 郝可欣, 梁潇洒, 方祥, 汤家喜, 连昭, 赵艳, 沈海鸥. 干扰对固沙樟子松林凋落物特征及持水性的影响[J]. 浙江农林大学学报, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
引用本文: 王东丽, 郝可欣, 梁潇洒, 方祥, 汤家喜, 连昭, 赵艳, 沈海鸥. 干扰对固沙樟子松林凋落物特征及持水性的影响[J]. 浙江农林大学学报, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
WANG Dongli, HAO Kexin, LIANG Xiaosa, FANG Xiang, TANG Jiaxi, LIAN Zhao, ZHAO Yan, SHEN Haiou. Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
Citation: WANG Dongli, HAO Kexin, LIANG Xiaosa, FANG Xiang, TANG Jiaxi, LIAN Zhao, ZHAO Yan, SHEN Haiou. Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009

干扰对固沙樟子松林凋落物特征及持水性的影响

doi: 10.11833/j.issn.2095-0756.2019.06.009
基金项目: 

国家自然科学基金资助项目 41701325

国家自然科学基金资助项目 41501548

"十三五"国家重点研发计划项目 2016YFE0202900

辽宁省博士启动基金 201601368

辽宁省大学生创新创业训练计划项目 201710147000272

详细信息
    作者简介: 王东丽, 讲师, 博士, 从事植被恢复与生态修复研究。E-mail:starhome0522@163.com
    通信作者: 沈海鸥, 讲师, 博士, 从事土壤侵蚀研究。E-mail:shensusan@163.com
  • 中图分类号: S718.5

Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances

  • 摘要: 为明确干扰对樟子松Pinus sylvestris var.mongolica固沙林凋落物水文生态功能的影响,采用野外调查与室内持水法,选择章古台林龄为37和46 a樟子松为对象,以邻近立地条件一致的围封林地为对照,研究干扰对不同类型凋落物的蓄积量、持水量、持水率和吸水速率等特征的影响。结果表明:①樟子松林下凋落物盖度、厚度与蓄积量在干扰条件下分别为60%~85%,0.4~1.4 cm和1.8~2.8 t·hm-2,均极显著小于封闭条件(P < 0.001)。②不同类型凋落物的最大持水量为(0.24±0.04)~(15.02±3.56)t·hm-2,总体表现为在干扰条件下均显著小于封闭条件(P < 0.05);在干扰条件下,不同凋落物的最大持水率从大至小依次为草本类、松针类、其他类,而在封闭条件下表现为草本类、其他类、松针类;不同凋落物的持水过程总体表现为初期大幅增加,其后趋缓,但是其快速持水的早晚各异,且草本类凋落物持水快速期在干扰条件下有所提前。③草本类凋落物的前期吸水速率明显高于松针类和其他类;草本类凋落物吸水速率在干扰条件下高于在封闭条件下;在干扰条件下,松针类凋落物的吸水速率较其他类的低,而在封闭条件下较高。总之,长期的松针收集与放牧干扰,通过影响樟子松林凋落物蓄积量、组成结构及其持水性,限制樟子松人工林的水文功能,亟需制定相应的经营与管理措施。
  • 图  1  不同样地凋落物的盖度与厚度

    Figure  1  Coverage and thickness of litters in different sample sites

    图  2  不同样地凋落物持水量

    Figure  2  Litter water-holding capacity of different sample sites

    图  3  凋落物持水率随浸水时间的变化

    Figure  3  Changes of water holding rate over soaking time

    图  4  凋落物吸水速率随浸水时间的变化

    Figure  4  Changes of litter water absorption rate over soaking time

    表  1  样地的基本概况

    Table  1.   Sample plots

    样地林龄/a 围封年限/a 林分密度/(株·hm-2 林下群落高度/cm 林下群落盖度/% 干扰状况 其他
    D1 37 1 633 12~46 45 放牧+松针收集 平缓沙地
    D2 46 567 10~34 53 放牧+松针收集 平缓沙地
    E1 37 5 1 950 28~55 95 松针收集 固定沙地
    E2 46 10 800 35~73 98 无干扰 固定沙地
    下载: 导出CSV

    表  2  不同样地凋落物的蓄积量及组成结构

    Table  2.   Accumulated amount and composition structure of the litters in different sample plots

    样地 未分解层 完全分解层 总蓄积量合计/(t·hm-2
    松针类 草本类 其他
    蓄积量/(g·m-2 百分比/% 蓄积量/(g·m-2 百分比/% 蓄积量/(g·m-2 百分比/% 蓄积量/(g·m-2 百分比/%
    D1 81.9 ± 10.6 c 31.9 9.1 ± 1.6 b 4.0 31.3 ± 8.3 b 11.2 155.7 ± 53.3 b 52.9 2.8 ± 0.7 a
    D2 110.0 ± 30.0 bc 61.2 4.2 ± 0.8 b 2.4 28.3 ± 9.6 b 14.8 39.2 ± 12.1 b 21.5 1.8 ± 0.5 a
    E1 426.1 ± 95.5 a 27.3 103.6 ± 5.4 a 6.9 298.7 ± 45.5 a 19.3 698.9 ± 30.9 a 46.5 15.3 ± 1.2 b
    E2 281.3 ± 39.6 ab 20.7 167.2 ± 76.6 a 11.3 339.4 ± 34.6 a 25.6 599.1 ± 172.9 a 42.4 13.9 ± 2.8 b
    说明:不同小写字母表示不同样地凋落物蓄积量差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同样地凋落物最大持水率

    Table  3.   Maximal water holding rate of litter in different sample plots

    凋落物类型 不同样地凋落物最大持水率/(g·g-1
    D1 D2 E1 E2
    松针类 1.65 1.76 1.74 1.92
    草本类 4.84 5.60 4.97 3.23
    其他 1.80 2.01 1.58 1.24
    全样 1.82 1.92 2.08 1.91
    下载: 导出CSV

    表  4  凋落物持水率(R)与浸水时间(t)的关系式

    Table  4.   Equation of litter water holding capacity rate (R) with the soaking time (t)

    样地 凋落物类型 关系式 P R2
    松针类 R=0.139lnt+1.172 0.000 0.957
    D1 草本类 R=0.296lnt+3.742 0.000 0.954
    其他 R=0.059lnt+1.57 0.013 0.738
    松针类 R=0.165lnt+1.214 0.001 0.898
    D2 草本类 R=0.361lnt+4.639 0.003 0.860
    其他 R=0.138lnt+1.469 0.003 0.857
    松针类 R=0.118lnt+1.32 0.000 0.932
    E1 草本类 R=0.416lnt+3.718 0.000 0.956
    其他 R=0.071lnt+1.357 0.017 0.709
    松针类 R=0.197lnt+1.167 0.000 0.929
    E2 草本类 R=0.248lnt+2.419 0.000 0.938
    其他 R=0.092lnt+0.897 0.001 0.893
    下载: 导出CSV
  • [1] 王风友.森林凋落量研究综述[J].生态学进展, 1989, 6(2):82-89.

    WANG Fengyou. General review of forest litter[J]. Trends Ecol, 1989, 6(2):82-89.
    [2] 刘强, 彭少麟.植物枯落物生态学[M].北京:科学出版社, 2010.
    [3] 吴长文, 王礼先.水土保持林中枯落物的作用[J].中国水土保持, 1993(4):28-30.

    WU Changwen, WANG Lixian. Influence of litter in soil and water conservation forest[J]. Soil Water Conserv China, 1993(4):28-30.
    [4] 高志红, 张万里, 张庆费.森林凋落物生态功能研究概况及展望[J].东北林业大学学报, 2004, 32(6):79-81.

    GAO Zhihong, ZHANG Wanli, ZHANG Qingfei. General situation and prospect for the research on ecological functions of forest litter[J]. J Northeast For Univ, 2004, 32(6):79-81.
    [5] 武海涛, 吕宪国, 杨青.湿地草本植物枯落物分解的影响因素[J].生态学杂志, 2006, 25(11):1405-1411.

    WU Haitao, LÜ Xianguo, YANG Qing. Factors affecting litter decomposition of wetland herbaceous macrophytes[J]. Chin J Ecol, 2006, 25(11):1405-1411.
    [6] 杨吉华, 张永涛, 李红云, 等.不同林分枯落物的持水性能及对表层土壤理化性状的影响[J].水土保持学报, 2003, 17(2):141-144.

    YANG Jihua, ZHANG Yongtao, LI Hongyun, et al. Study on water-holding ability of litter and physical and chemical characteristics of superficial soil in different forest distributions[J]. J Soil Water Conserv, 2003, 17(2):141-144.
    [7] 张振明, 余新晓, 牛健植, 等.不同林分枯落物层的水文生态功能[J].水土保持学报, 2005, 19(3):139-143.

    ZHANG Zhenming, YU Xinxiao, NIU Jianzhi, et al. Ecohydrological functions of litter on different forest stands[J]. J Soil Water Conserv, 2005, 19(3):139-143.
    [8] 赵艳云, 程积民, 万惠娥, 等.林地枯落物层水文特征研究进展[J].中国水土保持科学, 2007, 5(2):130-134.

    ZHAO Yanyun, CHENG Jimin, WAN Hui'e, et al. Review of research on hydrological characteristics of forest litter[J]. Sci Soil Water Conserv, 2007, 5(2):130-134.
    [9] 王佑民.中国林地枯落物持水保土作用研究概况[J].水土保持学报, 2000, 14(4):108-113.

    WANG Youmin. Summary of researches on water and soil conservative function of litter in forestland in China[J]. J Soil Water Conserv, 2000, 14(4):108-113.
    [10] 璩芳, 张万军, 刘秀萍.太行山低山区枯落物分解及主要营养元素变化[J].水土保持通报, 2010, 30(6):41-45.

    QU Fang, ZHANG Wanjun, LIU Xiuping. Decomposition of litter and its nutrient dynamics in Taihang Mountains[J]. Bull Soil Water Conserv, 2010, 30(6):41-45.
    [11] 王士永, 余新晓, 贾国栋, 等.北京山区主要人工林枯落物水文效应[J].中国水土保持科学, 2011, 9(5):42-47.

    WANG Shiyong, YU Xinxiao, JIA Guodong, et al. Hydrological effects of forest litters of different forests in Beijing mountainous area[J]. Sci Soil Water Conserv, 2011, 9(5):42-47.
    [12] 姜沛沛, 曹扬, 陈云明, 等.不同林龄油松(Pinus tabulaeformis)人工林植物、枯落物与土壤C, N, P化学计量特征[J].生态学报, 2016, 36(19):6188-6197.

    JIANG Peipei, CAO Yang, CHEN Yunming, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation[J]. Acta Ecol Sin, 2016, 36(19):6188-6197.
    [13] 曾德慧, 尤文忠, 范志平, 等.樟子松人工固沙林天然更新特征[J].应用生态学报, 2002, 13(1):1-5.

    ZENG Dehui, YOU Wenzhong, FAN Zhiping, et al. Natural regeneration of Pinus sylvestris var. mongolica plantation on sandy land[J]. Chin J Appl Ecol, 2002, 13(1):1-5.
    [14] ZHU Jiaojun, FAN Zhiping, ZENG Dehui, et al. Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land[J]. J For Res, 2003, 14(2):103-111.
    [15] 赵欣然, 赵琼, 王巍巍, 等.氮添加及枯落物管理对樟子松人工林土壤理化性质的影响[J].生态学杂志, 2016, 35(10):2699-2706.

    ZHAO Xinran, ZHAO Qiong, WANG Weiwei, et al. Effect of nitrogen addition and litter manipulation on soil physicochemical properties of a Pinus sylvestiris var. mongolica plantation[J]. Chin J Ecol, 2016, 35(10):2699-2706.
    [16] 吕刚, 曹小平, 卢慧, 等.辽西海棠山森林枯落物持水与土壤贮水能力研究[J].水土保持学报, 2010, 24(3):203-208.

    LÜ Gang, CAO Xiaoping, LU Hui, et al. Study on water-holding capacity of forest litter and soil in Haitang Mountain of western Liaoning Province[J]. J Soil Water Conserv, 2010, 24(3):203-208.
    [17] 陈强, 赵雨森, 辛颖, 等.大兴安岭北坡火烧迹地植被恢复后枯落物与土壤持水能力研究[J].土壤通报, 2013, 44(2):308-313.

    CHEN Qiang, ZHAO Yusen, XIN Ying, et al. Litter and soil water-holding capacity of burned area in northern slope of the Great Khingan after vegetation restoration[J]. Chin J Soil Sci, 2013, 44(2):308-313.
    [18] 刘红民.辽西半干旱区典型森林植被枯落物持水性分析[J].辽宁林业科技, 2015(1):23-25.

    LIU Hongmin. Research on water-holding properties of litter layers in typical forests of semiarid region of Western Liaoning Province[J]. J Liaoning For Sci Technol, 2015(1):23-25.
    [19] 侯瑞萍, 张克斌, 郝智如.造林密度对樟子松人工林枯落物和土壤持水能力的影响[J].生态环境学报, 2015, 24(4):624-630.

    HOU Ruiping, ZHANG Kebin, HAO Zhiru. Effects of different afforestation densities of Pinus sylvesiris var. mongolica on the water-holding capacity of forest litter and soil[J]. Ecol Environ Sci, 2015, 24(4):624-630.
    [20] 王谦, 孙保平, 丁国栋, 等.陕西榆林樟子松人工林土壤及枯落物水文效应[J].西北农林科技大学学报(自然科学版), 2015, 43(8):123-132.

    WANG Qian, SUN Baoping, DING Guodong, et al. Hydrological effects of soil and litters in Pinus sylvestiris var. mongolica plantations in Yulin, Shaanxi[J]. J Northwest A&F Univ Nat Sci Ed, 2015, 43(8):123-132.
    [21] 杨振奇, 秦富仓, 李晓琴, 等.砒砂岩区主要造林树种枯落物及林下土壤持水特性[J].水土保持学报, 2017, 31(3):118-122.

    YANG Zhenqi, QIN Fucang, LI Xiaoqin, et al. Water-holding characteristics of litters and soil under major afforestation tree species in the feldspathic sandstone region[J]. J Soil Water Conserv, 2017, 31(3):118-122.
    [22] 吕刚, 傅昕阳, 李叶鑫, 等.露天煤矿排土场复垦区不同植被类型枯落物持水特性研究[J].水土保持学报, 2017, 31(1):146-152.

    LÜ Gang, FU Xinyang, LI Yexin, et al. Study on water holding characteristics of litter in different vegetation types in the reclaimed land of open-cut coal mine dump[J]. J Soil Water Conserv, 2017, 31(1):146-152.
    [23] 胡淑萍, 余新晓, 岳永杰.北京百花山森林枯落物层和土壤层水文效应研究[J].水土保持学报, 2008, 22(1):146-150.

    HU Shuping, YU Xinxiao, YUE Yongjie. Hydrological effects of forest litters and soil in Baihua Mountain[J]. J Soil Water Conserv, 2008, 22(1):146-150.
    [24] PAUSAS J G. Litter fall and litter decomposition in Pinus sylvestris forests of the eastern Pyrenees[J]. J Veg Sci, 1997, 8(5):643-650.
    [25] 王永明, 王忠武, 韩国栋, 等.典型草原不同放牧强度枯落物的持水能力[J].干旱区资源与环境, 2007, 21(9):155-159.

    WANG Yongming, WANG Zhongwu, HAN Guodong, et al. Water holding capacity of litter in different grazing intesities in a typical steppe[J]. J Arid Land Resour Environ, 2007, 21(9):155-159.
    [26] 张君玉, 程金花, 张洪江, 等.晋西黄土丘陵区3个树种人工林枯落物的持水特性[J].西北农林科技大学学报(自然科学版), 2012, 40(10):69-74.

    ZHANG Junyu, CHENG Jinhua, ZHANG Hongjiang, et al. Reserves and water capacity characteristics of three kinds of litter in loess hilly region of West Shanxi Province[J]. J Northwest A&F Univ Nat Sci Ed, 2012, 40(10):69-74.
    [27] 赵鸿雁, 吴钦孝.黄土高原几种枯枝落叶吸水机理研究[J].防护林科技, 1996(4):15-18.

    ZHAO Hongyan, WU Qinxiao. Study on the mechanism of water absorption of several dry branches and fallen leaves in Loess Plateau[J]. Prot For Sci Technol, 1996(4):15-18.
    [28] 姜海燕, 赵雨森, 陈祥伟, 等.大兴安岭岭南几种主要森林类型土壤水文功能研究[J].水土保持学报, 2007, 21(3):149-153.

    JIANG Haiyan, ZHAO Yusen, CHEN Xiangwei, et al. Research on soil hydrology characteristics of some main forest type in south part of Daxing Anling[J]. J Soil Water Conserv, 2007, 21(3):149-153.
    [29] 魏强, 凌雷, 张广忠, 等.甘肃兴隆山主要森林类型枯落物累积量及持水特性[J].应用生态学报, 2011, 22(10):2589-2598.

    WEI Qiang, LING Lei, ZHANG Guangzhong, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China[J]. Chin J Appl Ecol, 2011, 22(10):2589-2598.
  • [1] 张世林, 高润红, 高明龙, 韩淑敏, 张文英, 赵静.  气候变化背景下中国樟子松潜在分布预测 . 浙江农林大学学报, 2023, 40(3): 560-568. doi: 10.11833/j.issn.2095-0756.20220451
    [2] 徐来仙, 郭秋菊, 姚兰, 洪建峰, 牟芙蓉, 艾训儒, 刘学全, 赵奂敦.  凋落物物理阻隔对水杉幼苗出土和早期生长的影响 . 浙江农林大学学报, 2022, 39(5): 1018-1027. doi: 10.11833/j.issn.2095-0756.20210704
    [3] 简永旗, 吴家森, 盛卫星, 聂国辉, 郑城, 姜培坤.  间伐和林分类型对森林凋落物储量和土壤持水性能的影响 . 浙江农林大学学报, 2021, 38(2): 320-328. doi: 10.11833/j.issn.2095-0756.20200355
    [4] 王东丽, 张日升, 方祥, 王凯, 吴叶礼, 秦崧悦, 龙丹丹, 沈海鸥.  固沙樟子松种子萌发与幼苗生长对干旱胁迫的响应及抗旱性评价 . 浙江农林大学学报, 2020, 37(1): 60-68. doi: 10.11833/j.issn.2095-0756.2020.01.008
    [5] 蒋仲龙, 叶柳欣, 刘军, 林松, 徐旻昱, 吴家森, 刘娟, 刘海英.  封育年限对毛竹林凋落物和土壤持水效能的影响 . 浙江农林大学学报, 2020, 37(5): 860-866. doi: 10.11833/j.issn.2095-0756.20190603
    [6] 赵静瑶, 张学霞, 杨维.  基于光谱水分指数的阔叶树种叶片等效水厚度估算 . 浙江农林大学学报, 2019, 36(5): 868-876. doi: 10.11833/j.issn.2095-0756.2019.05.004
    [7] 程瑞梅, 沈雅飞, 封晓辉, 肖文发, 王娜, 杨邵, 郭燕.  森林自然更新研究进展 . 浙江农林大学学报, 2018, 35(5): 955-967. doi: 10.11833/j.issn.2095-0756.2018.05.022
    [8] 雷泽勇, 韩艳刚, 赵国军, 周晏平, 张岩松, 于德良.  辽宁章古台樟子松生长过程分析 . 浙江农林大学学报, 2018, 35(2): 324-330. doi: 10.11833/j.issn.2095-0756.2018.02.017
    [9] 熊壮, 叶文, 张树斌, 陈辉.  西双版纳热带季节雨林与橡胶林凋落物的持水特性 . 浙江农林大学学报, 2018, 35(6): 1054-1061. doi: 10.11833/j.issn.2095-0756.2018.06.008
    [10] 褚欣, 潘萍, 郭丽玲, 宁金魁, 欧阳勋志, 吴自荣.  不同密度飞播马尾松林凋落物及土壤持水性能比较分析 . 浙江农林大学学报, 2017, 34(5): 808-815. doi: 10.11833/j.issn.2095-0756.2017.05.006
    [11] 王丹, 马元丹, 郭慧媛, 高岩, 张汝民, 侯平.  模拟酸雨胁迫与柳杉凋落物对土壤养分及微生物的影响 . 浙江农林大学学报, 2015, 32(2): 195-203. doi: 10.11833/j.issn.2095-0756.2015.02.005
    [12] 王俊龙, 王丹, 俞飞, 沈卫东, 邹翠翠, 张汝民, 侯平.  模拟酸雨与凋落物对柳杉幼苗根际土壤酶活性的影响 . 浙江农林大学学报, 2014, 31(3): 373-379. doi: 10.11833/j.issn.2095-0756.2014.03.007
    [13] 邹翠翠, 俞飞, 沈卫东, 张珊珊, 王俊龙, 张汝民, 侯平.  酸雨与凋落物复合作用对柳杉种子萌发与幼苗生长的影响 . 浙江农林大学学报, 2014, 31(1): 1-8. doi: 10.11833/j.issn.2095-0756.2014.01.001
    [14] 刘蔚漪, 范少辉, 苏文会, 刘广路, 余林.  竹林不同界面水文效应研究 . 浙江农林大学学报, 2011, 28(3): 486-493. doi: 10.11833/j.issn.2095-0756.2011.03.022
    [15] 王妍, 卢琦, 吴波, 程立岩, 王玉华.  呼伦贝尔沙地樟子松种群更新潜力 . 浙江农林大学学报, 2011, 28(2): 248-253. doi: 10.11833/j.issn.2095-0756.2011.02.012
    [16] 俞飞, 侯平, 宋琦, 郭明, 吴俊.  柳杉凋落物自毒作用研究 . 浙江农林大学学报, 2010, 27(4): 494-500. doi: 10.11833/j.issn.2095-0756.2010.04.003
    [17] 陈平, 万福绪, 顾汤华, 李盟, 秦飞, 关庆伟.  人为干扰对徐州石灰岩山地林下植物多样性的短期影响 . 浙江农林大学学报, 2010, 27(5): 691-698. doi: 10.11833/j.issn.2095-0756.2010.05.009
    [18] 郑兆飞.  木荷叶凋落物的分解及养分动态分析 . 浙江农林大学学报, 2009, 26(1): 22-26.
    [19] 王敏英, 刘强, 丁亚凤, 符素贞, 叶照丽, 冯太生.  海岸青皮林与木麻黄林养分动态及凋落物分解的比较 . 浙江农林大学学报, 2008, 25(5): 597-603.
    [20] 陈金林, 吴春林, 姜志林, 许新建.  栎林生态系统凋落物分解及磷素释放规律 . 浙江农林大学学报, 2002, 19(4): 367-371.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.009

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2019/6/1125

图(4) / 表(4)
计量
  • 文章访问数:  2951
  • HTML全文浏览量:  868
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-03-15
  • 刊出日期:  2019-12-20

干扰对固沙樟子松林凋落物特征及持水性的影响

doi: 10.11833/j.issn.2095-0756.2019.06.009
    基金项目:

    国家自然科学基金资助项目 41701325

    国家自然科学基金资助项目 41501548

    "十三五"国家重点研发计划项目 2016YFE0202900

    辽宁省博士启动基金 201601368

    辽宁省大学生创新创业训练计划项目 201710147000272

    作者简介:

    王东丽, 讲师, 博士, 从事植被恢复与生态修复研究。E-mail:starhome0522@163.com

    通信作者: 沈海鸥, 讲师, 博士, 从事土壤侵蚀研究。E-mail:shensusan@163.com
  • 中图分类号: S718.5

摘要: 为明确干扰对樟子松Pinus sylvestris var.mongolica固沙林凋落物水文生态功能的影响,采用野外调查与室内持水法,选择章古台林龄为37和46 a樟子松为对象,以邻近立地条件一致的围封林地为对照,研究干扰对不同类型凋落物的蓄积量、持水量、持水率和吸水速率等特征的影响。结果表明:①樟子松林下凋落物盖度、厚度与蓄积量在干扰条件下分别为60%~85%,0.4~1.4 cm和1.8~2.8 t·hm-2,均极显著小于封闭条件(P < 0.001)。②不同类型凋落物的最大持水量为(0.24±0.04)~(15.02±3.56)t·hm-2,总体表现为在干扰条件下均显著小于封闭条件(P < 0.05);在干扰条件下,不同凋落物的最大持水率从大至小依次为草本类、松针类、其他类,而在封闭条件下表现为草本类、其他类、松针类;不同凋落物的持水过程总体表现为初期大幅增加,其后趋缓,但是其快速持水的早晚各异,且草本类凋落物持水快速期在干扰条件下有所提前。③草本类凋落物的前期吸水速率明显高于松针类和其他类;草本类凋落物吸水速率在干扰条件下高于在封闭条件下;在干扰条件下,松针类凋落物的吸水速率较其他类的低,而在封闭条件下较高。总之,长期的松针收集与放牧干扰,通过影响樟子松林凋落物蓄积量、组成结构及其持水性,限制樟子松人工林的水文功能,亟需制定相应的经营与管理措施。

English Abstract

王东丽, 郝可欣, 梁潇洒, 方祥, 汤家喜, 连昭, 赵艳, 沈海鸥. 干扰对固沙樟子松林凋落物特征及持水性的影响[J]. 浙江农林大学学报, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
引用本文: 王东丽, 郝可欣, 梁潇洒, 方祥, 汤家喜, 连昭, 赵艳, 沈海鸥. 干扰对固沙樟子松林凋落物特征及持水性的影响[J]. 浙江农林大学学报, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
WANG Dongli, HAO Kexin, LIANG Xiaosa, FANG Xiang, TANG Jiaxi, LIAN Zhao, ZHAO Yan, SHEN Haiou. Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
Citation: WANG Dongli, HAO Kexin, LIANG Xiaosa, FANG Xiang, TANG Jiaxi, LIAN Zhao, ZHAO Yan, SHEN Haiou. Litter characteristics and water holding capacity in Pinus sylvestris var. mongolica sandy-fixation plantations with disturbances[J]. Journal of Zhejiang A&F University, 2019, 36(6): 1125-1133. doi: 10.11833/j.issn.2095-0756.2019.06.009
  • 植物凋落物是指在生态系统内,由地上植物组分产生并归还到地表面,分解者和某些消费者的物质和能量来源的有机物质的总称,包括落枝、落叶、落皮、凋落的繁殖器官及枯死的根等[1-2]。凋落物在改良土壤与小气候条件、维持植被生态系统养分循环等方面发挥着重要的生态功能[3-5],其生态水文效应在生态系统中的重要性受到普遍关注,尤其对于水分为植被主导限制因子的干旱半干旱地区。凋落物层作为植被水文作用的第2个功能层,在截持降雨、分散滞缓地表径流和减少土壤水分蒸发等方面具有直接作用;另外,凋落物分解可以归还土壤养分,增加土壤生物多样性及活力,改善土壤物理性质,增加土壤入渗性能和蓄水能力,降低土壤温度,进而在涵养水源与土壤侵蚀防治等方面具有重要作用[6-12]。樟子松Pinus sylvestris var. mongolica人工林作为中国北方干旱和半干旱地区植被恢复的主要造林树种之一,对中国北方山地水土流失防治、沙地防风固沙、脆弱生态环境改善具有重要的意义[13-15],其凋落物对樟子松人工林生态系统的维持与发展至关重要。近年来,关于樟子松人工林凋落物的研究受到一定的关注,主要集中在不同生态系统及不同植被类型、经营措施与恢复模式下蓄积量与生态水文特征的比较[16-22]。然而,中国北方大部分樟子松引种区由于长期的人为收集针叶和放牧,使得本可归还生态系统的地上生物量严重缺失,进而影响人工林生态系统正常的养分循环和一些生态功能的发挥。目前,针对人类收集针叶、林下放牧的干扰现实,对人工防护林凋落物及其持水性的影响未见报道。因此,本研究以科尔沁沙地南缘最早引种樟子松成功的章古台地区为研究区,以不同开放状态的樟子松固沙林为对象,并以立地条件一致的不同封闭条件的樟子松林作为对照,探明放牧与松枝收集对固沙樟子松林地凋落物及其持水性的影响,为人类活动对人工固沙林生态系统水分调节机理的深入研究提供基础数据,进一步为樟子松人工林的可持续经营和科学管理提供科学依据。

    • 本研究选定的中国最早成功引种樟子松的辽宁省彰武县章古台地区,该区位于科尔沁沙地东南边缘(42°42′N,122°32′E),海拔247.6 m,属于典型的亚湿润干旱季风气候,主要特点为干旱多风,年均降水量为499.7~512.2 mm,90%的降雨集中在6-8月,年平均风速3.7~4.6 m·s-1,年平均气温5.1~6.1 ℃,无霜期154.0 d。土壤以风沙土和草甸土为主,土壤有机质及其他养分含量都比较低,土壤为弱酸性。植被以沙生植物为主,组成主要由蒙古植物区系、华北植物区系和长白植物区系交互而成,代表性物种有榆树Ulmus pumila,兴安胡枝子Lespedeza davurica,差巴嘎蒿Artemisia halodendron和中华隐子草Cleistogens chinensis等。

    • 以辽宁省风沙地改良利用研究所固沙樟子松人工林群落为研究对象,按照不同林龄和干扰条件选择4块样地,分别记为D1,D2,E1和E2,具体的基本情况见表 1

      表 1  样地的基本概况

      Table 1.  Sample plots

      样地林龄/a 围封年限/a 林分密度/(株·hm-2 林下群落高度/cm 林下群落盖度/% 干扰状况 其他
      D1 37 1 633 12~46 45 放牧+松针收集 平缓沙地
      D2 46 567 10~34 53 放牧+松针收集 平缓沙地
      E1 37 5 1 950 28~55 95 松针收集 固定沙地
      E2 46 10 800 35~73 98 无干扰 固定沙地
    • 2015年9月16日,分别在4个样地按“S”形随机布设10个0.5 m × 0.5 m的样方,统计凋落物盖度与厚度,并从中选取3个代表性样方,采用全样收集法进行凋落物收集、装袋,带回实验室备用。

    • ① 凋落物的分类。将取回的凋落物样品先在60 ℃下简单烘干(使凋落物与其上土粒易于分离),其后,依次将各凋落物样品分为完全分解层与未分解层两大类,其中完全分解层主要为凋落物碎屑;未分解层又分为松针、草本和其他(松枝/果、树皮等)三小类,并各自装袋、标号,最后在60 ℃下烘干24 h。②凋落物蓄积量的测算。将每个样方烘干后的各类凋落物称量,各类凋落物质量的加和,除以样方面积,即为该样方凋落物的蓄积量。计算各样方蓄积量的平均值,即为各样地凋落物蓄积量。

    • 凋落物的持水性使用室内持水法测定。称取一定量烘干的凋落物样品放入尼龙袋(已称量)中,4个样地的3种凋落物(除凋落物碎屑外),共装12袋,放入装有清水的大烧杯中,烧杯中水面要略高于尼龙袋顶部。将凋落物放入水中后,在浸泡0.25,0.50,2.00,4.00,8.00,14.00,24.00 h后分别取出,待沥干多余水分(无水滴滴落时)称量。凋落物持水性采用凋落物持水量、持水率和吸水速率3个指标表征,计算公式如下:凋落物持水量(t·hm-2)=Wi-W0。凋落物最大持水量(t·hm-2)=[(W24-W0)/W0]W。凋落物持水率(g·g-1)=(Wi-W0)/W0。凋落物吸水速率(t·hm-2·h-1)=(Wi-W0)/Ti。其中:W0为凋落物干质量(t·hm-2),Wi为浸水第i小时后凋落物质量(t·hm-2),Ti为浸水时间(h),W为不同凋落物单位面积蓄积量(t·hm-2)。

    • 数据统计与分析采用SPSS 18.0软件,不同条件及不同类型凋落物间各特征值的差异性均采用单因素方差分析(ANOVA)和最小显著差异法(LSD)比较。结果图绘制采用SigmaPlot 13.0软件。

    • 樟子松林凋落物特征对干扰的响应差异显著。由图 1可知:樟子松林下凋落物盖度在经受长期干扰的2个样地分别为60%~80%和75%~85%,极显著低于不同封闭条件下的林地(均为100%)(P<0.001);樟子松林下凋落物厚度在2个干扰林地里分别为(1.05±0.07) cm和(0.58±0.05) cm,均极显著小于不同封闭条件下(P<0.001),而且封闭年限长的凋落物厚度极显著厚于封闭年限短的(P<0.001),干扰时间长的林地凋落物厚度显著小于干扰时间短的林地。

      图  1  不同样地凋落物的盖度与厚度

      Figure 1.  Coverage and thickness of litters in different sample sites

    • 表 2可知:凋落物总蓄积量从大到小依次为E1,E2,D1和D2,而且在封闭条件下极显著多于干扰条件下(P<0.001);干扰条件下,同一林龄樟子松林凋落物的蓄积量仅为封闭条件下的18.1%和23.5%,但是无论在干扰还是封闭条件下,46年生的樟子松林下凋落物的蓄积量均低于林龄为37年生的樟子松林地,主要由于前者林分处于严重衰退阶段,植物生产能力很低,对凋落物的补充极少;然而,46年生樟子松林的凋落物厚度显著高于37年生的,与蓄积量的结果相反,主要在于46年生樟子松林凋落物中草本类与其他类蓄积量较37年生的高,尤其是禾草类凋落物蓄积量大,松散堆积在分解层之上,形成一定的厚度。不同类型凋落物的蓄积量,从大到小总体表现为完全分解物,松针类,其他类(树皮、松果、树枝等)和草本类;除D2样地外,各样地的草本蓄积量所占比例均较小,在干扰条件下仅占4.0%和2.4%,表明固沙樟子松林的凋落物主要由樟子松自身产出,且在干扰状态下,草本蓄积量更低,与其放牧干扰密切相关。D2样地较其他样地而言,完全分解层较少,可能由于D2样地地貌为固定沙丘,坡面完全分解层在长期人畜活动与降雨、风力等外营力作用下损失较多。

      表 2  不同样地凋落物的蓄积量及组成结构

      Table 2.  Accumulated amount and composition structure of the litters in different sample plots

      样地 未分解层 完全分解层 总蓄积量合计/(t·hm-2
      松针类 草本类 其他
      蓄积量/(g·m-2 百分比/% 蓄积量/(g·m-2 百分比/% 蓄积量/(g·m-2 百分比/% 蓄积量/(g·m-2 百分比/%
      D1 81.9 ± 10.6 c 31.9 9.1 ± 1.6 b 4.0 31.3 ± 8.3 b 11.2 155.7 ± 53.3 b 52.9 2.8 ± 0.7 a
      D2 110.0 ± 30.0 bc 61.2 4.2 ± 0.8 b 2.4 28.3 ± 9.6 b 14.8 39.2 ± 12.1 b 21.5 1.8 ± 0.5 a
      E1 426.1 ± 95.5 a 27.3 103.6 ± 5.4 a 6.9 298.7 ± 45.5 a 19.3 698.9 ± 30.9 a 46.5 15.3 ± 1.2 b
      E2 281.3 ± 39.6 ab 20.7 167.2 ± 76.6 a 11.3 339.4 ± 34.6 a 25.6 599.1 ± 172.9 a 42.4 13.9 ± 2.8 b
      说明:不同小写字母表示不同样地凋落物蓄积量差异显著(P<0.05)
    • 图 2所示:不同类型凋落物的最大持水量为(0.24±0.04)~(15.02±3.56) t·hm-2,总体表现为在干扰条件下均显著小于封闭条件下的林地,这主要是由于干扰条件下单位面积林地的蓄积量显著小于封闭林地(P<0.05)。然而,对于同一类型凋落物,其最大持水量在不同样地间表现出不一致的规律。对于松针,其最大持水量从大到小依次为为E1,E2,D2和D1,草本的最大持水量从大到小依次为E2,E1,D1和D2,其他的最大持水量从大到小依次为E1,E2,D1和D2,全样则表现出与松针一致的规律。

      图  2  不同样地凋落物持水量

      Figure 2.  Litter water-holding capacity of different sample sites

    • 表 3可知:不同类型凋落物的最大持水率差异较大。E2样地内其他的最大持水量仅为自身质量的1.24倍,而D2样地内草本的最大持水量可达到自身质量的5.6倍。无论在干扰条件下,还是封闭条件下,均表现为草本类凋落物的最大持水率最大。然而,不同凋落物的最大持水率对干扰的响应各异。封闭状态下,凋落物最大持水率从大到小依次为草本类、松针类、其他类,而干扰状态下,凋落物最大持水率从大到小则表现为草本类、其他类、松针类。其中,2种林龄下,松针在干扰条件下的最大持水率均低于封闭条件;对于其他类,则表现出与松针相反的规律;对于草本与全样,不同林龄下,凋落物的最大持水率对干扰的响应规律不一致,林龄为37年生林地的草本最大持水率在干扰条件下稍小于封闭条件,林龄为46年生林地的草本最大持水率在干扰条件下明显高于封闭条件;而林龄为37年生林地的全样最大持水率在干扰条件下小于封闭条件,林龄为46年生林地的全样最大持水率对干扰没有明显的响应变化。E2样地草本的最大持水率明显低于其他样地,与其草本凋落物组成结构有关,主要为持水性差的禾本科Graminae草本。

      表 3  不同样地凋落物最大持水率

      Table 3.  Maximal water holding rate of litter in different sample plots

      凋落物类型 不同样地凋落物最大持水率/(g·g-1
      D1 D2 E1 E2
      松针类 1.65 1.76 1.74 1.92
      草本类 4.84 5.60 4.97 3.23
      其他 1.80 2.01 1.58 1.24
      全样 1.82 1.92 2.08 1.91
    • 图 3所示:4个样地的各类凋落物持水过程的总体趋势基本一致,表现为初期持水率有明显的增幅,其后趋缓;但是不同类型凋落物的持水过程快速持水的早晚各异,其中松针在前10.0 h持水增幅较大,而草本和其他类则分别在前2.0~4.0 h和0.5 h持水增幅较大。另外,封闭条件下的草本凋落物在前4.0 h持水增幅较大,而干扰条件下的草本则在前2.0 h持水增幅较大,表现为草本凋落物持水快速期对干扰有所提前的响应规律。不同类型凋落物持水率与浸水时间的最佳拟合模型为Ralnt+b,与以往研究结果一致[7, 11, 23],其中:R为凋落物持水率,t为浸水时间(h),a为系数,b为常数项。经拟合计算,不同条件下的不同类型凋落物持水量与浸水时间之间的关系式具体见表 4。其中,松针类与草本类凋落物持水量与浸水时间的关系在任何条件下均达到极显著水平(P<0.01),相对而言,其他类的关系显著性在林龄为37年生的2个样地较在林龄为46年生的2个样地差,而且对于同一林龄下,在干扰条件下较在封闭条件下差。

      图  3  凋落物持水率随浸水时间的变化

      Figure 3.  Changes of water holding rate over soaking time

      表 4  凋落物持水率(R)与浸水时间(t)的关系式

      Table 4.  Equation of litter water holding capacity rate (R) with the soaking time (t)

      样地 凋落物类型 关系式 P R2
      松针类 R=0.139lnt+1.172 0.000 0.957
      D1 草本类 R=0.296lnt+3.742 0.000 0.954
      其他 R=0.059lnt+1.57 0.013 0.738
      松针类 R=0.165lnt+1.214 0.001 0.898
      D2 草本类 R=0.361lnt+4.639 0.003 0.860
      其他 R=0.138lnt+1.469 0.003 0.857
      松针类 R=0.118lnt+1.32 0.000 0.932
      E1 草本类 R=0.416lnt+3.718 0.000 0.956
      其他 R=0.071lnt+1.357 0.017 0.709
      松针类 R=0.197lnt+1.167 0.000 0.929
      E2 草本类 R=0.248lnt+2.419 0.000 0.938
      其他 R=0.092lnt+0.897 0.001 0.893
    • 图 4可知:不同类型凋落物的吸水速率表现为草本类最大,而且在吸水前2 h内,草本类(1.19~15.07 g·g-1·h-1)明显高于松针类(0.07~4.82 g·g-1·h-1)和其他类凋落物(0.05~5.62 g·g-1·h-1)。不同类型凋落物在不同条件下其吸水速率表现各异,其中草本类凋落物吸水速率在干扰条件下高于在封闭条件下;松针类与其他类凋落物在不同条件下,其吸水速率表现出相反的规律,即在干扰条件下,松针类凋落物的吸水速率始终低于其他类的,而在封闭条件下,松枝类凋落物的吸水速率始终高于其他类的,可能由于干扰林地的松针通常为当年生新针叶,而封闭林地多年凋落针叶,它们的物质组成存在明显差异。另外,凋落物吸水速率的变化过程与持水过程具有一致性,均表现为前期吸水速率降低较快,其后趋缓。

      图  4  凋落物吸水速率随浸水时间的变化

      Figure 4.  Changes of litter water absorption rate over soaking time

    • 凋落物蓄积量作为凋落物发挥生态功能的物质基础,在生态系统中具有重要的作用。其大小主要取决于树木本身的生物学特性和外界环境的共同影响,不仅受植物群落生产力、林龄、林分组成、生长季节、分解速率及自身厚度和性质影响,同时还依赖于气候、土壤肥力、土壤含水量、人为活动等[24-26]。本研究发现:不同条件下樟子松人工林下凋落物的数量特征变化明显。在干扰条件下,凋落物盖度、厚度与蓄积量均极显著减小。在研究区,由于长期的放牧,林下草本层的地上生物量明显减少,进而影响其凋落物。本研究中2个开放林地的草本类凋落物蓄积量分别4.2和9.1 g·m-2,这与属于内蒙古植物区系的典型草地在中度和重度放牧条件下凋落物蓄积量的测定结果接近[25]。赵鸿雁等[27]很早就指出:为充分发挥森林的生态功能,林地要确保一定数量的凋落物存在。研究区频繁的人类干扰对樟子松固沙林凋落物蓄积量产生明显的负面影响,进而制约其生态功能的发挥,因此建议将林地凋落物管理列入林地管理的重要组成内容之一,进行一定程度的管制。

      凋落物的持水特性与其持水能力、吸水性密切相关,其研究内容主要集中在最大持水量、最大持水率、持水过程、吸水速率、有效拦蓄量、阻止径流产生和抑制土壤蒸发等[8, 28-29]。本研究发现:樟子松林下不同类型凋落物的最大持水量均在干扰条件下显著小于封闭条件,王永明等[25]对典型草原凋落物的研究表明:重度放牧下草地凋落物的持水量仅为中度放牧的95%,也证实了干扰对凋落物最大持水量的负面作用,主要由于凋落物持水量的大小主要取决于凋落物持水率和累积量,干扰极显著减少了凋落物的蓄积量,导致最大持水量明显降低,进而影响其水文生态功能。经推算,在浸水0.5 h内,各样地(D1,D2,E1,E2)凋落物的持水量分别为自身干质量的1.60,1.46,1.61和1.23倍。结合各样地凋落物蓄积量,经推算,以上样地每平方米凋落物在浸水0.5 h后,持水量分别为0.31,0.21,1.33和0.97 m3。在围封状态下,每公顷林地上的凋落物可固持约150~170 m3的水,是干扰林地的6倍多,表现出极大的水源涵养潜力。凋落物不仅能固持大量降水,其较厚的覆盖层和蓬松的结构还能有效减少水分蒸发,由于该区域降水集中蒸发量大,且土壤为风沙土、土壤持水性较差,凋落物涵养水源的生态功能就显得格外重要。因此,研究区当地群众对松针的长期收集,将绝大部分樟子松凋落物带出林地生态系统,直接导致了凋落物数量的下降,是影响樟子松固沙林地凋落物的持水能力、水源涵养潜力及林地的水文生态功能的主导因素。

      不同类型凋落物的吸水性及对干扰响应的不同,也影响林地的水文生态过程。本研究区草本类凋落物的前期吸水速率明显高于松针类和其他类,主要与凋落物的物质组成与性质密切相关;草本类凋落物吸水速率在干扰条件下高于封闭条件,主要在于封闭林地的草本以吸水率较低的禾草为主;松针类凋落物的吸水速率在干扰条件下始终低于其他类的,而在封闭条件下始终高于其他类的,主要在于干扰条件下的针叶以当年新凋落为主,其含有大量树脂、单宁等难分解的物质,且油脂较高,吸水性差,而封闭条件下的针叶经过长年的分解,难溶于水的油脂物质减少,针叶结构疏松,均有利于其吸水[26, 29]。魏强等[29]研究发现:针叶林未分解层持水率均小于半分解层,半分解层吸水速率高于未分解层,也证实了这一结论。由于当地群众对松针的收集,直接改变了不同条件下林地凋落物的组成结构,同时放牧干扰通过改变林下植被群落结构而影响凋落物的结构,进而影响不同条件下樟子松固沙林地凋落物的吸水量。对比相同林龄的林地凋落物0.5 h内吸水量,围封后林地是干扰状态下的4倍多,当经历短历时、高强度的降雨时,可有效推迟或阻止林地地表径流的产生,从而减少林地水土流失的发生。在浸水4.0 h后,凋落物的吸水速率才开始趋缓,而这个时间差也有利于林下凋落物对降水的截留和调蓄,从而充分发挥其水文生态作用。

      此外,凋落物的减少,限制了其分解并将养分归还土壤,间接影响林地土壤物理、养分与微生物性质,进而制约植被的生长与发展,可能也是导致研究区樟子松人工林提早衰退、天然更新限制的原因之一,有待进一步研究。

      综上所述,研究区长期收集松针不仅减少凋落物积蓄量,成为制约该区樟子松固沙林凋落物生态功能发挥的直接主导因素,而且结合放牧干扰,直接或间接通过影响林下植被群落特征而改变凋落物类型组成,进而制约凋落物层的水文生态功能与其他生态功能的发挥以及生态系统的稳定。

参考文献 (29)

目录

    /

    返回文章
    返回