留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水肥耦合效应对栓皮栎苗木生长的影响

句娇 李迎超 王利兵 李东兴 陈梦园 何三军 郑磊 于海燕

句娇, 李迎超, 王利兵, 李东兴, 陈梦园, 何三军, 郑磊, 于海燕. 水肥耦合效应对栓皮栎苗木生长的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190456
引用本文: 句娇, 李迎超, 王利兵, 李东兴, 陈梦园, 何三军, 郑磊, 于海燕. 水肥耦合效应对栓皮栎苗木生长的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190456
JU Jiao, LI Yingchao, WANG Libing, LI Dongxing, CHEN Mengyuan, HE Sanjun, ZHENG Lei, YU Haiyan. Coupling effects of soil water and fertilizer application on the growth of Quercus variabilis seedlings[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190456
Citation: JU Jiao, LI Yingchao, WANG Libing, LI Dongxing, CHEN Mengyuan, HE Sanjun, ZHENG Lei, YU Haiyan. Coupling effects of soil water and fertilizer application on the growth of Quercus variabilis seedlings[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190456

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

水肥耦合效应对栓皮栎苗木生长的影响

doi: 10.11833/j.issn.2095-0756.20190456
基金项目: “十三五”国家重点研发计划项目(2017YFD0600602)
详细信息
    作者简介: 句娇,从事能源林研究。E-mail:Ju_Jiao@126.com
    通信作者: 于海燕,副研究员,博士,从事能源林研究。E-mail:yuhaiyan@caf.ac.cn
  • 中图分类号: S723.1

Coupling effects of soil water and fertilizer application on the growth of Quercus variabilis seedlings

  • 摘要:   目的  探讨栓皮栎Quercus variabilis当年生苗木的苗高、地径、单株叶面积、根干质量、生物量积累对水肥耦合的响应规律,并确立最佳的灌溉施肥组合。  方法  采用4因素5水平二次回归通用旋转组合设计(RCCD),建立各指标与土壤含水率、施氮量、施磷量和施钾量回归模型,分析各因子的主效应、单因素和耦合效应对生长的影响。  结果  ①对苗高、地径、单株叶面积、根干质量、生物量的方差分析表明,各指标的不同处理间存在显著差异(P<0.05),处理8、处理16、处理18苗木生长情况较好。②模型检验结果表明:土壤含水率和施氮量对5个指标均有显著正效应,施磷量对地径无显著效应,施钾量对各指标均无显著效应,主效应从大到小依次为土壤含水率、施氮量、施磷量和施钾量。③单因素效应表明:各指标随着施肥量的增加均呈现出类似“抛物线”的变化趋势,生长速率随着土壤含水率的增加而增加,到一定程度时速率减缓。④耦合效应表明:土壤含水率×施氮量对苗高、生物量、叶面积、根干质量有显著正效应,土壤含水率×施磷量对苗高、地径、根干质量、生物量有显著正效应,土壤含水率×施钾量对生物量有显著正效应,施氮量×施磷量对叶面积、根干质量、生物量有显著正效应,施氮量×施钾量对地径有显著负效应,水肥间的耦合效应大于肥料间的耦合效应。  结论  栓皮栎苗期水肥需求量从大到小依次为土壤含水率、施氮量、施磷量和施钾量,适宜的水分和施肥配比可促进苗木生长。高水、高氮、高磷、低钾条件下苗木生长情况更好。水肥调控的最佳组合为:土壤含水率为田间最大持水量的79%,氮、磷、钾用量分别为215.3、46.0、18.7 mg·株-1,苗木的苗高可达到45.14 cm,地径达到4.40 mm,根干质量达到6.30 g,生物量达到11.70 g,单株叶面积可达460.83 cm2。图3表2参30
  • 图  1  土壤含水率、施氮量、施磷量、施钾量对栓皮栎苗高、地径、单株叶面积、根干质量、生物量单因素效应

    Figure  1.  Monofactor effects of soil water content, N, P and K fertilizers on stem height, ground diameter, root weight, biomass, leaf area of Q. variabilis seedlings

    图  2  水肥耦合对栓皮栎苗木苗高、地径、叶面积、根干质量的影响

    Figure  2.  Coupling effects of water and fertilizeron stem height, ground diameter, leaf area, root weight of Q. variabilis seedlings

    图  3  水肥耦合对栓皮栎苗木生物量的影响

    Figure  3.  Coupling effects of water and fertilizer on biomass of Q. variabilis seedlings

    表  1  试验因素和水平编码值

    Table  1.   Coded and physical values of experimental factors

    编码水平土壤含水
    率/%
    施氮量/
    (mg·株−1)
    施磷量/
    (mg·株−1)
    施钾量/
    (mg·株−1)
    −2.040 00 0
    −1.050 75.015.0 15.0
    0 60150.030.0 30.0
    1.070225.045.0 45.0
    2.080300.060.0 60.0
    下载: 导出CSV

    表  2  结构矩阵和各处理栓皮栎苗木生长情况

    Table  2.   Experimental design matrix and growth of Q. variabilis seedlings under different treatments

    处理x1x2x3x4苗高/cm地径/mm根干质量/g生物量/g叶面积/cm2
    1−1.0−1.0−1.0−1.031.97±0.56 h3.46±0.11 cd3.45±0.03 k6.69±0.18 de291.93±3.41 g
    2 1.0−1.0−1.0−1.038.80±0.85 cd3.82±0.20 bc4.57±0.02 e8.53±0.25 bc364.24±7.36 de
    3−1.0 1.0−1.0−1.030.07±0.75 i3.92±0.10 bc3.84±0.03 i6.90±0.23 de274.35±4.79 h
    4 1.0 1.0−1.0−1.040.20±0.77 c4.15±0.17 ab5.21±0.04 b9.71±0.12 b397.33±10.49 c
    5−1.0−1.0 1.0−1.029.47±0.73 i3.42±0.13 d3.66±0.02 j6.47±0.41 de275.37±5.81 h
    6 1.0−1.0 1.0−1.039.03±0.92 cd3.93±0.19 bc4.74±0.05 d9.18±0.10 bc370.65±7.67 de
    7−1.0 1.0 1.0−1.030.92±0.64 hi3.83±0.16 bc4.10±0.03 h7.33±0.18 cd298.80±10.18 g
    8 1.0 1.0 1.0−1.042.27±0.98 b4.24±0.20 ab5.81±0.04 a10.79±0.11a426.75±13.37 b
    9−1.0−1.0−1.0 1.028.90±0.76 i3.72±0.10 c3.48±0.03 k6.18±0.17 de259.70±11.61 i
    10 1.0−1.0−1.0 1.037.00±0.91 e4.10±0.09 ab4.56±0.05 e8.65±0.11 bc360.34±5.49 e
    11−1.0 1.0−1.0 1.031.30±0.54 hi3.66±0.13 cd3.80±0.03 i6.82±0.16 de276.32±9.52 h
    12 1.0 1.0−1.0 1.039.33±0.85 cd4.03±0.14 b5.29±0.02 b9.95±0.18 ab390.31±6.27 cd
    13−1.0−1.0 1.0 1.030.77±0.66 hi3.61±0.11 cd3.20±0.02 l5.88±0.39 e249.13±6.11 i
    14 1.0−1.0 1.0 1.038.97±0.82 cd4.16±0.17 ab4.67±0.04 d8.94±0.11 bc367.71±11.04 de
    15−1.0 1.0 1.0 1.030.77±0.60 hi3.45±0.12 cd3.78±0.01 i6.96±0.45 de294.75±8.29 g
    16 1.0 1.0 1.0 1.044.57±0.95 a4.04±0.20 b5.75±0.03 a10.99±0.12 a445.03±13.33 a
    17−2.0 0 0 0 26.03±0.67 j3.44±0.14 cd2.60±0.06 m4.85±0.35 e245.46±5.69 i
    18 2.0 0 0 0 43.13±0.99 b4.34±0.26 a5.72±0.05 a10.69±0.35 ab439.87±11.94 ab
    19 0 −2.0 0 0 33.27±0.74 g3.61±0.17 cd3.77±0.04 i7.10±0.19 c272.22±7.48 hi
    20 0 2.0 0 0 36.37±0.70 ef3.82±0.15 bc4.87±0.04 c8.85±0.18 bc339.81±8.12 f
    21 0 0 −2.0 0 31.53±0.64 h3.88±0.16 bc4.13±0.04 h7.48±0.18 c327.63±4.80 f
    22 0 0 2.0 0 33.97±0.77 g3.91±0.19 bc4.50±0.03 ef8.30±0.20 bc334.72±10.71 f
    23 0 0 0 −2.035.50±0.81 f3.92±0.17 bc4.42±0.04 f8.07±0.19 bc335.99±10.88 f
    24 0 0 0 2.036.33±0.58 ef3.88±0.17 bc4.30±0.03 g7.95±0.31 c330.40±12.97 f
    25 0 0 0 0 37.87±0.89 de4.00±0.22 bc4.67±0.03 de8.84±0.18 bc376.50±9.18 d
    26 0 0 0 0 36.77±0.69 ef4.10±0.15 ab4.45±0.04 f8.44±0.20 c356.43±4.59 e
    27 0 0 0 0 38.53±0.78 d4.05±0.12 b4.80±0.03 cd9.05±0.19 bc397.25±4.30 c
    28 0 0 0 0 39.33±0.82 cd4.00±0.16 bc4.70±0.03 d8.82±0.19 bc394.06±12.09 c
    29 0 0 0 0 37.80±0.70 de3.90±0.13 bc4.87±0.04 c9.09±0.21 bc386.09±9.43 cd
    30 0 0 0 0 39.77±0.81 cd3.91±0.09 bc4.70±0.04 d8.85±0.17 bc394.45±6.87 c
      说明:x1x2x3x4分别表示土壤含水率、施氮量、施磷量和施钾量的水平编码值;表中数值为平均值±标准误;不同小写字母代     表各处理间苗木苗高、地径和生物量在0.05水平上差异显著
    下载: 导出CSV
  • [1] WANG Yu, FU Delong, PAN Lulu, et al. The coupling effect of water and fertilizer on the growth of tea plants[Camellia sinensis (L.) O. Kuntz] [J]. J Plant Nutr, 2016, 39(5): 620 − 627. doi:  10.1080/01904167.2015.1047521
    [2] HARTMANN A A, BARNARD R L, MARHAN S, et al. Effects of drought and N-fertilization on N cycling in two grassland soils [J]. Oecologia, 2013, 171(3): 705 − 717. doi:  10.1007/s00442-012-2578-3
    [3] RAHBARI A, SINAKI J M, ZAREI M. Phosphate fertilizer and drought effects on growth components and elements of forage millet varieties [J]. Int J Agron Plant Prod, 2013, 4(2): 292 − 299.
    [4] DENIEL F C, GOMES D, DIONIZIO H, et al. Carrot yield and water-use efficiency under different mulching, organic fertilization and irrigation levels [J]. Revista Brasileira de Engenharia Agrícolae Ambiental, 2018, 22(7): 445 − 450. doi:  10.1590/1807-1929/agriambi.v22n7p445-450
    [5] 张小朋, 殷有, 于立忠, 等. 土壤水分与养分对树木细根生物量及生产力的影响[J]. 浙江农林大学学报, 2010, 27(4): 606 − 613. doi:  10.3969/j.issn.2095-0756.2010.04.022

    ZHANG Xiaopeng, YIN You, YU Lizhong, et al. Influence of water and soil nutrients on biomass and productivity of fine tree roots: a review [J]. J Zhejiang A&F Univ, 2010, 27(4): 606 − 613. doi:  10.3969/j.issn.2095-0756.2010.04.022
    [6] 王景燕, 唐海龙, 龚伟, 等. 水肥耦合对汉源花椒幼苗生长、养分吸收和肥料利用的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(3): 33 − 40.

    WANG Jinyan, TANG Hailong, GONG Wei, et al. Effects of water and fertilizer coupling on growth, nutrients absorption and fertilizer use of Zanthoxylum bungeanum Maxim ‘Hanyuan’ seedling [J]. J Nanjing For Univ Nat Sci Ed, 2016, 40(3): 33 − 40.
    [7] QIU Quan, LI Jiyue, WANG Junhui, et al. Coupling effects of water and fertilizer on the growth characteristics of Catalpa bungei seedlings [J]. Pakistan J Bot, 2015, 47(3): 889 − 896.
    [8] 李迎超, 于海燕, 付甜, 等. 中国栓皮栎资源生产燃料乙醇的潜力及其空间分布[J]. 林业科学, 2013, 49(11): 129 − 134.

    LI Yinchao, YU Haiyan, FU Tian, et al. Spatial distribution and bio-ethanol potential of Quercus variabilis in China [J]. Sci Silv Sin, 2013, 49(11): 129 − 134.
    [9] 李志萍, 张文辉. NaCl胁迫对栓皮栎幼苗生长及其生理响应[J]. 西北植物学报, 2013, 33(8): 1630 − 1637.

    LI Zhiping, ZHANG Wenhui. Growth and physiological response of Quercus variabilis seedlings under NaCl stress [J]. Acta Bot Boreali-Occident Sin, 2013, 33(8): 1630 − 1637.
    [10] SUN Qiaoyu, DUNROESE R, LIU Yong. Container volume and subirrigation schedule influence, Quercus variabilis seedling growth and nutrient status in the nursery and field [J]. Scandinavian J For Res, 2018, 7: 1 − 8.
    [11] 李国雷, 祝燕, 蒋乐, 等. 指数施肥对栓皮栎容器苗生长和氮积累的影响[J]. 东北林业大学学报, 2012, 40(11): 6 − 9. doi:  10.3969/j.issn.1000-5382.2012.11.002

    LI Guolei, ZHU Yan, JIANG Le, et al. Effect of exponential fertilization on growth and nitrogen storage of containerized Quercus variabilis seedlings [J]. J Northeast For Univ, 2012, 40(11): 6 − 9. doi:  10.3969/j.issn.1000-5382.2012.11.002
    [12] 陈闯, 刘勇, 李国雷, 等. 底部渗灌灌水梯度对栓皮栎容器苗生长和养分状况的影响[J]. 林业科学, 2015, 51(7): 21 − 27.

    CHEN Chuang, LIU Yong, LI Guolei, et al. Effects of sub-irrigation gradients on growth and nutrient status of containerized seedlings of Quercus variabilis [J]. Sci Silv Sin, 2015, 51(7): 21 − 27.
    [13] 杨自立. 栓皮栎播种苗水氮需求规律研究[D]. 北京: 北京林业大学, 2011.

    YANG Zili. Study on the Water and Nitrogen Demand Characteristics of Quercus variabilis Seedlings[D]. Beijing: Beijing Forestry University, 2011.
    [14] 邱权, 李吉跃, 王军辉, 等. 水肥耦合效应对楸树苗期叶片净光合速率和SPAD值的影响[J]. 生态学报, 2016, 36(11): 3459 − 3468.

    QIU Quan, LI Jiyue, WANG Junhui, et al. Interactive effects of soil water and fertilizer application on leaf netphotosynthetic rate and SPAD readings of Catalpa bungei seedlings [J]. Acta Ecol Sin, 2016, 36(11): 3459 − 3468.
    [15] ABDELHALIM E, SERRET M D, ARAUS J L. Interactive effect of water and nitrogen regimes on plant growth, root traits and water status of old and modern durum wheat genotypes [J]. Planta, 2016, 244(1): 125 − 144. doi:  10.1007/s00425-016-2500-z
    [16] GHASSEMI G K, RAEI N, RAEI Y. Effects of water deficit and nitrogen levels on grain yield and oil and protein contents of maize [J]. Azarian J Agric, 2015, 2: 46 − 50.
    [17] DONG Lei, LI Jiyue, WANG Junhui, et al. Effects of drought stress on osmotic regulation substances of five Catalpa bungei clones [J]. Agric Sci Technol, 2013, 14(9): 1335 − 1343.
    [18] 孙巧玉, 刘勇. 控释肥和灌溉方式对栓皮栎容器苗苗木质量及造林效果的影响[J]. 林业科学研究, 2018, 31(5): 137 − 144.

    SUN Qiaoyu, LIU Yong. Effect of controlled-release fertilizer and irrigation method on seedlingquality and outplanting performance of Quercus variabilis [J]. Forest Res, 2018, 31(5): 137 − 144.
    [19] 程中倩, 李国雷. 氮肥和容器深度对栓皮栎容器苗生长、根系结构及养分贮存的影响[J]. 林业科学, 2016, 52(4): 21 − 29.

    CHENG Zhongqian, LI Guolei. Effects of nitrogen supply and container size on seedling growth root characteristics and nutrient status in Quercus variabilis container seedlings [J]. Sci Silv Sin, 2016, 52(4): 21 − 29.
    [20] 屈明华, 俞元春, 李生, 等. 丛枝菌根真菌对矿质养分活化作用研究进展[J]. 浙江农林大学学报, 2019, 36(2): 394 − 405. doi:  10.11833/j.issn.2095-0756.2019.02.022

    QU Minghua, YU Yuanchun, LI Sheng, et al. Advances in research on activation of mineral nutrients by arbuscular mycorrhizal fungi [J]. J Zhejiang A&F Univ, 2019, 36(2): 394 − 405. doi:  10.11833/j.issn.2095-0756.2019.02.022
    [21] 林国祚, 谢耀坚, 彭彦, 等. 水肥耦合对尾巨桉苗木生物量的影响[J]. 桉树科技, 2013, 30(2): 1 − 8. doi:  10.3969/j.issn.1674-3172.2013.02.001

    LIN Guozuo, XIE Yaojian, PENG Yan, et al. Couple effects of water and fertilizer on the biomass of Eucalyptus urophylla×E. grandis seedlings [J]. Eucalypt Sci Technolo, 2013, 30(2): 1 − 8. doi:  10.3969/j.issn.1674-3172.2013.02.001
    [22] SINGH B, SINGH G. Effects of controlled irrigation on water potential, nitrogen uptake and biomass production in Dalbergia sissoo seedlings [J]. Environ Exp Bot, 2006, 55(1/2): 209 − 219.
    [23] GOWING J W, ROSE D A, GHAMARNIA H. The effect of salinity on water productivity of wheat under deficit irrigation above shallow groundwater [J]. Agric Water Manage, 2009, 96(3): 517 − 524. doi:  10.1016/j.agwat.2008.09.024
    [24] CABELLO M J, CASTELLANOS M T, ROMOJARO F, et al. Yield and quality of melon grown under different irrigation and nitrogen rates [J]. Agric Water Manage, 2009, 96(5): 866 − 874. doi:  10.1016/j.agwat.2008.11.006
    [25] 王梓, 马履一, 贾忠奎, 等. 滴灌下欧美107杨苗高水肥耦合效应[J]. 浙江农林大学学报, 2012, 29(1): 29 − 34. doi:  10.3969/j.issn.2095-0756.2012.01.006

    WANG Zi, MA Lüyi, JIA Zhongkui, et al. Interaction of water and fertilizer on seedling height for first-year growth Populus×euramericana ‘74/76’ with drip irrigation [J]. J Zhejiang A&F Univ, 2012, 29(1): 29 − 34. doi:  10.3969/j.issn.2095-0756.2012.01.006
    [26] MARIS S C, TERIA-ESMATGES M R, ARBONES A, et al. Effects of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard [J]. Sci Total Environ, 2015, 538(15): 966 − 978.
    [27] 吴楚, 王政权, 范志强. 氮素形态处理下水曲柳幼苗养分吸收利用与生长及养分分配与生物量分配的关系[J]. 生态学报, 2005, 25(6): 1282 − 1290. doi:  10.3321/j.issn:1000-0933.2005.06.008

    WU Chu, WANG Zhenquan, FAN Zhiqiang. Relationships between nutrient uptake, use efficiency and growth, and between nutrient partitioning patterns and biomass partitioning patterns in Fraxinus mandshurica seedlings supplied with different ratios of nitrogen forms [J]. Acta Ecol Sin, 2005, 25(6): 1282 − 1290. doi:  10.3321/j.issn:1000-0933.2005.06.008
    [28] 柴仲平, 王雪梅, 孙霞, 等. 不同氮磷钾配比滴灌对灰枣产量与品质的影响[J]. 果树学报, 2011, 28(2): 229 − 233.

    CHAI Zhongping, WANG Xuemei, SUN Xia, et al. Influence of N, P, K with drip irrigation on yield and fruit quality of Huizao jujube [J]. J Fruit Sci, 2011, 28(2): 229 − 233.
    [29] 徐有明, 林汉, 洪院生, 等. 施肥对湿地松幼林生长和木材物理力学性质的影响[J]. 林业科学, 2002, 38(4): 125 − 133. doi:  10.3321/j.issn:1001-7488.2002.04.021

    XU Youming, LIN Han, HONG Yuansheng, et al. Effects of fertilization on growth increments and wood physical mechanical properties of young slash pine [J]. Sci Silv Sin, 2002, 38(4): 125 − 133. doi:  10.3321/j.issn:1001-7488.2002.04.021
    [30] YAN Xiaoli, JIA Liming, DAI Tengfei, et al. Effects of water and nitrogen coupling under drip irrigation on tree growth and soil nitrogen content of Populus×euramericana cv. ‘Guariento’ [J]. Chin J Appl Ecol, 2018, 29(7): 2159 − 2202.
  • [1] 唐海龙, 龚伟, 王景燕, 舒正悦, 黄帅, 赵昌平, 周书玉.  水肥处理对竹叶花椒土壤养分和微生物的影响 . 浙江农林大学学报, 2019, 36(2): 318-325. doi: 10.11833/j.issn.2095-0756.2019.02.013
    [2] 季碧勇, 陶吉兴, 张国江, 杜群, 姚鸿文, 徐军.  高精度保证下的浙江省森林植被生物量评估 . 浙江农林大学学报, 2012, 29(3): 328-334. doi: 10.11833/j.issn.2095-0756.2012.03.002
    [3] 王梓, 马履一, 贾忠奎, 公宁宁.  滴灌下欧美107杨苗高水肥耦合效应 . 浙江农林大学学报, 2012, 29(1): 29-34. doi: 10.11833/j.issn.2095-0756.2012.01.006
    [4] 杨前宇, 谢锦忠, 张玮, 林振清.  椽竹各器官生物量模型 . 浙江农林大学学报, 2011, 28(3): 519-526. doi: 10.11833/j.issn.2095-0756.2011.03.027
    [5] 玉宝, 张秋良, 王立明, 乌吉斯古楞.  不同结构落叶松天然林生物量及生产力特征 . 浙江农林大学学报, 2011, 28(1): 52-58. doi: 10.11833/j.issn.2095-0756.2011.01.009
    [6] 张磊, 张含国, 邓继峰, 贯春雨.  杂种落叶松苗高生长稳定性分析 . 浙江农林大学学报, 2010, 27(5): 706-712. doi: 10.11833/j.issn.2095-0756.2010.05.011
    [7] 张小朋, 殷有, 于立忠, 姚立海, 英慧, 张娜.  土壤水分与养分对树木细根生物量及生产力的影响 . 浙江农林大学学报, 2010, 27(4): 606-613. doi: 10.11833/j.issn.2095-0756.2010.04.022
    [8] 沈年华, 万志洲, 汤庚国, 王春, 程红梅.  紫金山栓皮栎群落结构及物种多样性 . 浙江农林大学学报, 2009, 26(5): 696-700.
    [9] 卢杰, 郑维列, 兰小中.  长鞭红景天生物量基本特性研究 . 浙江农林大学学报, 2008, 25(6): 743-748.
    [10] 钟永德, 王怀采, 黄家兰.  游憩活动对活地被物层植物生物量和群落结构的影响 . 浙江农林大学学报, 2007, 24(5): 593-598.
    [11] 杨同辉, 达良俊, 宋永昌, 杨永川, 王良衍.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅰ)群落结构及主要组成树种生物量特征 . 浙江农林大学学报, 2005, 22(4): 363-369.
    [12] 李燕燕, 樊后保, 林德喜, 苏兵强, 刘春华, 孙新.  马尾松林混交阔叶树的生物量及其分布格局 . 浙江农林大学学报, 2004, 21(4): 388-392.
    [13] 林新春, 方伟, 俞建新, 余学军, 胡超宗, 周林.  苦竹各器官生物量模型 . 浙江农林大学学报, 2004, 21(2): 168-171.
    [14] 周永学, 樊军锋, 杨培华, 高建社, 刘永红.  奥地利黑松与油松1 年生苗生长和生物量对比分析 . 浙江农林大学学报, 2003, 20(4): 438-441.
    [15] 刘芳.  杉木光皮桦纯林及混交林生物量 . 浙江农林大学学报, 2002, 19(2): 143-147.
    [16] 谢锦升, 黄荣珍, 陈银秀, 杨玉盛, 王维明.  严重侵蚀红壤封禁管理后群落的生物量及生产力变化 . 浙江农林大学学报, 2001, 18(4): 354-358.
    [17] 陈爱玲, 陈光水, 谢锦升, 杨玉盛.  杉枫轮栽生物量及营养元素分布的研究 . 浙江农林大学学报, 2000, 17(4): 369-372.
    [18] 贺东北, 骆期邦, 曾伟生.  立木生物量线性联立模型研究 . 浙江农林大学学报, 1998, 15(3): 298-303.
    [19] 李土生, 姜志林.  采伐对栎林水文效应的影响 . 浙江农林大学学报, 1995, 12(3): 262-267.
    [20] 斯金平, 姚荣明, 陈德标, 吴长辉.  厚朴人工林生物量的研究 . 浙江农林大学学报, 1993, 10(2): 162-168.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190456

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/4/1

计量
  • 文章访问数:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 修回日期:  2020-01-08

水肥耦合效应对栓皮栎苗木生长的影响

doi: 10.11833/j.issn.2095-0756.20190456
    基金项目:  “十三五”国家重点研发计划项目(2017YFD0600602)
    作者简介:

    句娇,从事能源林研究。E-mail:Ju_Jiao@126.com

    通信作者: 于海燕,副研究员,博士,从事能源林研究。E-mail:yuhaiyan@caf.ac.cn
  • 中图分类号: S723.1

摘要:   目的  探讨栓皮栎Quercus variabilis当年生苗木的苗高、地径、单株叶面积、根干质量、生物量积累对水肥耦合的响应规律,并确立最佳的灌溉施肥组合。  方法  采用4因素5水平二次回归通用旋转组合设计(RCCD),建立各指标与土壤含水率、施氮量、施磷量和施钾量回归模型,分析各因子的主效应、单因素和耦合效应对生长的影响。  结果  ①对苗高、地径、单株叶面积、根干质量、生物量的方差分析表明,各指标的不同处理间存在显著差异(P<0.05),处理8、处理16、处理18苗木生长情况较好。②模型检验结果表明:土壤含水率和施氮量对5个指标均有显著正效应,施磷量对地径无显著效应,施钾量对各指标均无显著效应,主效应从大到小依次为土壤含水率、施氮量、施磷量和施钾量。③单因素效应表明:各指标随着施肥量的增加均呈现出类似“抛物线”的变化趋势,生长速率随着土壤含水率的增加而增加,到一定程度时速率减缓。④耦合效应表明:土壤含水率×施氮量对苗高、生物量、叶面积、根干质量有显著正效应,土壤含水率×施磷量对苗高、地径、根干质量、生物量有显著正效应,土壤含水率×施钾量对生物量有显著正效应,施氮量×施磷量对叶面积、根干质量、生物量有显著正效应,施氮量×施钾量对地径有显著负效应,水肥间的耦合效应大于肥料间的耦合效应。  结论  栓皮栎苗期水肥需求量从大到小依次为土壤含水率、施氮量、施磷量和施钾量,适宜的水分和施肥配比可促进苗木生长。高水、高氮、高磷、低钾条件下苗木生长情况更好。水肥调控的最佳组合为:土壤含水率为田间最大持水量的79%,氮、磷、钾用量分别为215.3、46.0、18.7 mg·株-1,苗木的苗高可达到45.14 cm,地径达到4.40 mm,根干质量达到6.30 g,生物量达到11.70 g,单株叶面积可达460.83 cm2。图3表2参30

English Abstract

句娇, 李迎超, 王利兵, 李东兴, 陈梦园, 何三军, 郑磊, 于海燕. 水肥耦合效应对栓皮栎苗木生长的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190456
引用本文: 句娇, 李迎超, 王利兵, 李东兴, 陈梦园, 何三军, 郑磊, 于海燕. 水肥耦合效应对栓皮栎苗木生长的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190456
JU Jiao, LI Yingchao, WANG Libing, LI Dongxing, CHEN Mengyuan, HE Sanjun, ZHENG Lei, YU Haiyan. Coupling effects of soil water and fertilizer application on the growth of Quercus variabilis seedlings[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190456
Citation: JU Jiao, LI Yingchao, WANG Libing, LI Dongxing, CHEN Mengyuan, HE Sanjun, ZHENG Lei, YU Haiyan. Coupling effects of soil water and fertilizer application on the growth of Quercus variabilis seedlings[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190456

返回顶部

目录

    /

    返回文章
    返回