留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3种常绿树挥发物成分对空气负离子及微生物的影响

赵亚红 徐翠霞 马玲 王彬 韦赛君 吕嘉欣 高岩 张汝民

赵亚红, 徐翠霞, 马玲, 王彬, 韦赛君, 吕嘉欣, 高岩, 张汝民. 3种常绿树挥发物成分对空气负离子及微生物的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190521
引用本文: 赵亚红, 徐翠霞, 马玲, 王彬, 韦赛君, 吕嘉欣, 高岩, 张汝民. 3种常绿树挥发物成分对空气负离子及微生物的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190521
ZHAO Yahong, XU Cuixia, MA Ling, WANG Bin, WEI Saijun, LÜ Jiaxin, GAO Yan, ZHANG Rumin. Effects of volatile components of three evergreen plants on air anion and microorganism[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190521
Citation: ZHAO Yahong, XU Cuixia, MA Ling, WANG Bin, WEI Saijun, LÜ Jiaxin, GAO Yan, ZHANG Rumin. Effects of volatile components of three evergreen plants on air anion and microorganism[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190521

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

3种常绿树挥发物成分对空气负离子及微生物的影响

doi: 10.11833/j.issn.2095-0756.20190521
基金项目: 浙江省省院合作资助项目(2018SY07);国家自然科学基金资助项目(31470704)
详细信息
    作者简介: 赵亚红,从事植物生理生态研究。E-mail:764660184@qq.com
    通信作者: 王彬,高级实验师,从事植物生理生态研究。E-mail:wangbin@zafu.edu.cn
  • 中图分类号: S718.5

Effects of volatile components of three evergreen plants on air anion and microorganism

  • 摘要:   目的  研究3种常绿植物挥发性有机化合物(VOCs)抑制空气微生物和净化空气的作用。  方法  采用热脱附/气相色谱/质谱技术,对杨梅Myrica rubra、青梅Vatica mangachapoi、茶Camellia sinensis单株以及空旷地VOCs组成和含量进行了分析,采用自然沉降法研究了VOCs对空气微生物的影响,同时测定了空气负离子数。  结果  杨梅VOCs主要成分有α-草烯、香芹醇、罗勒烯、柠檬烯、壬醛等,萜烯类化合物占总量的78.5%;青梅VOCs主要成分有乙酸叶醇酯、丁酸辛酯、顺式-3-己烯醇、松香芹酮、壬醛、癸醛、辛醛,酯类化合物占总量的54.1%;茶VOCs主要成分有乙酸叶醇酯、丁酸辛酯、水杨酸甲酯、壬醛、癸醛、柠檬烯等,酯类化合物占总量的40.8%。空旷地主要成分为苯类物质,占总量的74.2%;杨梅园内苯类占总量的54.8%,萜烯类占总量的35.6%;青梅园内苯类占总量的35.4%,萜烯类占总量的52.2%;茶园内苯类占总量的50.1%,萜烯类占总量的36.5%。杨梅园、青梅园、茶园、空旷地空气负离子日平均数分别为2 559.2、2 660.0、1 878.4、1 078.8个·cm-3。杨梅园、青梅园和茶园细菌日平均抑制率分别为45.5%、48.7%和39.3%;真菌日平均抑制率分别为39.0%、35.8%和34.6%;放线菌日平均抑制率分别为42.3%、42.2%和39.7%。  结论  植物VOCs对空气微生物的生长有抑制作用,同时具有促进空气负离子形成和改善空气质量的作用。图5表2参38
  • 图  1  3种常绿树单株VOCs总离子流图

    A. 杨梅,B. 青梅,C. 茶

    Figure  1.  Total ion flow diagrams of three evergreen single plant VOCs

    图  2  3种常绿树园空气VOCs总离子流图

    A. 空旷地,B. 杨梅园,C. 青梅园,D. 茶园

    Figure  2.  Total ion flow charts of air VOCs in 3 evergreen plants gardens

    图  3  3种常绿树园空气负离子日变化

    Figure  3.  Diurnal variations of negative air ions in 3 evergreen plants

    图  4  3种常绿树园微生物变化

    Figure  4.  Variation of microbial content in three evergreen plants gardens

    图  5  4种单体对空气微生物的影响

    Figure  5.  Effect of 4 monomer concentrations on the micro-organisms

    表  1  3种常绿树VOCs成分分析

    Table  1.   VOCs components of 3 evergreen plants

    序号保留时间/min挥发性有机物化学式峰面积/(×105 g−1)
    杨梅青梅
    16.941己烯醛2-hexenalC6H10O2.24±0.52
    27.113顺式-3-己烯醇cis-hex-3-en-1-olC6H10O14.03±3.02
    37.913壬烯noneneC9H185.57±0.76
    48.232庚醛heptanalC7H14O2.68±0.45
    58.652苯甲醚anisoleC7H8O21.64±3.38
    68.655茴香醚anisoleC7H8O1.66±0.34
    79.070α-蒎烯α-pineneC10H164.57±1.564.32±0.262.10±0.73
    89.7111,4-环己二烯1,4-cyclohexadieneC10H140.47±0.075.96±0.66
    910.708月桂烯myrceneC10H165.99±3.593.34±0.31
    1011.023辛醛octyl aldehydeC8H16O3.39±0.885.76±0.37
    1111.150乙酸叶醇酯cis-3-hexenyl acetateC8H14O290.40±8.8059.16±4.67
    1211.230对二氯苯para-dichlorobenzeneC6H4Cl20.49±0.0113.98±1.449.94±0.55
    1311.586邻伞花烃0-cymeneC10H142.15±0.76
    1411.693柠檬烯limoneneC10H1638.07±2.003.34±0.975.64±0.26
    1512.228罗勒烯ocimeneC10H1643.46±1.544.65±3.776.70±0.22
    1613.478紫苏烯perilleneC10H14O2.86±0.862.07±0.24
    1713.596里哪醇linaloolC10H18O7.07±2.042.69±4.00
    1813.695壬醛nonanalC9H18O4.02±0.8912.90±4.3611.34±0.18
    1913.999松香芹酮pinocarvoneC10H14O1.64±0.368.97±2.468.70±1.19
    2014.144杜烯dureneC10H14O7.90±0.90
    2114.357香芹醇(-)-carveolC10H16O55.35±4.551.70±0.37
    2214.652别罗勒烯allo-ocimeneC10H164.01±1.49
    2314.754莰酮cmaphenoneC10H16O1.50±0.39
    2415.467薄荷醇mentholC10H20O2.17±0.57
    2515.744甘氨酰肌氨酸glycinosinineC5H10N2O34.39±0.80
    2616.083水杨酸甲酯methyl salicylateC8H8O32.82±0.286.17±1.02
    2716.353癸醛decanalC10H20O5.09±1.586.18±1.03
    2821.249丁酸庚酯heptyl butyrateC11H22O24.36±0.40
    2921.878丁酸辛酯octyl butyrateC12H24O25.73±0.688.56±1.47
    3022.983α-柏木烯α-cedreneC15H244.64±0.342.35±1.35
    3123.183石竹烯caryophylleneC15H2417.83±2.173.35±0.65
    3223.458别香橙烯allo-aromadendreneC15H245.73±0.23
    3324.085α-草烯α-humuleneC15H2498.08±1.92
    3425.074花柏烯chamigreneC15H2413.86±1.14
    3525.093β-瑟林烯β-selineneC15H246.63±1.13
    3625.265蛇床烯selineneC15H2411.57±1.64
    3726.515桉叶醇eudesmolC15H26O1.22±0.11
    3827.497雪松醇cedar camphorC15H26O5.48±1.11
    3928.263斯巴醇spathulenolC15H24O4.35±0.72
    4028.675石竹烯氧化物caryophyllene oxideC15H24O9.72±0.33
    4131.655肉豆蔻酸异丙酯isopropyl myristateC17H34O23.28±1.79
      说明:“−”表示未测到化合物
    下载: 导出CSV

    表  2  3种常绿树园空气VOCs成分分析

    Table  2.   Air VOCs composition in three evergreen plants gardens

    序号保留时间/min有机挥发物化学式峰面积/(×105 g−1)
    空旷地杨梅园青梅园茶园
    1 7.116乙苯ethylbenzeneC8H1013.98±5.2659.43±7.2757.85±1.59
    2 7.326对二甲苯p-xyleneC8H1021.01±7.82107.81±8.90131.51±6.6298.27±2.25
    3 7.914苯乙烯styreneC8H811.32±6.19125.71±4.7058.61±2.11128.58±2.48
    4 8.125壬烷nonaneC9H201.83±0.77
    5 9.080α-蒎烯pineneC10H164.64±1.36190.60±4.80245.10±12.45143.96±5.53
    6 9.484莰烯campheneC10H1619.33±6.3525.54±8.0618.48±2.82
    7 9.8753-乙基甲苯3-ethyltolueneC9H124.68±1.32
    8 9.916枯烯cumeneC9H1234.70±4.54
    910.254蒈烯3-careneC10H1648.49±4.29
    1010.265桧烯sabineneC10H163.11±2.2017.35±3.25
    1110.6252,6-二甲基辛烷dimethyloctaneC10H222.64±0.5719.15±1.8021.86±4.05
    1211.246对二氯苯para-dichlorobenzeneC6H4Cl24.90±1.0847.35±1.0640.95±5.0930.52±0.93
    1311.580间伞花烃m-cymeneC10H1422.59±2.8525.55±3.43
    1411.703柠檬烯limoneneC10H1611.00±7.7821.68±1.0715.11±2.16
    1513.695壬醛nonanalC9H18O1.58±0.3719.98±4.13
    1616.339癸醛decanalC10H20O1.17±0.83
    1721.886丁酸辛酯butyric acid, octyl esterC12H24O222.61±1.12
    1825.089十五烷pentadecaneC15H324.49±2.6217.66±3.3361.14±3.6914.03±9.92
      说明:“−”表示未测到化合物
    下载: 导出CSV
  • [1] 陈晓亚, 王凌健, 毛颖波, 等. 植物萜类生物合成与抗虫反应[J]. 生命科学, 2015, 27(7): 813 − 818.

    CHEN Xiaoya, WANG Lingjian, MAO Yingbo, et al. Biosynthesis and insect resistance of plant mites [J]. Life Sci, 2015, 27(7): 813 − 818.
    [2] TURLINGS T C J, ERB M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential [J]. Annu Rev Entomol, 2018, 63(1): 433 − 452. doi:  10.1146/annurev-ento-020117-043507
    [3] ILMBERGER J, HEUBERGER E, MAHRHOFER C, et al. The influence of essential oils on human attention. I: alertness [J]. Chem Senses, 2001, 26(3): 239 − 245. doi:  10.1093/chemse/26.3.239
    [4] 郭二果, 王成, 郄光发, 等. 城市森林生态保健功能表征因子之间的关系[J]. 生态学杂志, 2013, 32(11): 2893 − 2903.

    GUO Erguo, WANG Cheng, SHU Guangfa, et al. Relationship between urban forest ecological health function characterization factors [J]. Chin J Ecol, 2013, 32(11): 2893 − 2903.
    [5] WANG Jun, LI Shuhua. Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional change [J]. J Environ Manage, 2009, 90(8): 2746 − 2754. doi:  10.1016/j.jenvman.2009.03.003
    [6] ZHAO Xinglei, LI Yuyao, HUA Ting, et al. Low-resistance dual-purpose air filter releasing negative ions and effectively capturing PM2.5 [J]. ACS Appl Mater Interfaces, 2017, 9(13): 12054 − 12063. doi:  10.1021/acsami.7b00351
    [7] FLORY R, AMETEPE J, BOWERS B. A randomized, placebo-controlled trial of bright light and high-density negative air ions for treatment of Seasonal Affective Disorder [J]. Psychiatry Res, 2010, 177(1/2): 101 − 108.
    [8] JIANG Shuye, ALI M A, RAMACHANDRAN S. Negative air ions and their effects on human health and air quality improvement [J]. Int J Mol Sci, 2018, 19(10): 2966 − 2985. doi:  10.3390/ijms19102966
    [9] FATEMI H, AMINIFARD M H, MOHAMMADI S. Efficacy of plant essential oils on post-harvest control of rot caused by Botrytis cinerea on kiwi fruits [J]. Arch Phytopathol Plant Prot, 2013, 46(5): 536 − 547. doi:  10.1080/03235408.2012.749687
    [10] ZHENG Jingge, LIU Tingting, GUO Zhixin, et al. Fumigation and contact activities of 18 plant essential oils on Villosiclava virens, the pathogenic fungus of rice false smut [J]. Sci Rep, 2019, 9(1): 2045 − 2322. doi:  10.1038/s41598-018-37209-y
    [11] FROST C J, MESCHER M C, DERVINIS C, et al. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate [J]. New Phytol, 2008, 180(3): 722 − 734. doi:  10.1111/j.1469-8137.2008.02599.x
    [12] 付佳, 王洋, 阎秀峰. 萜类化合物的生理生态功能及经济价值[J]. 东北林业大学学报, 2003, 31(6): 59 − 61.

    FU Jia, WANG Yang, YAN Xiufeng. Physiological and ecological functions and economic value of terpenoids [J]. J Northeast For Univ, 2003, 31(6): 59 − 61.
    [13] BENNETT R N, WALLSGROVE R M. Secondary metabolites in plant defence mechanisms [J]. New Phytol, 2010, 127(4): 617 − 633.
    [14] 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学: 生命科学, 2013, 43(12): 1030 − 1046.

    WANG Lingjian, FANG Xin, YANG Changqing, et al. Secondary metabolism and regulation of plant mites [J]. Chin Sci Life Sci, 2013, 43(12): 1030 − 1046.
    [15] 林富平, 周帅, 马楠, 等. 4个桂花品种叶片挥发物成分及其对空气微生物的影响[J]. 浙江农林大学学报, 2013, 30(1): 15 − 21.

    LI Fuping, ZHOU Shuai, MA Nan, et al. Volatile components in leaves of four Osmanthus osmanthus varieties and their effects on air microorganisms [J]. J Zhejiang Agric For Univ, 2013, 30(1): 15 − 21.
    [16] 谢慧玲, 李树人, 袁秀云, 等. 植物挥发性分泌物对空气微生物杀灭作用的研究[J]. 河南农业大学学报, 1999, 33(2): 127 − 133.

    XIE Huiling, LI Shuren, YUAN Xiuyun, et al. Study on the killing effect of plant volatile secretions on air microbes [J]. J Henan Agric Univ, 1999, 33(2): 127 − 133.
    [17] 杨敏, 梅馨月, 廖静静, 等. 3种葱属作物挥发物和提取液对植物病原真菌和卵菌的抑菌活性[J]. 植物保护, 2013, 39(3): 36 − 44.

    YANG Min, MEI Xinyue, LIAO Jingjing, et al. Antibacterial activity of volatiles and extracts from three Allium crops against phytopathogenic fungi and oomycetes [J]. Plant Prot, 2013, 39(3): 36 − 44.
    [18] 赵怡宁, 史常青, 许荡飞, 等. 崇礼区典型林分空气负离子浓度及影响因素[J]. 林业科学研究, 2018, 31(3): 127 − 135.

    ZHAO Yining, SHI Changqing, XU Dangfei, et al. Air anion concentration and influencing factors of typical stands in Chongli District [J]. For Sci Res, 2018, 31(3): 127 − 135.
    [19] GAO Yan, JIN Youju, LI Haidong, et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species [J]. J Integrative Plant Biol, 2005, 47(4): 499 − 507. doi:  10.1111/j.1744-7909.2005.00081.x
    [20] 周德庆. 微生物学实验教程[M]. 2版. 北京: 高等教育出版社, 2006: 372 − 374.
    [21] 郭阿君, 王志英, 邹丽. 樟子松挥发性有机物释放动态及其抑菌作用[J]. 东北林业大学学报, 2014, 42(4): 115 − 118.

    GUO Ajun, WANG Zhiying, ZOU Li. Volatile organic matter release dynamics and its antibacterial activity of Pinus sylvestris var. mongolica [J]. J Northeast For Univ, 2014, 42(4): 115 − 118.
    [22] 吴章文, 吴楚材, 陈奕洪, 等. 8种柏科植物的精气成分及其生理功效分析[J]. 中南林业科技大学学报, 2010, 30(10): 1 − 9.

    WU Zhangwen, WU Chucai, CHEN Yihong, et al. Analysis of the essential components and physiological effects of eight species of Cypress plants [J]. J Cent South Univ For Technol, 2010, 30(10): 1 − 9.
    [23] 刘芳, 左照江, 许改平, 等. 迷迭香对干旱胁迫的生理响应及其诱导挥发性有机化合物的释放[J]. 植物生态学报, 2013, 37(5): 454 − 463. doi:  10.3724/SP.J.1258.2013.00454

    LIU Fang, ZUO Zhaojiang, XU Gaiping, et al. Physiological response of rosemary to drought stress and its induction of release of volatile organic compounds [J]. Chin J Plant Ecol, 2013, 37(5): 454 − 463. doi:  10.3724/SP.J.1258.2013.00454
    [24] 宋秀华, 李传荣, 许景伟, 等. 元宝枫、雪松挥发物释放的昼夜节律[J]. 林业科学, 2015, 51(4): 141 − 147.

    SONG Xiuhua, LI Chuanrong, XU Jingwei, et al. Circadian rhythm of the release of volatiles from Acer truncatum and Cedrus deodara [J]. For Sci, 2015, 51(4): 141 − 147.
    [25] 乔如颖, 郑新强, 李清声, 等. 茶叶挥发性香气化合物研究进展[J]. 茶叶, 2016, 42(3): 135 − 142.

    QIAO Ruying, ZHENG Xinqiang, LI Qingsheng, et al. Research progress on volatile aroma compounds in tea [J]. Tea, 2016, 42(3): 135 − 142.
    [26] MIYAZAWA M, SHIRAKAWA N, UTSUNOMIYA H, et al. Comparision of the volatile components of unripe and ripe Japanese apricot (Prunus mume Sieb. et Zucc.) [J]. Nat Prod Res, 2009, 23(17): 1567 − 1571. doi:  10.1080/14786410500462926
    [27] 尹洁, 蒋健, 刘文静, 等. GC-O和GC-MS结合鉴定杨梅叶精油中的关键香气成分[J]. 中国南方果树, 2017, 46(3): 64 − 71.

    YIN Jie, JIANG Jian, LIU Wenjing, et al. GC-O and GC-MS combined to identify the key aroma components in the essential oil of bayberry leaves [J]. South China Fruit Tree, 2017, 46(3): 64 − 71.
    [28] TIKHONOV V P, TSVETKOV V D, LITVINOVA E G, et al. Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil [J]. Russ J Plant Physiol, 2004, 51(3): 414 − 419. doi:  10.1023/B:RUPP.0000028690.74805.e2
    [29] 白保勋, 陈东海, 徐婷婷, 等. 河南中北部不同植被区空气负离子浓度变化分析[J]. 生态环境学报, 2016, 25(10): 1629 − 1637.

    BAI Baoxun, CHEN Donghai, XU Tingting, et al. Analysis of air anion concentration changes in different vegetation areas in central and northern Henan Province [J]. J Eco-Environ, 2016, 25(10): 1629 − 1637.
    [30] 王洪俊. 城市森林结构对空气负离子水平的影响[J]. 南京林业大学学报(自然科学版), 2004, 28(5): 96 − 98.

    WANG Hongjun. Influence of urban forest structure on air anion level [J]. J Nanjing For Univ Nat Sci Ed, 2004, 28(5): 96 − 98.
    [31] SALEM M Z M, ASHMAWY N A, ELANSARY H O, et al. Chemotyping of diverse Eucalyptus species grown in Egypt and antioxidant and antibacterial activities of its respective essential oils [J]. Nat Prod Res, 2015, 29(7): 681 − 685. doi:  10.1080/14786419.2014.981539
    [32] BEHBAHANI B A, YAZDI F T, VASIEE A, et al. Oliveria decumbens essential oil: chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection [J]. Microb Pathog, 2018, 114(1): 449 − 452.
    [33] FARRÉ-ARMENGOL G, FILELLA I, LLUSIA J, et al. Bidirectional interaction between phyllospheric microbiotas and plant volatile emissions [J]. Trends Plant Sci, 2016, 21(10): 854 − 860. doi:  10.1016/j.tplants.2016.06.005
    [34] 张清杉, 贺延梅, 赵建民, 等. 森林公园小气候空气负离子保健浓度分级评价[J]. 西北林学院学报, 2006, 21(3): 48 − 49.

    ZHANG Qingshan, HE Yanmei, ZHAO Jianmin, et al. Evaluation of microclimate air anion health concentration in forest park [J]. J Northwest For Univ, 2006, 21(3): 48 − 49.
    [35] OCHIAI H, IKEI H, SONG C, et al. Physiological and psychological effects of a forest therapy program on middle-aged females [J]. Int J Environ Res Public Health, 2015, 12(12): 15222 − 15232. doi:  10.3390/ijerph121214984
    [36] 赵庆, 钱万惠, 唐洪辉, 等. 广东省云勇森林公园6种林分保健功能差异比较[J]. 浙江农林大学学报, 2018, 35(4): 750 − 756. doi:  10.11833/j.issn.2095-0756.2018.04.021

    ZHAO Qing, QIAN Wanhui, TANG Honghui, et al. Differences of health care functions of six forest stands in Yunyong Forest Park, Guangdong [J]. J Zhejiang A&F Univ, 2018, 35(4): 750 − 756. doi:  10.11833/j.issn.2095-0756.2018.04.021
    [37] 蒋冬月, 李永红, 沈鑫. 芸香叶片和花瓣释放挥发性有机物成分及其变化规律[J]. 浙江农林大学学报, 2018, 35(3): 572 − 580.

    JIANG Dongyue, LI Yonghong, SHEN Xin. Components and variations of volatile organic compounds released from leaves and flowers of Ruta graveolens [J]. J Zhejiang A&F Univ, 2018, 35(3): 572 − 580.
    [38] 邵海荣, 贺庆棠. 森林与空气负离子[J]. 世界林业研究, 2000, 13(5): 19 − 23.

    SHAO Hairong, He Qingtang. Forest and air negative ions [J]. World For Res, 2000, 13(5): 19 − 23.
  • [1] 蒋冬月, 李永红, 沈鑫.  芸香叶片和花瓣释放挥发性有机物成分及其变化规律 . 浙江农林大学学报, 2018, 35(3): 572-580. doi: 10.11833/j.issn.2095-0756.2018.03.025
    [2] 梁森苗, 王伟, 戚行江, 张玉, 王君虹, 郑锡良, 胡桂仙.  ‘早佳’杨梅的果实品质形成规律 . 浙江农林大学学报, 2017, 34(3): 559-564. doi: 10.11833/j.issn.2095-0756.2017.03.023
    [3] 张建国, 徐文俊, 崔会平, 梅阳阳, 蔡碧凡.  衢州大橘海森林公园空气负离子浓度变化 . 浙江农林大学学报, 2016, 33(1): 26-32. doi: 10.11833/j.issn.2095-0756.2016.01.004
    [4] 沈利芬, 项伟波, 范彩廷, 金鹏, 周明兵, 徐川梅.  杨梅开花生物学特性 . 浙江农林大学学报, 2015, 32(2): 278-284. doi: 10.11833/j.issn.2095-0756.2015.02.016
    [5] 林富平, 周帅, 马楠, 张汝民, 高岩.  4个桂花品种叶片挥发物成分及其对空气微生物的影响 . 浙江农林大学学报, 2013, 30(1): 15-21. doi: 10.11833/j.issn.2095-0756.2013.01.003
    [6] 刘欣欣, 华超, 张明如, 张建国, 柳丹.  千岛湖姥山林场不同森林群落空气负离子浓度的比较 . 浙江农林大学学报, 2012, 29(3): 366-373. doi: 10.11833/j.issn.2095-0756.2012.03.007
    [7] 何佩云, 丁贵杰, 谌红辉.  第1代和第2代马尾松林土壤微生物及生化作用比较 . 浙江农林大学学报, 2012, 29(5): 703-709. doi: 10.11833/j.issn.2095-0756.2012.05.011
    [8] 张洁, 郭金星, 张汝忠, 王星星, 张晓玲, 刘琳, 侯平, 张汝民.  东魁杨梅果实储藏期挥发性有机化合物成分的变化 . 浙江农林大学学报, 2012, 29(1): 143-150. doi: 10.11833/j.issn.2095-0756.2012.01.024
    [9] 高铭聪, 蒋文伟, 金竹秀, 郭慧慧, 梅艳霞.  西径山森林公园夏季空气负离子日变化 . 浙江农林大学学报, 2011, 28(4): 667-673. doi: 10.11833/j.issn.2095-0756.2011.04.023
    [10] 周斌, 余树全, 张超, 伊力塔.  不同树种林分对空气负离子浓度的影响 . 浙江农林大学学报, 2011, 28(2): 200-206. doi: 10.11833/j.issn.2095-0756.2011.02.005
    [11] 石彦军, 余树全, 郑庆林.  6种植物群落夏季空气负离子动态及其与气象因子的关系 . 浙江农林大学学报, 2010, 27(2): 185-189. doi: 10.11833/j.issn.2095-0756.2010.02.004
    [12] 张明如, 俞益武, 赵明水, 章志攀, 杜晴洲, 陈建新.  天目山国家级自然保护区柳杉群落空气负离子浓度日变化特征 . 浙江农林大学学报, 2009, 26(5): 701-707.
    [13] 何沙娥, 张智俊.  适用于竹林土壤PCR-DGGE分析用的微生物总DNA提取及纯化方法 . 浙江农林大学学报, 2009, 26(2): 164-168.
    [14] 刘洪波, 史冬辉, 陈安良, 应蒙蒙, 张立钦.  杨梅叶提取物对6种常见植物病原菌的抑制活性 . 浙江农林大学学报, 2009, 26(1): 95-99.
    [15] 张利, 何新华, 陈虎, 李一伟, 张超兰.  铅胁迫下杨梅根系分泌有机酸的研究 . 浙江农林大学学报, 2009, 26(5): 663-666.
    [16] 孟赐福, 曹志洪, 姜培坤, 徐秋芳, 周国模.  叶面施硼矫正杨梅缺硼的研究 . 浙江农林大学学报, 2008, 25(5): 543-547.
    [17] 章志攀, 俞益武, 张明如, 杜晴洲, 陈建新, 毛凤成.  天目山空气负离子浓度变化及其与环境因子的关系 . 浙江农林大学学报, 2008, 25(4): 481-485.
    [18] 孟赐福, 姜培坤, 曹志洪, 徐秋芳, 周国模.  杨梅的硼素营养及施硼技术 . 浙江农林大学学报, 2006, 23(6): 684-688.
    [19] 章志攀, 俞益武, 孟明浩, 孔邦杰.  旅游环境中空气负离子的研究进展 . 浙江农林大学学报, 2006, 23(1): 103-108.
    [20] 李秀庭, 邱程明, 王白坡, 章新华, 沈爱巧.  日光大棚促成杨梅提早成熟 . 浙江农林大学学报, 2004, 21(2): 154-158.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190521

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2020/4/1

计量
  • 文章访问数:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2020-01-14

3种常绿树挥发物成分对空气负离子及微生物的影响

doi: 10.11833/j.issn.2095-0756.20190521
    基金项目:  浙江省省院合作资助项目(2018SY07);国家自然科学基金资助项目(31470704)
    作者简介:

    赵亚红,从事植物生理生态研究。E-mail:764660184@qq.com

    通信作者: 王彬,高级实验师,从事植物生理生态研究。E-mail:wangbin@zafu.edu.cn
  • 中图分类号: S718.5

摘要:   目的  研究3种常绿植物挥发性有机化合物(VOCs)抑制空气微生物和净化空气的作用。  方法  采用热脱附/气相色谱/质谱技术,对杨梅Myrica rubra、青梅Vatica mangachapoi、茶Camellia sinensis单株以及空旷地VOCs组成和含量进行了分析,采用自然沉降法研究了VOCs对空气微生物的影响,同时测定了空气负离子数。  结果  杨梅VOCs主要成分有α-草烯、香芹醇、罗勒烯、柠檬烯、壬醛等,萜烯类化合物占总量的78.5%;青梅VOCs主要成分有乙酸叶醇酯、丁酸辛酯、顺式-3-己烯醇、松香芹酮、壬醛、癸醛、辛醛,酯类化合物占总量的54.1%;茶VOCs主要成分有乙酸叶醇酯、丁酸辛酯、水杨酸甲酯、壬醛、癸醛、柠檬烯等,酯类化合物占总量的40.8%。空旷地主要成分为苯类物质,占总量的74.2%;杨梅园内苯类占总量的54.8%,萜烯类占总量的35.6%;青梅园内苯类占总量的35.4%,萜烯类占总量的52.2%;茶园内苯类占总量的50.1%,萜烯类占总量的36.5%。杨梅园、青梅园、茶园、空旷地空气负离子日平均数分别为2 559.2、2 660.0、1 878.4、1 078.8个·cm-3。杨梅园、青梅园和茶园细菌日平均抑制率分别为45.5%、48.7%和39.3%;真菌日平均抑制率分别为39.0%、35.8%和34.6%;放线菌日平均抑制率分别为42.3%、42.2%和39.7%。  结论  植物VOCs对空气微生物的生长有抑制作用,同时具有促进空气负离子形成和改善空气质量的作用。图5表2参38

English Abstract

赵亚红, 徐翠霞, 马玲, 王彬, 韦赛君, 吕嘉欣, 高岩, 张汝民. 3种常绿树挥发物成分对空气负离子及微生物的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190521
引用本文: 赵亚红, 徐翠霞, 马玲, 王彬, 韦赛君, 吕嘉欣, 高岩, 张汝民. 3种常绿树挥发物成分对空气负离子及微生物的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20190521
ZHAO Yahong, XU Cuixia, MA Ling, WANG Bin, WEI Saijun, LÜ Jiaxin, GAO Yan, ZHANG Rumin. Effects of volatile components of three evergreen plants on air anion and microorganism[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190521
Citation: ZHAO Yahong, XU Cuixia, MA Ling, WANG Bin, WEI Saijun, LÜ Jiaxin, GAO Yan, ZHANG Rumin. Effects of volatile components of three evergreen plants on air anion and microorganism[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20190521

返回顶部

目录

    /

    返回文章
    返回