留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同生长阶段尾巨桉人工林土壤-微生物化学计量特征

竹万宽 许宇星 王志超 杜阿朋

竹万宽, 许宇星, 王志超, 杜阿朋. 不同生长阶段尾巨桉人工林土壤-微生物化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200536
引用本文: 竹万宽, 许宇星, 王志超, 杜阿朋. 不同生长阶段尾巨桉人工林土壤-微生物化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200536
ZHU Wankuan, XU Yuxing, WANG Zhichao, DU Apeng. Soil-microbial stoichiometry of Eucalyptus urophylla × E. grandis plantation at different growth stages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200536
Citation: ZHU Wankuan, XU Yuxing, WANG Zhichao, DU Apeng. Soil-microbial stoichiometry of Eucalyptus urophylla × E. grandis plantation at different growth stages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200536

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

不同生长阶段尾巨桉人工林土壤-微生物化学计量特征

doi: 10.11833/j.issn.2095-0756.20200536
基金项目: 广西创新驱动发展专项(桂科AA17204087-9);广东省林业科技创新项目(2018KJCX014);广东省自然科学基金资助项目(2020A1515011404);广东省林业科技创新平台项目(2020-KYXM-09);广东湛江桉树林生态系统国家定位观测研究站运行项目
详细信息
    作者简介: 竹万宽(ORCID: 0000-0002-4344-1688),从事森林生态系统定位观测研究。E-mail: zwk_2015@163.com
    通信作者: 杜阿朋(ORCID: 0000-0001-7010-5674),副研究员,博士,从事森林生态学研究。E-mail: dapzj@163.com
  • 中图分类号: S792.39

Soil-microbial stoichiometry of Eucalyptus urophylla × E. grandis plantation at different growth stages

  • 摘要:   目的  研究幼龄林、成熟林和过熟林阶段尾巨桉Eucalyptus urophylla × E. grandis人工林土壤化学性质及土壤微生物化学计量特征,以丰富桉树林生态系统生态化学计量学领域的基础研究。  方法  以雷州半岛3个处于不同生长阶段的尾巨桉人工林为研究对象,测定0~20、20~40和40~60 cm土层土壤化学性质及土壤微生物碳、氮、磷质量分数,分析土壤及微生物化学计量关系特征。  结果  尾巨桉人工林土壤有机碳、全氮、全磷和土壤微生物碳、氮、磷质量分数均值均以过熟林最高,分别为20.15、1.47、0.88 g·kg−1和583.09、55.20、28.03 mg·kg−1,不同生长阶段差异性特征并不一致。土壤有机碳、全氮、全磷和土壤微生物碳、氮、磷质量分数的垂直变化呈现“表层聚集性”特征,不同生长阶段的土层间差异性元素类别表现不一。成熟林土壤碳氮比(Csoil/Nsoil)和碳磷比(Csoil/Psoil)均值分别为10.52和19.25,显著低于幼龄林和过熟林(P<0.05);过熟林氮磷比(Nsoil/Psoil)均值为1.67,显著低于幼龄林和成熟林(P<0.05)。过熟林土壤微生物碳氮比(Cmic/Nmic)、幼龄林土壤微生物碳磷比(Cmic/Pmic)、氮磷比(Nmic/Pmic)均值分别为8.81、28.36、2.72,均显著低于其他2个阶段(P<0.05)。不同生长阶段土壤微生物碳与土壤有机碳比值(Cmic/Csoil)无显著差异,土壤微生物氮与土壤全氮比(Nmic/Nsoil)和土壤微生物磷与土壤全磷比(Pmic/Psoil)均为过熟林显著低于其他阶段(P<0.05)。冗余分析表明:幼龄林、成熟林和过熟林土壤微生物的首要影响因子分别为Csoil、Csoil/Psoil和Nsoil  结论  尾巨桉人工林土壤微生物生物量在过熟林阶段最高,土壤微生物生物量与土壤化学性质关系密切,林分不同生长阶段土壤微生物受土壤影响的指标和程度具有差异性,生长后期应注重养分有效性对土壤微生物生长繁殖的影响。图4表2参54
  • 图  1  不同生长阶段土壤与土壤微生物碳、氮、磷质量分数

    Figure  1  Carbon, nitrogen and phosphorus contents of soil and soil microbial biomass in different growth stages

    图  2  不同生长阶段土壤与土壤微生物碳、氮、磷化学计量比

    Figure  2  Carbon, nitrogen and phosphorus stoichiometric ratios of soil and soil microbial biomass with different growth stages

    图  3  不同生长阶段土壤微生物与土壤碳、氮、磷之比

    Figure  3  Carbon, nitrogen and phosphorus stoichiometric ratios of soil and soil microbial biomass with different growth stages

    图  4  不同生长阶段土壤与土壤微生物碳、氮、磷及化学计量比的冗余分析

    Figure  4  Carbon, nitrogen and phosphorus contents and stoichiometric ratios of soil and soil microbial biomass with different growth stages

    表  1  样地基本概况

    Table  1.   Basic situation of sample plots

    龄级样地林龄/a海拔/m平均胸
    径/cm
    平均树
    高/m
    林分密度/
    (株·hm−2)
    叶面积
    指数
    0~60 cm土壤
    容重/(g·cm−3)
    pH
    幼龄林121168.0612.2015750.8291.054.6
    221207.8511.9314500.7320.965.0
    321178.1412.3315860.9161.035.2
    成熟林1610414.6312.488570.7931.084.8
    2610813.9715.379861.0391.074.8
    3610311.9715.1511741.1841.085.0
    过熟林1911322.8425.407251.1171.074.5
    2911920.1424.977141.1011.044.7
    3912519.7422.586750.8840.974.7
    下载: 导出CSV

    表  2  土壤和土壤微生物碳、氮、磷及化学计量比的相关性

    Table  2.   Correlation of soil and microbe biomass C, N, P content and their stoichiometry

    阶段指标CsoilNsoilPsoilCsoil/NsoilCsoil/PsoilNsoil/PsoilCmic/CsoilNmic/NsoilPmic/Psoil
    幼龄林Cmic0.969**0.941**0.3830.2900.960**0.923**0.314−0.3240.825**
    Nmic0.5810.6100.1010.1020.5950.6230.746*0.3300.432
    Pmic0.853**0.854**0.2710.2020.863**0.856**0.137−0.4450.995**
    Cmic/Nmic0.785**0.710*0.3410.3270.775*0.689*−0.361−0.842**0.743*
    Cmic/Pmic−0.308−0.290−0.099−0.130−0.302−0.2940.0710.148−0.681*
    Nmic/Pmic−0.611−0.497−0.291−0.411−0.606−0.4750.3750.508−0.753*
    成熟林Cmic0.5800.4170.0720.7410.6150.4350.3630.1910.532
    Nmic−0.0090.040−0.001−0.096−0.0180.0340.4550.738*−0.098
    Pmic0.810**0.744*0.374−0.1190.830**0.753*−0.336−0.5440.997**
    Cmic/Nmic0.4190.3470.1080.0730.4440.363−0.274−0.719*0.450
    Cmic/Pmic−0.402−0.553−0.1880.440−0.418−0.5730.4340.664−0.790*
    Nmic/Pmic−0.437−0.498−0.1220.260−0.467−0.5240.4450.795*−0.785*
    过熟林Cmic0.812**0.906**0.4580.2260.833**0.850**0.2740.5650.751*
    Nmic0.922**0.785*0.776*0.6300.882**0.605−0.1630.882**0.463
    Pmic0.6450.6530.3500.2630.6580.6070.2260.3890.977**
    Cmic/Nmic−0.578−0.224−0.864**−0.805**−0.4580.0500.595−0.846**0.146
    Cmic/Pmic0.0010.1200.050−0.1400.0020.1180.0030.083−0.612
    Nmic/Pmic0.4650.2930.5710.5010.4090.128−0.4100.675*−0.404
      说明:*表示差异显著(P<0.05);**表示差异极显著(P<0.01)
    下载: 导出CSV
  • [1] DEVI N B, YADAVA P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India [J]. Appl Soil Ecol, 2006, 31(3): 220 − 227. doi:  10.1016/j.apsoil.2005.05.005
    [2] LEFF J W, JONES S E, PROBER S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe [J]. Proc Natl Acad Sci USA, 2015, 112(35): 10967 − 10972. doi:  10.1073/pnas.1508382112
    [3] HE Z L, YANG X E, BALIGAR V C, et al. Microbiological and biochemical indexing systems for assessing quality of acid soils [J]. Adv Agron, 2003, 78(2): 89 − 138.
    [4] BUCHKOWSKI R W, SCHMITZ O J, BRADFORD M A. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling [J]. Ecology, 2015, 96(4): 1139 − 1149. doi:  10.1890/14-1327.1
    [5] ADAIR K L, WRATTEN S, LEAR G. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial [J]. Environ Microbiol Rep, 2013, 5(3): 404 − 413. doi:  10.1111/1758-2229.12049
    [6] SHILLAM L, HOPKINS D W, BADALUCCO L, et al. Structural diversity and enzyme activity of volcanic soils at different stages of development and response to experimental disturbance [J]. Soil Biol Biochem, 2008, 40(9): 2182 − 2185. doi:  10.1016/j.soilbio.2008.04.006
    [7] 杨凯, 朱教君, 张金鑫, 等. 不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J]. 生态学报, 2009, 29(10): 5500 − 5507. doi:  10.3321/j.issn:1000-0933.2009.10.039

    YANG Kai, ZHU Jiaojun, ZHANG Jinxin, et al. Seasonal dynamics of soil microbial biomass C and N in two larch plantation forests with different ages in Northeastern China [J]. Acta Ecol Sin, 2009, 29(10): 5500 − 5507. doi:  10.3321/j.issn:1000-0933.2009.10.039
    [8] 范媛媛, 李懿, 李启迪. 不同林龄油松土壤微生物、酶活性和养分特征[J]. 水土保持研究, 2019, 26(6): 58 − 64.

    FAN Yuanyuan, LI Yi, LI Qidi. Microbe, enzymatic activity and nutrient contents of soils in different stand ages of Pinus tabuliformis [J]. Res Soil Water Conserv, 2019, 26(6): 58 − 64.
    [9] 王薪琪, 韩轶, 王传宽, 等. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597 − 609. doi:  10.17521/cjpe.2017.0011

    WANG Xinqi, HAN Yi, WANG Chuankuan, et al. Soil microbial biomass and its seasonality in deciduous broadleaved forests with different stand ages in the Mao’ershan region, Northeast China [J]. Chin J Plant Ecol, 2017, 41(6): 597 − 609. doi:  10.17521/cjpe.2017.0011
    [10] 牛小云, 孙晓梅, 陈东升, 等. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J]. 应用生态学报, 2015, 26(9): 2663 − 2672.

    NIU Xiaoyun, SUN Xiaomei, CHEN Dongsheng, et al. Soil microorganisms, nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province, China [J]. Chin J Appl Ecol, 2015, 26(9): 2663 − 2672.
    [11] 王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征[J]. 生态学报, 2018, 38(11): 3848 − 3858.

    WANG Chuanjie, WANG Qiqi, XU Hu, et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland [J]. Acta Ecol Sin, 2018, 38(11): 3848 − 3858.
    [12] 竹万宽, 陈少雄, 王志超, 等. 不同林龄尾巨桉人工林凋落物和土壤C、N、P化学计量特征[J]. 热带亚热带植物学报, 2017, 25(2): 127 − 135. doi:  10.11926/jtsb.3665

    ZHU Wankuan, CHEN Shaoxiong, WANG Zhichao, et al. Ecological stoichiometric characteristrics of carbon, nitrogen and phosphorus in litter and soil of Eucalyptus urophylla × E. grandis plantation at different forest ages [J]. J Trop Subtrop Bot, 2017, 25(2): 127 − 135. doi:  10.11926/jtsb.3665
    [13] 黄国勤, 赵其国. 广西桉树种植的历史、现状、生态问题及应对策略[J]. 生态学报, 2014, 34(18): 5142 − 5152.

    HUANG Guoqin, ZHAO Qiguo. The history, status quo, ecological problems and countermeasures of Eucalyptus plantations in Guangxi [J]. Acta Ecol Sin, 2014, 34(18): 5142 − 5152.
    [14] 许宇星, 王志超, 竹万宽, 等. 雷州半岛3种速生人工林下土壤生态化学计量特征[J]. 浙江农林大学学报, 2018, 35(1): 35 − 42. doi:  10.11833/j.issn.2095-0756.2018.01.005

    XU Yuxing, WANG Zhichao, ZHU Wankuan, et al. Ecological stoichiometric characteristics of soil C, N, P, and K in three types of plantations on the Leizhou Peninsula [J]. J Zhejiang A&F Univ, 2018, 35(1): 35 − 42. doi:  10.11833/j.issn.2095-0756.2018.01.005
    [15] 许宇星, 王志超, 竹万宽, 等. 不同品种桉树林生活叶-凋落物-土壤碳氮磷化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2018, 46(3): 94 − 100.

    XU Yuxing, WANG Zhichao, ZHU Wankuan, et al. Stoichiometric characteristics of C, N and P in leaf-litter-soil of different Eucalyptus varieties [J]. J Northwest A&F Univ Nat Sci Ed, 2018, 46(3): 94 − 100.
    [16] 陈亚梅, 刘洋, 张健, 等. 巨桉混交林不同树种C、N、P化学计量特征[J]. 生态学杂志, 2015, 34(8): 2096 − 2102.

    CHEN Yamei, LIU Yang, ZHANG Jian, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of different tree species in Eucalyptus grandis mixed plantation [J]. Chin J Ecol, 2015, 34(8): 2096 − 2102.
    [17] GÜSEWELL S. N: P ratios in terrestrial plants: variation and functional significance [J]. New Phytol, 2004, 164(2): 243 − 266. doi:  10.1111/j.1469-8137.2004.01192.x
    [18] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 133 − 135.
    [19] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass C by fumigation-extraction: an automated procedure [J]. Soil Biol Biochem, 1990, 22(8): 1167 − 1169. doi:  10.1016/0038-0717(90)90046-3
    [20] 黄懿梅, 安韶山, 曲东, 等. 两种测定土壤微生物量氮方法的比较初探[J]. 植物营养与肥料学报, 2005, 11(6): 830 − 835. doi:  10.3321/j.issn:1008-505X.2005.06.020

    HUANG Yimei, AN Shaoshan, QU Dong, et al. Comparison between two methods of determination soil microbial biomass nitrogen [J]. Plant Nutr Fert Sci, 2005, 11(6): 830 − 835. doi:  10.3321/j.issn:1008-505X.2005.06.020
    [21] 吴金水, 肖和艾, 陈桂秋, 等. 旱地土壤微生物磷测定方法研究[J]. 土壤学报, 2003, 40(1): 70 − 78. doi:  10.3321/j.issn:0564-3929.2003.01.010

    WU Jinshui, XIAO Heai, CHEN Guiqiu, et al. Measurement of microbial biomass-P in upland soils in China [J]. Acta Pedol Sin, 2003, 40(1): 70 − 78. doi:  10.3321/j.issn:0564-3929.2003.01.010
    [22] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 107-119.
    [23] XU Yuxing, DU Apeng, WANG Zhichao, et al. Effects of different rotation periods of Eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity [J]. For Ecol Manage, 2020, 456: 117683. doi:  10.1016/j.foreco.2019.117683
    [24] TROGISCH S, HE Jinsheng, HECTOR A, et al. Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China [J]. Plant Soil, 2016, 400(1/2): 337 − 350.
    [25] 胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展[J]. 土壤通报, 2006, 37(1): 170 − 176. doi:  10.3321/j.issn:0564-3945.2006.01.038

    HU Yalin, WANG Silong, YAN Shaokui. Research advances on the factors influencing the activity and community structure of soil microorganism [J]. Chin J Soil Sci, 2006, 37(1): 170 − 176. doi:  10.3321/j.issn:0564-3945.2006.01.038
    [26] 钟文辉, 蔡祖聪. 土壤管理措施及环境因素对土壤微生物多样性影响研究进展[J]. 生物多样性, 2004, 12(4): 456 − 465. doi:  10.3321/j.issn:1005-0094.2004.04.010

    ZHONG Wenhui, CAI Zucong. Effect of soil management practices and environmental factors on soil microbial diversity: a review [J]. Biodiv Sci, 2004, 12(4): 456 − 465. doi:  10.3321/j.issn:1005-0094.2004.04.010
    [27] 时伟伟, 彭晚霞, 宋同清, 等. 不同林龄尾巨桉人工林土壤养分与微生物的耦合关系[J]. 西北植物学报, 2013, 33(7): 1452 − 1458.

    SHI Weiwei, PENG Wanxia, SONG Tongqing, et al. Coupling relationships between soil microbe and soil nutrient in Eucalyptus urophylla × E. grandis plantation at different stand ages [J]. Acta Bot Boreal-Occident Sin, 2013, 33(7): 1452 − 1458.
    [28] 易桂田, 王晓丽, 刘占锋, 等. 亚热带地区不同人工林配置下土壤微生物量碳及微生物墒的年际动态[J]. 生态环境学报, 2018, 27(2): 224 − 231.

    YI Guitian, WANG Xiaoli, LIU Zhanfeng, et al. Interannual dynamics of soil microbial biomass carbon under different plantations in Subtropical China [J]. Ecol Environ Sci, 2018, 27(2): 224 − 231.
    [29] 冯健, 张健. 巨桉人工林地土壤微生物类群的生态分布规律[J]. 应用生态学报, 2005, 16(8): 1422 − 1426. doi:  10.3321/j.issn:1001-9332.2005.08.008

    FENG Jian, ZHAGN Jian. Ecological distribution patterns of soil microbes under artificial Eucalyptus grandis stand [J]. Chin J Appl Ecol, 2005, 16(8): 1422 − 1426. doi:  10.3321/j.issn:1001-9332.2005.08.008
    [30] 雍强, 陈彪, 林波, 等. 雷州半岛不同林龄尾巨桉人工林凋落物产量、养分归还及分解动态研究[J]. 桉树科技, 2019, 36(3): 16 − 21.

    YONG Qiang, CHEN Biao, LIN Bo, et al. Litter production, nutrient return and decomposition in Eucalyptus plantations of different ages in Leizhou Peninsula [J]. Eucalypt Sci Technol, 2019, 36(3): 16 − 21.
    [31] ZHOU Z H, WANG C K. Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems [J]. Biogeosci Discuss, 2015, 12: 11191 − 11216.
    [32] LI Pin, YANG Yuanhe, HAN Wenxuan, et al. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems [J]. Global Ecol Biogeogr, 2014, 23(9): 979 − 987. doi:  10.1111/geb.12190
    [33] LI Yong, WU Jinshui, LIU Shoulong, et al. Is the C: N: P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China? [J]. Global Biogeochem Cycles, 2012, 26(4): 4002. doi: 10.1029/2010GB004399.
    [34] 岑龙沛, 严友进, 戴全厚, 等. 喀斯特不同土地利用类型裂隙土壤有机碳及磷素赋存特征[J]. 生态学报, 2020, 40(21): 7567 − 7575.

    CEN Longpei, YAN Youjin, DAI Quanhou, et al. Occurrence characteristics of organic carbon and phosphorus in fissured soil under different land use types in karst area [J]. Acta Ecol Sin, 2020, 40(21): 7567 − 7575.
    [35] 吴艳宏, 周俊, 邴海健, 等. 贡嘎山海螺沟典型植被带总磷分布特征[J]. 地球科学与环境学报, 2012, 34(3): 70 − 74.

    WU Yanhong, ZHOU Jun, BING Haijian, et al. Characteristic of total phosphorus distribution in typical vegetation zones along Hailuogou of Gongga Mountain [J]. J Earch Sci Environ, 2012, 34(3): 70 − 74.
    [36] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化[J]. 应用生态学报, 2019, 30(6): 1901 − 1910.

    LIU Bao, WU Wenfeng, LIN Sizu, et al. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests [J]. Chin J Appl Ecol, 2019, 30(6): 1901 − 1910.
    [37] CHEN C R, XU Z H, ZHANG S L, et al. Soluble organic nitrogen pools in forest soils of subtropical Australia [J]. Plant soil, 2005, 277(1/2): 285 − 297.
    [38] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques [J]. Soil Biol Biochem, 2002, 34(3): 387 − 401. doi:  10.1016/S0038-0717(01)00199-7
    [39] WARDLE D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biol Rev, 1992, 67(3): 321 − 358. doi:  10.1111/j.1469-185X.1992.tb00728.x
    [40] LITTON C M, RYAN M G, KNIGHT D H, et al. Soil-surface carbon dioxide efflux and microbial biomass in relation to tree density 13 years after a stand replacing fire in a lodgepole pine ecosystem [J]. Global Change Biol, 2003, 9(5): 680 − 696. doi:  10.1046/j.1365-2486.2003.00626.x
    [41] SONG Piao, REN Haibao, JIA Qi, et al. Effects of historical logging on soil microbial communities in a subtropical forest in southern China [J]. Plant Soil, 2015, 397(1/2): 115 − 126.
    [42] CHEN Yuanqi, LIU Zhanfeng, RAO Xingquan, et al. Carbon storage and allocation pattern in plant biomass among different forest plantation stands in Guangdong, China [J]. Forests, 2015, 6(3): 794 − 808.
    [43] CHEN Yuanqi, YU Shiqin, LIU Suping, et al. Reforestation makes a minor contribution to soil carbon accumulation in the short term: Evidence from four subtropical plantations [J]. For Ecol Manage, 2017, 384: 400 − 405. doi:  10.1016/j.foreco.2016.10.053
    [44] TIAN Hanqin, CHEN Guangsheng, ZHANG Chi, et al. Pattern and variation of C: N: P ratios in China's soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98(1/3): 139 − 151.
    [45] 曹娟, 闫文德, 项文化, 等. 湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J]. 林业科学, 2015, 51(7): 1 − 8.

    CAO Juan, YAN Wende, XIANG Wenhua, et al. Stoichiometry characterization of soil C, N, and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China [J]. Sci Silv Sin, 2015, 51(7): 1 − 8.
    [46] XU Xiaofeng, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems [J]. Global Ecol Biogeogr, 2013, 22(6): 737 − 749. doi:  10.1111/geb.12029
    [47] 李品, 木勒德尔·吐尔汗拜, 田地, 等. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532 − 542. doi:  10.17521/cjpe.2019.0075

    LI Pin, Muledeer Tuerhanbai, TIAN Di, et al. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 532 − 542. doi:  10.17521/cjpe.2019.0075
    [48] CLEVELAND C C, LIPTZIN D. C: N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? [J]. Biogeochemistry, 2007, 85(3): 235 − 252. doi:  10.1007/s10533-007-9132-0
    [49] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 50-64.
    [50] PAUL E A, CLARK F E. Soil Microbiology and Biochemistry[M]. San Diego: Academic Press, 1989: 131-146.
    [51] MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources [J]. Front Microbiol, 2014, 5(22): 22. doi:  10.3389/fmicb.2014.00022
    [52] ANDERSON J P E, DOMSCH K H. A physiological method for the quantitative measurement of microbial biomass in soils [J]. Soil Biol Biochem, 1978, 10(3): 215 − 221. doi:  10.1016/0038-0717(78)90099-8
    [53] VANCE E D, CHAPIN Ⅲ F S. Substrate limitations to microbial activity in taiga forest floors [J]. Soil Biol Biochem, 2001, 33(2): 173 − 188. doi:  10.1016/S0038-0717(00)00127-9
    [54] 吴建平, 韩新辉, 许亚东, 等. 黄土丘陵区不同植被类型下土壤与微生物C, N, P化学计量特征研究[J]. 草地学报, 2016, 24(4): 783 − 792. doi:  10.11733/j.issn.1007-0435.2016.04.011

    WU Jianping, HAN Xinhui, XU Yadong, et al. Ecological stoichiometry of soil and soil microbial biomass C, N, P under grain-to-green program in Loess Hilly Region [J]. Acta Agrestia Sin, 2016, 24(4): 783 − 792. doi:  10.11733/j.issn.1007-0435.2016.04.011
  • [1] 周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波.  土壤微塑料污染的生态效应 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200729
    [2] 王霞, 胡海波, 程璨, 张帅, 陈建宇, 卢洪霖.  北亚热带麻栎林土壤植硅体碳储量研究 . 浙江农林大学学报, 2021, 38(1): 1-9. doi: 10.11833/j.issn.2095-0756.20200283
    [3] 王志超, 许宇星, 竹万宽, 杜阿朋.  雷州半岛尾叶桉人工林夜间耗水特征及驱动因素 . 浙江农林大学学报, 2020, 37(4): 646-653. doi: 10.11833/j.issn.2095-0756.20190531
    [4] 李非凡, 孙冰, 裴男才, 闫玮明, 罗鑫华.  粤北3种林分凋落叶-根系-土壤生态化学计量特征 . 浙江农林大学学报, 2020, 37(1): 18-26. doi: 10.11833/j.issn.2095-0756.2020.01.003
    [5] 赵亚红, 徐翠霞, 马玲, 王彬, 韦赛君, 吕嘉欣, 高岩, 张汝民.  3种常绿树挥发物成分对空气负离子及微生物的影响 . 浙江农林大学学报, 2020, 37(4): 654-663. doi: 10.11833/j.issn.2095-0756.20190521
    [6] 蒋仲龙, 叶柳欣, 刘军, 林松, 徐旻昱, 吴家森, 刘娟, 刘海英.  封育年限对毛竹林凋落物和土壤持水效能的影响 . 浙江农林大学学报, 2020, 37(5): 860-866. doi: 10.11833/j.issn.2095-0756.20190603
    [7] 许俊丽, 张桂莲, 张希金, 高志文, 仲启铖, 张亚萍, 宋坤, 达良俊.  上海市人工林土壤理化性质与群落特征的相关性 . 浙江农林大学学报, 2018, 35(6): 1017-1026. doi: 10.11833/j.issn.2095-0756.2018.06.004
    [8] 王莺, 陆荣杰, 吴家森, 姜培坤, 童志鹏.  山核桃林闭合区内径流氮磷流失特征 . 浙江农林大学学报, 2018, 35(5): 802-809. doi: 10.11833/j.issn.2095-0756.2018.05.003
    [9] 许宇星, 王志超, 竹万宽, 杜阿朋.  雷州半岛3种速生人工林下土壤生态化学计量特征 . 浙江农林大学学报, 2018, 35(1): 35-42. doi: 10.11833/j.issn.2095-0756.2018.01.005
    [10] 褚欣, 潘萍, 郭丽玲, 宁金魁, 欧阳勋志, 吴自荣.  不同密度飞播马尾松林凋落物及土壤持水性能比较分析 . 浙江农林大学学报, 2017, 34(5): 808-815. doi: 10.11833/j.issn.2095-0756.2017.05.006
    [11] 吕文强, 周传艳, 闫俊华, 李世杰.  贵州省喀斯特地区4种典型人工林叶片化学计量特征 . 浙江农林大学学报, 2016, 33(6): 984-990. doi: 10.11833/j.issn.2095-0756.2016.06.009
    [12] 陈珊, 陈双林.  集约经营对雷竹林生态系统稳定性的影响 . 浙江农林大学学报, 2013, 30(4): 578-584. doi: 10.11833/j.issn.2095-0756.2013.04.018
    [13] 何佩云, 丁贵杰, 谌红辉.  第1代和第2代马尾松林土壤微生物及生化作用比较 . 浙江农林大学学报, 2012, 29(5): 703-709. doi: 10.11833/j.issn.2095-0756.2012.05.011
    [14] 郝建, 陈厚荣, 王凌晖, 秦武明, 曾冀, 张明慧.  尾巨桉纯林土壤浸提液对4种作物的生理影响 . 浙江农林大学学报, 2011, 28(5): 823-828. doi: 10.11833/j.issn.2095-0756.2011.05.024
    [15] 何沙娥, 张智俊.  适用于竹林土壤PCR-DGGE分析用的微生物总DNA提取及纯化方法 . 浙江农林大学学报, 2009, 26(2): 164-168.
    [16] 王冬云, 张卓文, 苏开君, 王光, 雷云飞, 林明磊, 张培, 钟庸.  广州流溪河流域毛竹林的水文生态效应 . 浙江农林大学学报, 2008, 25(1): 37-41.
    [17] 杨同辉, 达良俊, 宋永昌, 杨永川, 王良衍.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅰ)群落结构及主要组成树种生物量特征 . 浙江农林大学学报, 2005, 22(4): 363-369.
    [18] 徐秋芳, 姜培坤, 俞益武, 孙建敏.  不同林用地土壤抗蚀性能研究 . 浙江农林大学学报, 2001, 18(4): 362-365.
    [19] 郭建钢, 周新年, 丁艺, 粟金云, 邱仁辉.  不同集材方式对森林土壤理化性质的影响 . 浙江农林大学学报, 1997, 14(4): 344-349.
    [20] 罗汝英.  晚近北美森林土壤研究动态 . 浙江农林大学学报, 1993, 10(2): 203-208.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200536

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/4/1

计量
  • 文章访问数:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-21
  • 修回日期:  2021-03-25
  • 网络出版日期:  2021-04-15

不同生长阶段尾巨桉人工林土壤-微生物化学计量特征

doi: 10.11833/j.issn.2095-0756.20200536
    基金项目:  广西创新驱动发展专项(桂科AA17204087-9);广东省林业科技创新项目(2018KJCX014);广东省自然科学基金资助项目(2020A1515011404);广东省林业科技创新平台项目(2020-KYXM-09);广东湛江桉树林生态系统国家定位观测研究站运行项目
    作者简介:

    竹万宽(ORCID: 0000-0002-4344-1688),从事森林生态系统定位观测研究。E-mail: zwk_2015@163.com

    通信作者: 杜阿朋(ORCID: 0000-0001-7010-5674),副研究员,博士,从事森林生态学研究。E-mail: dapzj@163.com
  • 中图分类号: S792.39

摘要:   目的  研究幼龄林、成熟林和过熟林阶段尾巨桉Eucalyptus urophylla × E. grandis人工林土壤化学性质及土壤微生物化学计量特征,以丰富桉树林生态系统生态化学计量学领域的基础研究。  方法  以雷州半岛3个处于不同生长阶段的尾巨桉人工林为研究对象,测定0~20、20~40和40~60 cm土层土壤化学性质及土壤微生物碳、氮、磷质量分数,分析土壤及微生物化学计量关系特征。  结果  尾巨桉人工林土壤有机碳、全氮、全磷和土壤微生物碳、氮、磷质量分数均值均以过熟林最高,分别为20.15、1.47、0.88 g·kg−1和583.09、55.20、28.03 mg·kg−1,不同生长阶段差异性特征并不一致。土壤有机碳、全氮、全磷和土壤微生物碳、氮、磷质量分数的垂直变化呈现“表层聚集性”特征,不同生长阶段的土层间差异性元素类别表现不一。成熟林土壤碳氮比(Csoil/Nsoil)和碳磷比(Csoil/Psoil)均值分别为10.52和19.25,显著低于幼龄林和过熟林(P<0.05);过熟林氮磷比(Nsoil/Psoil)均值为1.67,显著低于幼龄林和成熟林(P<0.05)。过熟林土壤微生物碳氮比(Cmic/Nmic)、幼龄林土壤微生物碳磷比(Cmic/Pmic)、氮磷比(Nmic/Pmic)均值分别为8.81、28.36、2.72,均显著低于其他2个阶段(P<0.05)。不同生长阶段土壤微生物碳与土壤有机碳比值(Cmic/Csoil)无显著差异,土壤微生物氮与土壤全氮比(Nmic/Nsoil)和土壤微生物磷与土壤全磷比(Pmic/Psoil)均为过熟林显著低于其他阶段(P<0.05)。冗余分析表明:幼龄林、成熟林和过熟林土壤微生物的首要影响因子分别为Csoil、Csoil/Psoil和Nsoil  结论  尾巨桉人工林土壤微生物生物量在过熟林阶段最高,土壤微生物生物量与土壤化学性质关系密切,林分不同生长阶段土壤微生物受土壤影响的指标和程度具有差异性,生长后期应注重养分有效性对土壤微生物生长繁殖的影响。图4表2参54

English Abstract

竹万宽, 许宇星, 王志超, 杜阿朋. 不同生长阶段尾巨桉人工林土壤-微生物化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200536
引用本文: 竹万宽, 许宇星, 王志超, 杜阿朋. 不同生长阶段尾巨桉人工林土壤-微生物化学计量特征[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200536
ZHU Wankuan, XU Yuxing, WANG Zhichao, DU Apeng. Soil-microbial stoichiometry of Eucalyptus urophylla × E. grandis plantation at different growth stages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200536
Citation: ZHU Wankuan, XU Yuxing, WANG Zhichao, DU Apeng. Soil-microbial stoichiometry of Eucalyptus urophylla × E. grandis plantation at different growth stages[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200536

返回顶部

目录

    /

    返回文章
    返回