留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤微塑料污染的生态效应

周雨苗 何刚辉 马绍峰 邵方雷 费禹凡 黄顺寅 章海波

周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波. 土壤微塑料污染的生态效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200729
引用本文: 周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波. 土壤微塑料污染的生态效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200729
ZHOU Yumiao, HE Ganghui, MA Shaofeng, SHAO Fanglei, FEI Yufan, HUANG Shunyin, ZHANG Haibo. Ecological effects of microplastics contamination in soils[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200729
Citation: ZHOU Yumiao, HE Ganghui, MA Shaofeng, SHAO Fanglei, FEI Yufan, HUANG Shunyin, ZHANG Haibo. Ecological effects of microplastics contamination in soils[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200729

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

土壤微塑料污染的生态效应

doi: 10.11833/j.issn.2095-0756.20200729
基金项目: 国家自然科学基金资助项目(41771351,41877142,41991330);浙江省自然科学基金项目(LZ19D10001);浙江农林大学人才启动项目(2017FR021)
详细信息
    作者简介: 周雨苗(ORCID: 0000-0003-2575-6560),从事土壤污染研究。E-mail: 1143896378@qq.com
    通信作者: 章海波(ORCID: 0000-0003-2041-2259),教授,博士生导师,从事土壤环境与污染修复研究。E-mail: hbzhang@zafu.edu.cn
  • 中图分类号: X53; S15

Ecological effects of microplastics contamination in soils

  • 摘要: 土壤环境中微塑料积累量大且不易降解,因此微塑料长期残留对土壤生态系统的影响已引起广泛关注。通过收集近年来有关土壤微塑料污染及其效应相关的文献,全面系统介绍了土壤微塑料积累后,土壤物理环境的变化、土壤动物摄入及其肠道微生物的响应、土壤微生物和土壤酶活性响应、以及植物对微塑料的吸收及其效应等方面的最新研究进展。现有研究结果表明:微塑料污染对土壤容重、团聚体组成和持水性等土壤物理性质有明显改变,而这些改变是影响土壤酶活性、微生物群落组成、甚至植物生长的关键因素。也有一些研究关注土壤无脊椎动物(如蚯蚓Lumbricus terrestris、跳虫Folsomia candida等)对微塑料在土壤中迁移的影响。同时,微塑料也会被这些土壤动物所摄食,并导致土壤动物体内肠道微生物群落组成的变化以及对其生长产生影响。此外,微塑料在陆地生态系统食物链中的积累及其效应也受到关注,比如,被蚯蚓摄食的微塑料可通过鸡Gallus gallus domesticus摄食蚯蚓进入鸡体内积累。在系统介绍土壤微塑料污染生态效应的研究进展基础上,结合微塑料组成与性质的复杂性以及当前研究的不足,提出4个未来研究方向:①建立土壤微塑料污染毒理学诊断的标准化方法体系;②研究土壤微塑料与微生物、植物和土壤动物之间的作用机理;③揭示微塑料与物质转化之间的关键微生物学机制;④开展不同土壤生态系统中的“塑料圈”研究。这些研究成果可为评估土壤微塑料污染的生态效应提供科学支撑。参80
  • [1] ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment [J]. TrAC Trends Anal Chem, 2015, 65: 47 − 53. doi:  10.1016/j.trac.2014.10.011
    [2] DUIS K, COORS A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects[J]. Environ Sci Eur, 2016, 28(1): 2. doi: 10.1186/s12302-015-0069-y.
    [3] de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance [J]. Environ Sci Technol, 2019, 53(10): 6044 − 6052. doi:  10.1021/acs.est.9b01339
    [4] RILLIG M C, LEHMANN A. Microplastic in terrestrial ecosystems [J]. Science, 2020, 368(6498): 1430 − 1431. doi:  10.1126/science.abb5979
    [5] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Sci Total Environ, 2017, 586: 127 − 141. doi:  10.1016/j.scitotenv.2017.01.190
    [6] FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction [J]. Environ Sci Technol, 2016, 50(11): 5774 − 5780. doi:  10.1021/acs.est.6b00816
    [7] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [J]. Environ Sci Technol, 2016, 50(20): 10777 − 10779. doi:  10.1021/acs.est.6b04140
    [8] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Sci Total Environ, 2018, 642: 12 − 20. doi:  10.1016/j.scitotenv.2018.06.004
    [9] 费禹凡, 黄顺寅, 王佳青, 等. 设施农业土壤微塑料污染及其对细菌群落多样性的影响[J]. 科学通报, 2020. doi: 10.1360/TB-2020-0685.

    FEI Yufan, HUANG Shunyin, WANG Jiaqing, et al. Microplastics contamination in the protected agricultural soils and its effects on bacterial community diversity[J]. Chin Sci Bull, 2020. doi:  10.1360/TB-2020-0685.
    [10] LAMONT JR W J. Plastics: modifying the microclimate for the production of vegetable crops [J]. HortTechnology, 2005, 15(3): 477 − 481. doi:  10.21273/HORTTECH.15.3.0477
    [11] HE Defu, LUO Yongming, LU Shibo, et al. Microplastics in soils: analytical methods, pollution characteristics and ecological risks [J]. TrAC Trends Anal Chem, 2018, 109: 163 − 172. doi:  10.1016/j.trac.2018.10.006
    [12] ESPÍ E, SALMERÓN A, FONTECHA A, et al. Plastic films for agricultural applications [J]. J Plast Film Sheet, 2016, 22(2): 85 − 102.
    [13] 赵岩, 陈学庚, 温浩军, 等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报, 2017, 48(6): 1 − 14. doi:  10.6041/j.issn.1000-1298.2017.06.001

    ZHAO Yan, CHEN Xuegeng, WEN Haojun, et al. Research status and prospect of control technology for residual plastic film pollution in farmland [J]. Trans Chin Soc Agric Mach, 2017, 48(6): 1 − 14. doi:  10.6041/j.issn.1000-1298.2017.06.001
    [14] ZHOU Bianying, WANG Jiaqing, ZHANG Haibo, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film [J]. J Hazard Mater, 2020, 388. doi: 10.1016/j.jhazmat.2019.121814.
    [15] BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources [J]. Sci Total Environ, 2018, 612: 422 − 435. doi:  10.1016/j.scitotenv.2017.08.086
    [16] LI Xiaowei, CHEN Lubei, MEI Qingqing, et al. Microplastics in sewage sludge from the wastewater treatment plants in China [J]. Water Res, 2018, 142: 75 − 85. doi:  10.1016/j.watres.2018.05.034
    [17] ZHOU Qian, TIAN Chongguo, LUO Yongming. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chin Sci Bull, 2017, 62(33): 3902 − 3909. doi:  10.1360/N972017-00956
    [18] SCHEURER M, BIGALKE M. Microplastics in swiss floodplain soils [J]. Environ Sci Technol, 2018, 52(6): 3591 − 3598. doi:  10.1021/acs.est.7b06003
    [19] ZALASIEWICZ J, WATERS C N, IVAR DO SUL J A, et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene [J]. Anthropocene, 2016, 13: 4 − 17. doi:  10.1016/j.ancene.2016.01.002
    [20] JIANG Xiaojin, LIU Wenjie, WANG Enheng, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China [J]. Soil Till Res, 2017, 166: 100 − 107. doi:  10.1016/j.still.2016.10.011
    [21] DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environ Sci Technol, 2018, 52(17): 9656 − 9665. doi:  10.1021/acs.est.8b02212
    [22] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment [J]. Sci Total Environ, 2019, 670: 1 − 7. doi:  10.1016/j.scitotenv.2019.03.149
    [23] WAN Yong, WU Chenxi, XUE Qiang, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil [J]. Sci Total Environ, 2019, 654: 576 − 582. doi:  10.1016/j.scitotenv.2018.11.123
    [24] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground [J]. Environ Sci Technol, 2019, 53(19): 11496 − 11506. doi:  10.1021/acs.est.9b03304
    [25] LIANG Yun, LEHMANN A, BALLHAUSEN M B, et al. Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi [J]. Front Microbiol, 2019, 10. doi: 10.3389/fmicb.2019.02018.
    [26] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris [J]. Environ Pollut, 2017, 220: 523 − 531. doi:  10.1016/j.envpol.2016.09.096
    [27] RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms [J]. Sci Rep, 2017, 7(1). doi: 10.1038/s41598-017-01594-7.
    [28] MAAß S, DAPHI D, LEHMANN A, et al. Transport of microplastics by two collembolan species [J]. Environ Pollut, 2017, 225: 456 − 459. doi:  10.1016/j.envpol.2017.03.009
    [29] ZHU Dong, BI Qingfang, XIANG Qian, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida [J]. Environ Pollut, 2018, 235: 150 − 154. doi:  10.1016/j.envpol.2017.12.058
    [30] RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems [J]. Front Plant Sci, 2017, 8. doi: 10.3389/fpls.2017.01805.
    [31] WANG Jie, COFFIN S, SUN Chengliang, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environ Pollut, 2019, 249: 776 − 784. doi:  10.1016/j.envpol.2019.03.102
    [32] SELONEN S, DOLAR A, JEMEC KOKALJ A, et al. Exploring the impacts of plastics in soil-The effects of polyester textile fibers on soil invertebrates [J]. Sci Total Environ, 2020, 700. doi: 10.1016/j.scitotenv.2019.134451.
    [33] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) [J]. Environ Sci Technol, 2016, 50(5): 2685 − 2691. doi:  10.1021/acs.est.5b05478
    [34] CHEN Yuling, LIU Xiaoning, LENG Yifei, et al. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils [J]. Ecotoxicol Environ Saf, 2020, 187. doi: 10.1016/j.ecoenv.2019.109788.
    [35] LAHIVE E, WALTON A, HORTON A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure [J]. Environ Pollut, 2019, 255. doi: 10.1016/j.envpol.2019.113174.
    [36] KIM S W, AN Y J. Soil microplastics inhibit the movement of springtail species [J]. Environ Int, 2019, 126: 699 − 706. doi:  10.1016/j.envint.2019.02.067
    [37] JU Hui, ZHU Dong, QIAO Min. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida [J]. Environ Pollut, 2019, 247: 890 − 897. doi:  10.1016/j.envpol.2019.01.097
    [38] RODRÍGUEZ-SEIJO A, SANTOS B, FERREIRA DA SILVA E, et al. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms [J]. Environ Chem, 2019, 16(1): 8 − 17. doi:  10.1071/EN18162
    [39] JIANG Xiaofeng, CHANG Yeqian, ZHANG Tong, et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida) [J]. Environ Pollut, 2019, 259. doi: 10.1016/j.envpol.2019.113896.
    [40] HUERTA LWANGA E, THAPA B, YANG Xiaomei, et al. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration [J]. Sci Total Environ, 2018, 624: 753 − 757. doi:  10.1016/j.scitotenv.2017.12.144
    [41] ZHU Dong, CHEN Qinglin, AN Xinli, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition [J]. Soil Biol Biochem, 2018, 116: 302 − 310. doi:  10.1016/j.soilbio.2017.10.027
    [42] WU Qingqing, TAO Huchun, WONG M H. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. [J]. Environ Geochem Health, 2019, 41(1): 17 − 26. doi:  10.1007/s10653-018-0161-5
    [43] PANEBIANCO A, NALBONE L, GIARRATANA F, et al. First discoveries of microplastics in terrestrial snails [J]. Food Control, 2019, 106. doi: 10.1016/j.foodcont.2019.106722.
    [44] AL-JAIBACHI R, CUTHBERT R N, CALLAGHAN A. Examining effects of ontogenic microplastic transference on Culex mosquito mortality and adult weight [J]. Sci Total Environ, 2019, 651: 871 − 876. doi:  10.1016/j.scitotenv.2018.09.236
    [45] CUTHBERT R N, AL-JAIBACHI R, DALU T, et al. The influence of microplastics on trophic interaction strengths and oviposition preferences of dipterans [J]. Sci Total Environ, 2019, 651: 2420 − 2423. doi:  10.1016/j.scitotenv.2018.10.108
    [46] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Sci Rep, 2017, 7(1). doi: 10.1038/s41598-017-14588-2.
    [47] ZHAO Shiye, ZHU Lixin, LI Daoji. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: not only plastics but also natural fibers [J]. Sci Total Environ, 2016, 550: 1110 − 1115. doi:  10.1016/j.scitotenv.2016.01.112
    [48] BOYERO L, LÓPEZ-ROJO N, BOSCH J, et al. Microplastics impair amphibian survival, body condition and function [J]. Chemosphere, 2020, 244: 125500. doi:  10.1016/j.chemosphere.2019.125500
    [49] SONG Yang, CAO Chengjin, QIU Rong, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure [J]. Environ Pollut, 2019, 250: 447 − 455. doi:  10.1016/j.envpol.2019.04.066
    [50] LI Boqing, DING Yunfei, CHENG Xue, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice [J]. Chemosphere, 2020, 244. doi: 10.1016/j.chemosphere.2019.125492.
    [51] JIN Yuanxiang, LU Liang, TU Wenqing, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. Sci Total Environ, 2019, 649: 308 − 317. doi:  10.1016/j.scitotenv.2018.08.353
    [52] LU Liang, WAN Zhiqin, LUO Ting, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice [J]. Sci Total Environ, 2018, 631/632: 449 − 458. doi:  10.1016/j.scitotenv.2018.03.051
    [53] XIE Xiaoman, DENG Ting, DUAN Jiufei, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway [J]. Ecotoxicol Environ Saf, 2020, 190. doi: 10.1016/j.ecoenv.2019.110133.
    [54] LUO Ting, WANG Caiyun, PAN Zihong, et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring [J]. Environ Sci Technol, 2019, 53(18): 10978 − 10992. doi:  10.1021/acs.est.9b03191
    [55] ROMAN L, LOWENSTINE L, PARSLEY L M, et al. Is plastic ingestion in birds as toxic as we think? Insights from a plastic feeding experiment [J]. Sci Total Environ, 2019, 665: 660 − 667. doi:  10.1016/j.scitotenv.2019.02.184
    [56] MUSCOLO A, SETTINERI G, ATTINÀ E. Early warning indicators of changes in soil ecosystem functioning [J]. Ecol Ind, 2015, 48: 542 − 549. doi:  10.1016/j.ecolind.2014.09.017
    [57] WANG Jun, LÜ Shenghong, ZHANG Manyun, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils [J]. Chemosphere, 2016, 151: 171 − 177. doi:  10.1016/j.chemosphere.2016.02.076
    [58] LIU Hongfei, YANG Xiaomei, LIU Guobin, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017, 185: 907 − 917. doi:  10.1016/j.chemosphere.2017.07.064
    [59] HUANG Yi, ZHAO Yanran, WANG Jie, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil [J]. Environ Pollut, 2019, 254. doi: 10.1016/j.envpol.2019.112983.
    [60] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil [J]. Environ Sci Eur, 2018, 30(1): 11. doi: 10.1186/s12302-018-0140-6.
    [61] FEI Yufan, HUANG Shunyin, ZHANG Haibo, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil [J]. Sci Total Environ, 2020, 707. doi: 10.1016/j.scitotenv.2019.135634.
    [62] REN Xinwei, TANG Jingchun, LIU Xiaomei, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil [J]. Environ Pollut, 2020, 256. doi: 10.1016/j.envpol.2019.113347.
    [63] LI Jiajia, LIU Fanghua, YANG Cuiyun, et al. Inhibition effect of polyvinyl chloride on ferrihydrite reduction and electrochemical activities of Geobacter metallireducens [J]. J Basic Microbiol, 2020, 60(1): 37 − 46. doi:  10.1002/jobm.201900415
    [64] TU Chen, CHEN Tao, ZHOU Qian, et al. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater [J]. Sci Total Environ, 2020, 734. doi: 10.1016/j.scitotenv.2020.139237.
    [65] RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment [J]. Environ Sci Technol Lett, 2017, 4(7): 258 − 267. doi:  10.1021/acs.estlett.7b00164
    [66] ZHANG Mengjun, ZHAO Yanran, QIN Xiao, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil [J]. Sci Total Environ, 2019, 688: 470 − 478. doi:  10.1016/j.scitotenv.2019.06.108
    [67] LIAN Jiapan, WU Jiani, XIONG Hongxia, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.) [J]. J Hazard Mater, 2020, 385. doi: 10.1016/j.jhazmat.2019.121620.
    [68] JIANG Xiaofeng, CHEN Hao, LIAO Yuanchen, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J]. Environ Pollut, 2019, 250: 831 − 838. doi:  10.1016/j.envpol.2019.04.055
    [69] CHAE Y, AN Y J. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects via vascular plants [J]. Environ Sci:Nano, 2020, 7(3): 975 − 983. doi:  10.1039/C9EN01335K
    [70] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928 − 934. doi:  10.1360/N972018-00845

    LI Lianzhen, ZHOU Qian, YIN Na, et al. Uptake and accumulation of microplastics in an edible plant [J]. Chin Sci Bull, 2019, 64(9): 928 − 934. doi:  10.1360/N972018-00845
    [71] LI Lianzhen, LUO Yongming, LI Ruijie, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode [J]. Nat Sust, 2020, 3(11): 929 − 937. doi:  10.1038/s41893-020-0567-9
    [72] QI Yueling, YANG Xiaomei, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth [J]. Sci Total Environ, 2018, 645: 1048 − 1056. doi:  10.1016/j.scitotenv.2018.07.229
    [73] DONG Hegan, LIU Tong, HAN Zhiquan, et al. Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties [J]. J Environ Biol, 2015, 36(3): 677 − 684.
    [74] GAO Minling, LIU Yu, SONG Zhengguo. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort) [J]. Chemosphere, 2019, 237. doi: 10.1016/j.chemosphere.2019.124482.
    [75] LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities [J]. Environ Sci Technol, 2020, 54(10): 6166 − 6173. doi:  10.1021/acs.est.0c01051
    [76] RILLIG M C, DE SOUZA MACHADO A A, LEHMANN A, et al. Microplastic effects on plants [J]. New Phytol, 2019, 223(3): 1066 − 1070. doi:  10.1111/nph.15794
    [77] QI Yueling, OSSOWICKI A, YANG Xiaomei, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties [J]. J Hazard Mater, 2020, 387. doi: 10.1016/j.jhazmat.2019.121711.
    [78] LIU Hongfei, YANG Xiaomei, LIANG Chutao, et al. Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil [J]. Catena, 2019, 182. doi: 10.1016/j.catena.2019.104177.
    [79] CHEN Huiping, WANG Yuhuang, SUN Xi, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function [J]. Chemosphere, 2020, 243. doi: 10.1016/j.chemosphere.2019.125271.
    [80] WANG Jiao, LIU Xianhua, DAI Yexin, et al. Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil [J]. Sci Total Environ, 2020, 741. doi: 10.1016/j.scitotenv.2020.140463.
  • [1] 竹万宽, 许宇星, 王志超, 杜阿朋.  不同生长阶段尾巨桉人工林土壤-微生物化学计量特征 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200536
    [2] 罗熳丽, 段均华, 姚恒, 卢昌泰, 肖玖金, 张健.  稻草不同还田量对土壤动物群落结构的影响 . 浙江农林大学学报, 2020, 37(1): 85-92. doi: 10.11833/j.issn.2095-0756.2020.01.011
    [3] 赵亚红, 徐翠霞, 马玲, 王彬, 韦赛君, 吕嘉欣, 高岩, 张汝民.  3种常绿树挥发物成分对空气负离子及微生物的影响 . 浙江农林大学学报, 2020, 37(4): 654-663. doi: 10.11833/j.issn.2095-0756.20190521
    [4] 彭鑫怡, 李永春, 王秀玲, 李永夫, 陈志豪, 徐秋芳.  植物入侵对土壤微生物的影响 . 浙江农林大学学报, 2019, 36(5): 1019-1027. doi: 10.11833/j.issn.2095-0756.2019.05.023
    [5] 赵波, 肖玖金, 周泓杨, 张健.  引种栽培雷竹对秋季土壤动物群落结构的影响 . 浙江农林大学学报, 2016, 33(3): 409-417. doi: 10.11833/j.issn.2095-0756.2016.03.006
    [6] 肖玖金, 林宏贵, 周鑫, 尤花, 李云, 张健.  不同坡位柳杉人工林夏季土壤动物群落特征 . 浙江农林大学学报, 2016, 33(2): 257-264. doi: 10.11833/j.issn.2095-0756.2016.02.010
    [7] 程建中, 杨萍, 桂仁意.  植物硒形态分析的研究综述 . 浙江农林大学学报, 2012, 29(2): 288-395. doi: 10.11833/j.issn.2095-0756.2012.02.020
    [8] 余运威, 应叶青, 任丽萍, 胡加付, 赵阿勇.  浙江临安竹林土壤动物群落结构特征及多样性 . 浙江农林大学学报, 2012, 29(4): 581-587. doi: 10.11833/j.issn.2095-0756.2012.04.015
    [9] 何佩云, 丁贵杰, 谌红辉.  第1代和第2代马尾松林土壤微生物及生化作用比较 . 浙江农林大学学报, 2012, 29(5): 703-709. doi: 10.11833/j.issn.2095-0756.2012.05.011
    [10] 马进, 刘志高, 郑钢.  差异蛋白质组学及其在植物盐胁迫响应研究中的应用 . 浙江农林大学学报, 2011, 28(1): 139-143. doi: 10.11833/j.issn.2095-0756.2011.01.022
    [11] 石彦军, 余树全, 郑庆林.  6种植物群落夏季空气负离子动态及其与气象因子的关系 . 浙江农林大学学报, 2010, 27(2): 185-189. doi: 10.11833/j.issn.2095-0756.2010.02.004
    [12] 杨絮飞, 李国新.  论中国古典园林中植物语素的多维审美意蕴 . 浙江农林大学学报, 2009, 26(2): 262-265.
    [13] 何沙娥, 张智俊.  适用于竹林土壤PCR-DGGE分析用的微生物总DNA提取及纯化方法 . 浙江农林大学学报, 2009, 26(2): 164-168.
    [14] 张昕, 张立钦, 林海萍, 张炳欣.  引入黄瓜根围的2株生防菌株的生态效应 . 浙江农林大学学报, 2007, 24(6): 649-653.
    [15] 付晓萍, 田大伦, 黄智勇.  模拟酸雨对植物形态学效应的影响 . 浙江农林大学学报, 2006, 23(5): 521-526.
    [16] 张迎辉, 姜成平, 赵文飞, 韩俊, 王迎, 王华田.  城市垂直绿化植物爬山虎的生态效应 . 浙江农林大学学报, 2006, 23(6): 669-672.
    [17] 姜培坤, 徐秋芳, 俞益武.  土壤微生物量碳作为林地土壤肥力指标 . 浙江农林大学学报, 2002, 19(1): 17-19.
    [18] 王白坡, 戴文圣, 程晓建, 王利忠, 鄢荣保, 鲍李洪, 袁荣根.  低丘红壤上良种杨梅的表现及早结高产栽培技术 . 浙江农林大学学报, 1998, 15(3): 244-249.
    [19] 林开敏, 俞新妥, 邱尔发, 何智英, 林思祖.  不同造林密度杉木林分营养空间利用的差异 . 浙江农林大学学报, 1996, 13(3): 243-247.
    [20] 韩红.  植物钢笔画技巧探讨 . 浙江农林大学学报, 1996, 13(3): 339-345.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200729

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021//1

计量
  • 文章访问数:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-03-03

土壤微塑料污染的生态效应

doi: 10.11833/j.issn.2095-0756.20200729
    基金项目:  国家自然科学基金资助项目(41771351,41877142,41991330);浙江省自然科学基金项目(LZ19D10001);浙江农林大学人才启动项目(2017FR021)
    作者简介:

    周雨苗(ORCID: 0000-0003-2575-6560),从事土壤污染研究。E-mail: 1143896378@qq.com

    通信作者: 章海波(ORCID: 0000-0003-2041-2259),教授,博士生导师,从事土壤环境与污染修复研究。E-mail: hbzhang@zafu.edu.cn
  • 中图分类号: X53; S15

摘要: 土壤环境中微塑料积累量大且不易降解,因此微塑料长期残留对土壤生态系统的影响已引起广泛关注。通过收集近年来有关土壤微塑料污染及其效应相关的文献,全面系统介绍了土壤微塑料积累后,土壤物理环境的变化、土壤动物摄入及其肠道微生物的响应、土壤微生物和土壤酶活性响应、以及植物对微塑料的吸收及其效应等方面的最新研究进展。现有研究结果表明:微塑料污染对土壤容重、团聚体组成和持水性等土壤物理性质有明显改变,而这些改变是影响土壤酶活性、微生物群落组成、甚至植物生长的关键因素。也有一些研究关注土壤无脊椎动物(如蚯蚓Lumbricus terrestris、跳虫Folsomia candida等)对微塑料在土壤中迁移的影响。同时,微塑料也会被这些土壤动物所摄食,并导致土壤动物体内肠道微生物群落组成的变化以及对其生长产生影响。此外,微塑料在陆地生态系统食物链中的积累及其效应也受到关注,比如,被蚯蚓摄食的微塑料可通过鸡Gallus gallus domesticus摄食蚯蚓进入鸡体内积累。在系统介绍土壤微塑料污染生态效应的研究进展基础上,结合微塑料组成与性质的复杂性以及当前研究的不足,提出4个未来研究方向:①建立土壤微塑料污染毒理学诊断的标准化方法体系;②研究土壤微塑料与微生物、植物和土壤动物之间的作用机理;③揭示微塑料与物质转化之间的关键微生物学机制;④开展不同土壤生态系统中的“塑料圈”研究。这些研究成果可为评估土壤微塑料污染的生态效应提供科学支撑。参80

English Abstract

周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波. 土壤微塑料污染的生态效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200729
引用本文: 周雨苗, 何刚辉, 马绍峰, 邵方雷, 费禹凡, 黄顺寅, 章海波. 土壤微塑料污染的生态效应[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200729
ZHOU Yumiao, HE Ganghui, MA Shaofeng, SHAO Fanglei, FEI Yufan, HUANG Shunyin, ZHANG Haibo. Ecological effects of microplastics contamination in soils[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200729
Citation: ZHOU Yumiao, HE Ganghui, MA Shaofeng, SHAO Fanglei, FEI Yufan, HUANG Shunyin, ZHANG Haibo. Ecological effects of microplastics contamination in soils[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200729

返回顶部

目录

    /

    返回文章
    返回