-
微塑料(MPs)是指环境中粒径小于5 mm的塑料(包括碎片、纤维、颗粒、发泡、薄膜等)[1]。初级微塑料(生产于化妆品和各种工业)和次级微塑料(各种大塑料分解破碎产生)均普遍存在[2]。近年来,农田生态系统中的微塑料污染及其生态效应问题引起了全世界的广泛关注[3-4]。全球每年土壤中输入的微塑料数量远超海洋,陆地生态系统中微塑料的输入量是海洋输入量的4~23倍[5],而农田土壤输入的微塑料更多[6]。据估计,欧洲和北美洲每年通过污泥输入到农田土壤中的微塑料分别高达63 000~430 000和44 000~300 000 t·a−1[7]。ZHANG等[8]从中国云南地区的50个农田土壤样品中提取塑料颗粒(10.00~0.05 mm),塑料颗粒的丰度为7 100~42 960个·kg−1,95%的塑料颗粒粒径为1.00~0.05 mm。对杭州湾周边设施农田土壤中的微塑料调查发现:覆膜农田土壤中微塑料达20~1 560个·kg−1,包括聚乙烯薄膜、聚丙烯碎片和聚酯纤维类等[9]。土壤中微塑料来源复杂、积累量大。塑料地膜覆盖是一种全球性农业技术,它在保温、保水、保肥及土壤改良中具有很好的效果[10]。HE等[11]调查发现:上海郊区20个菜地和农田土壤中微塑料丰度分别为(78.00±12.91)和(62.50±12.97)个·kg−1,大多数微塑料为聚丙烯(50.51%)和聚乙烯(43.43%),表明土壤微塑料污染主要来源于农田地膜。近年来,全球的塑料薄膜覆盖面积迅速增加,中国是使用塑料地膜的主要国家之一,2006年,中国的塑料地膜使用面积已占全球地膜覆盖率的80%,每年近70万t低密度聚乙烯地膜投入使用[12],但农田地膜回收率却不足60%[13]。对杭州湾周边农田土壤的调查发现:设施农田土壤中微塑料的平均丰度是一般农田土壤的2倍以上[14]。除了农用地膜残留导致土壤微塑料污染外,污泥农用、大气沉降也是农田土壤中微塑料的重要来源。污泥中含有大量的合成纤维微塑料,可达1 000~4 000个·kg−1[15];根据中国污泥总产量,预计通过污泥进入土壤的微塑料可达1.56×1014个·a−1[16]。而大气中微塑料的沉降通量可达1.46×105个·m−2·a−1, 其中纤维类占95%[17]。但微塑料进入土壤后的生态效应研究目前还相对较少[18]。本研究对微塑料相关研究进行系统梳理,综合分析微塑料进入土壤后对物理环境、土壤微生物或酶、土壤动植物等的影响,探讨微塑料污染对土壤生态系统的综合效应,并为系统开展土壤微塑料的生态风险评估提出科学展望。
-
微塑料在土壤中降解非常缓慢,可能达上百年之久[19],并作为土壤的外来组分改变土壤物理特性[20]。通过向肥沃的砂土中添加微塑料后显示:培养5周后,4种不同暴露量(最高达2%)的常见微塑料(聚丙烯纤维、聚酰胺微珠、聚酯纤维和聚乙烯碎片)均能显著降低土壤容重,改变土壤结构和水分动态,并且聚酯纤维对土壤理化性质的影响最为明显,随着聚酯纤维含量的增加,土壤持水量也相应增加[21]。与此类似,壤质砂土中添加聚乙烯、对苯二甲酸聚酯、聚丙烯和聚苯乙烯等微塑料,土壤容重降低,但根际土壤容重、持水量均增加[3]。但ZHANG等[22]通过田间和盆栽试验均表明:添加质量分数为0.3%的聚酯微纤维对土壤容重没有明显改变。因此,微塑料对土壤容重的影响可能与微塑料类型、丰度等多种因素有关,也与土壤本身的性质以及是否种植植物有关。
微塑料进入土壤后,通过改变土壤水分运移影响土壤的持水性能。例如,土壤中添加1%暴露量的聚乙烯微塑料薄膜(2 mm)可显著提高土壤水分蒸发速率,因而有可能加剧土壤水分短缺[23]。微塑料也可能对土壤孔隙度有直接影响。如聚酯微纤维显著降低了土壤孔隙度<30 μm的孔隙体积,而增加>30 μm的孔隙体积,由于持水能力与小孔隙体积呈正相关,因此,超细聚酯纤维的进入降低了土壤的持水能力[22]。
-
土壤团聚体是土壤结构体的重要组成部分,也是提供土壤生物生长的重要物理条件。微塑料对土壤团聚体组成的影响程度与微塑料类型、粒径大小以及土壤中是否存在植物都有密切关系。一般土壤中,水稳性团聚体的比例会随着聚酰胺微珠、聚酯纤维和聚丙烯纤维含量增加而呈显著降低趋势[21],但在根际区域,加入微塑料反而呈较高比例的水稳性团聚体,这可能与微塑料和植物根系存在交互作用有关[3]。土壤中加入可生物降解聚乳酸、高密度聚乙烯和微塑料合成纤维等不同类型的微塑料,其水稳性团聚体及团聚体的粒径分布均有显著改变,并进而影响土壤的可侵蚀性[24]。微塑料对土壤水稳性团聚体的影响也可能是通过影响微生物生长而间接作用的。有研究表明:土壤中添加暴露量为0.4%的聚丙烯酸纤维微塑料后,土壤腐生真菌的活性增加,从而促进了水稳性团聚体的形成[25]。
-
土壤动物在土壤生态系统中发挥关键作用,影响生物多样性维持、凋落物分解、养分循环和能量转移。微塑料与土壤动物的相互作用,一方面会改变土壤孔隙度、有机物含量等;另一方面,土壤微塑料也可通过土壤动物的运动发生纵向迁移,使微塑料进入深层土壤。如土壤中的蚯蚓Lumbricus terrestris暴露于一定暴露量的微塑料后,会产生更致密的蚯蚓洞穴,并将微塑料转运至洞穴中保存[26]。蚯蚓通过摄食、皮肤黏液的黏附等方式将微塑料从土壤表层搬运至深层[27]。微型节肢动物也会搬运土壤中的微塑料,并且不同的微型节肢动物对微塑料搬运的距离显著不同[28]。土壤表层的微塑料不仅可以通过节肢动物进入到土壤孔隙,还参与地下食物网的转运。ZHU等[29]研究表明:微型节肢动物利用其体积小的特点,将土壤微塑料搬运至土壤孔隙中,并进一步在跳虫Folsomia candida—螨Hypoaspis aculeifer的食物链中进行转运,利用这一食物链内的捕食关系,可以使节肢动物对土壤微塑料的搬运量增加40%。此外,微生物也可以成为微塑料迁移的载体。如真菌菌丝可以作为微塑料在小范围内转运的载体[30]。当微塑料进入土壤孔隙或地下水时,它们就更容易迁移至更深层土壤,或与植物根系和其他生物发生相互作用[26]。
-
微塑料可被蚯蚓、蚜虫Aphidoidea、线虫Aschelminthes等土壤动物摄食进入体内,并产生效应。蚯蚓排泄物中发现微塑料的存在,表明微塑料可被蚯蚓摄入体内[31]。土壤中的短纤维(12.00~2.87 mm)也可被土壤无脊椎动物摄食,这也为微塑料通过土壤无脊椎动物摄食进入陆地食物网提供了证据[32]。蚯蚓对微塑料的摄食有粒径选择性。研究发现:蚓粪中90%的聚乙烯微塑料粒径小于50 µm,而摄入的聚乙烯颗粒有50%的粒径大于50 µm,这表明小颗粒微塑料优先被蚯蚓摄食[33]。CHEN等[34]研究也发现:蚯蚓粪中微塑料的粒径分布与摄入时的微塑料粒径相比有明显变化,蚓粪中小粒径的微塑料比例更高。土壤动物摄入微塑料后,其生长受到影响。如供试土壤中添加一定量的微塑料进行蚯蚓培养时,蚯蚓的生物量降低,尤其受高密度聚乙烯微塑料暴露时,蚯蚓生物量下降最为严重[24]。当聚乙烯微塑料(粒径<150 µm)的暴露量达到一定阈值时,蚯蚓的生长速度和死亡率也受到显著影响[33]。当聚乙烯微塑料暴露量达0.1%时,跳虫生长和生殖会受到聚乙烯微塑料的抑制,当暴露量上升至1.0%时,生殖率降低70.2%[35]。不同类型的微塑料对土壤动物的影响也不同,土壤蠕虫Lobella sokamensis在受尼龙微塑料暴露后繁殖率下降程度要比聚氯乙烯微塑料暴露更大[36]。除了生长和繁殖受影响外,土壤动物的运动轨迹也可以作为微塑料暴露的评价指标,如低质量分数(8 mg·kg−1)聚苯乙烯微塑料暴露就会影响土壤跳虫的运动轨迹[37]。此外,土壤中微塑料的“载体效应”也可能使其富集农田环境中的农药而影响蚯蚓等土壤动物的生存[38]。
-
土壤动物对微塑料暴露呈现不同的应激效应。如大于1.0 g·kg−1的低密度聚乙烯微塑料暴露引起蚯蚓表面损伤、诱导氧化应激,并刺激神经毒性反应[34]。蚯蚓肠内积累聚苯乙烯微塑料后,损伤蚯蚓肠细胞,并增加了谷胱甘肽水平,抑制超氧化物歧化酶活性[39]。高暴露量(20%)的聚乙烯(≤300 µm)或聚苯乙烯(≤250 µm)颗粒显著增加了蚯蚓体内过氧化氢酶、过氧化物酶活性和脂质过氧化水平,显著抑制了超氧化物歧化酶和谷胱甘肽S-转移酶的活性;且过氧化物酶活性随微塑料暴露量的增加而增加,但其他酶活性在≤10%的暴露量下没有显著影响[31]。
肠道微生物对土壤动物的健康、代谢和免疫具有关键作用,微塑料暴露会改变土壤动物肠道微生物的组成[40]。跳虫在暴露聚氯乙烯微塑料后,其新陈代谢和碳氮吸收受干扰,肠道微生物群落中细菌多样性增加[41]。但也有研究表明:0.5%的聚乙烯微塑料暴露量会显著降低跳虫肠道细菌多样性[35]。另一方面,土壤动物的肠道微生物也可参与微塑料的降解。从广州、泰安和深圳等地采集的粉虫Tenebrio molitor均可以利用肠道微生物将聚苯乙烯、聚氯乙烯、低密度聚苯乙烯微塑料降解,并且不同地区的粉虫由于其体内肠道微生物的差异,对微塑料的代谢能力也不同[42]。
-
土壤中微塑料可能通过陆地生态系统的食物链在不同动物体中传递、积累并产生效应[43]。土壤中微塑料可以在库蚊Culex pipiens的幼虫、蛹和成虫中积累,积累量受到初始暴露量的显著影响[44];但幽蚊Chaoborus flavicans在微塑料暴露量较高时,依然能够产卵[45]。LWANGA等[46]以墨西哥东南部的热带家庭花园为例,发现土壤、蚯蚓、鸡Gallus gallus domesticus粪中的微塑料依次递增,这表明微塑料可以在土壤—蚯蚓—鸡这条食物链中传递、积累和放大。在上海某地收集的陆生死亡鸟类消化道中发现的微塑料粒径要远远小于这些鸟类的食物粒径,由于鸟类的觅食行为具有多样化,由此推测鸟类摄入微塑料可能是通过食物链传递的结果[47-48]。
微塑料在陆生动物体内的积累影响其生长与繁殖。环境质量分数(0.71 g·kg−1)下对苯二甲酸乙二醇酯(PET)微塑料纤维可显著减少蜗牛Achatina fulica取食和排泄,引起氧化应激反应,降低还原型谷胱甘肽过氧化物酶和总抗氧化能力[49]。聚乙烯微塑料会影响小鼠肠道微生物的组成和多样性,当浓度达到一定水平时会引起小鼠小肠炎症[50]。聚苯乙烯微塑料可在小鼠肠道内积累,减少小鼠肠道黏液分泌,损害肠屏障功能,诱导小鼠肠道微生物区系失调和代谢紊乱[51],并诱发肝脏脂质紊乱[52]。聚苯乙烯微塑料对雄性小鼠生殖系统也有影响,导致精子数量、活力显著下降,精子畸形率显著提高和精子代谢相关的酶活性下降[53]。而母体小鼠在妊娠期和哺乳期暴露于聚苯乙烯微塑料下,微塑料可以导致母体肠道菌群紊乱和代谢失调,还有代际效益,对后代造成长期代谢后果[54]。但也有研究表明:通过聚丙烯喂养鸟类,对鸟类的死亡率、发病率、生育能力等并没有明显影响,只发现雄性鸟类生殖囊肿频率增加,雏鸟生长和性成熟的轻微延迟等现象[55]。
-
土壤酶活性代表微生物群落的总体活性和微生物摄取底物的有效性,而荧光素二乙酸酯酶(FDAse)代表整个微生物代谢活动的活力,是土壤质量短期变化的有效指标[56]。例如,随着塑料薄膜暴露量的增加,邻苯二甲酸酯类含量增加,土壤微生物碳和氮含量、荧光素二乙酸酯酶和脱氢酶的活性,以及微生物群落结构多样性显著降低[57],这与塑料释放的邻苯二甲酸酯类污染物有关,它可通过破坏细胞膜的流动性影响土壤微生物活性、多样性和代谢活性。有研究利用中国黄土为供试土壤,添加微塑料观测土壤酶活性的变化,发现添加微塑料增强了荧光素二乙酸酯酶和酚氧化酶的活性[58]。低密度聚乙烯微塑料(2 000个·kg−1)碎片暴露后土壤脲酶、过氧化氢酶活性显著提高[59]。聚苯乙烯纳米塑料暴露后土壤亮氨酸氨基肽酶、碱性磷酸酶、β-葡萄糖苷酶和细胞水解酶的活性显著降低[60]。通过在酸性土壤中添加暴露量为1%和5%低密度聚乙烯和聚氯乙烯微塑料研究发现:微塑料的添加显著刺激了土壤脲酶和酸性磷酸酶活性,但降低了荧光素二乙酸酯酶活性。这些不同试验观测到的微塑料暴露对土壤酶活性影响的差异可能与土壤性质和微塑料种类及其暴露量都有关系[61]。
-
土壤微塑料对微生物群落的丰富度和多样性受土壤类型、微塑料类型、暴露量等因素影响。低密度聚乙烯微塑料碎片(2 000个·kg−1)暴露对土壤中微生物α多样性(丰富度、均匀度和多样性)没有明显影响;但微塑料碎片上微生物的多样性指数明显低于对照和微塑料添加土壤;同时在微塑性碎片上形成了一个与供试土壤明显不同的微生物区系,表现在放线菌显著富集,包括塑料降解细菌和病原体更加丰富[59]。土壤中添加5%的聚乙烯微塑料后,放线菌取代蛋白质细菌成为微塑料暴露土壤中的优势门,表明微塑料对微生物具有选择作用,改变微生物群落的多样性和丰富度[62]。研究发现:1%和5%的低密度聚乙烯和5%的聚氯乙烯显著降低了细菌群落丰富度和多样性,但显著增加了β-变形菌,其中包括与土壤固氮密切相关的伯克氏菌科Burkholderiaceae,这表明微塑料可能影响土壤中的氮素循环[9, 61]。微塑料与微生物群落组成的相互影响可能对微生物参与的地球生物化学循环存在潜在影响,其中微生物异化铁还原是最早具有全球意义的微生物呼吸过程之一。金属假单胞菌Geobacter metallireducens GS15是一种异化铁还原菌,是生物地球化学铁循环关键调节因子,研究发现聚氯乙烯微塑料对GS15以不溶性铁水化合物为末端电子受体铁循环过程表现出潜在的抑制作用。聚对苯二甲酸丁二酯微塑料和聚氯乙烯均能延迟GS15的电活性[63]。同时,微塑料也是环境微生物的新型栖息地,也被称为“塑料圈”[64-65]。微塑料表面定殖的微生物群落与周围土壤中、植物凋落物中的微生物群落具有显著差异,富集了一些具有降解塑料聚合物的微生物种群,如酸杆菌门Acidobacteria、绿弯菌门Chloroflexi、芽单胞菌门Gemmatimonadetes和拟杆菌门Bacteroidetes等[66]。
-
目前关于植物吸收微塑料的相关研究极其缺乏。通过水培试验发现:小麦Triticum aestivum种子在萌发时会吸收纳米聚苯乙烯(100 nm)塑料小球并传输到根部[67],也可以在蚕豆Vicia faba根部积累,并可能阻断细胞连接或细胞壁孔运输营养物质[68]。通过土培试验也可发现:绿豆Vigna radiata可以吸收纳米塑料聚苯乙烯,并积累在叶片中[69]。对于更大粒径的亚微米级和微米级微塑料的植物吸收,目前的相关报道更少。李连祯等[70]利用荧光标记和扫描电镜观测,发现水培试验中的粒径为0.2 μm的聚苯乙烯微塑料小球不仅可在生菜Lactuca sativa var. ramosa根部大量富集, 并可被进一步转运至茎叶等可食部位积累。最近,又通过土培试验进一步证实:粒径为0.2和2.0 μm的聚苯乙烯塑料小球可以通过小麦和生菜侧根位置的裂隙进入植物体内部,并随蒸腾作用从根部转运到地上部[71]。
-
微塑料对植物生长的影响既有抑制也有促进作用。有研究把6种常见微塑料加入土壤混合进行洋葱Allium fistulosum培养试验后发现:微塑料添加对洋葱的叶片性状、总生物量、元素组成、根系性状等均有显著影响[3]。添加1%的微塑料对小麦的地上部分和地下部分生长均有影响,并且可生物降解的微塑料比低密度聚乙烯微塑料表现出更强的抑制效果[72]。纤维或可生物降解的聚乳酸微塑料会抑制黑麦草Lolium multiflorum种子的发芽率,聚乳酸微塑料还会导致芽长降低。但与聚乳酸微塑料的影响不同,高密度聚乙烯却发现能增加根系生物量[24]。此外也发现地膜残留物会长期影响陆地棉Gossypium hirsutum产量[73]。微塑料对植物生长的影响也表现在一些植物生理指标上。如阻碍生菜的光合作用、干扰其抗氧化防御系统等[74]。蚕豆在10~100 mg·L−1的聚苯乙烯微塑料暴露下,过氧化氢酶活性降低,超氧化物歧化酶和过氧化物酶活性显著升高,表现氧化应激反应;当微塑料粒径减小至纳米级时,进一步表现出遗传毒性和氧化损伤毒性[68]。
微塑料对植物的促进作用最近也有报道。如添加0.4%的聚酯纤维微塑料增加了植物群落根、茎的质量,提高植物群落的生物量,可能是土壤中的微塑料降低了土壤容重,增加了土壤大孔隙比例,改善了土壤通气性和渗透性,从而改善了植物生长环境[75]。同时,研究也发现:不同种类植物生长受微塑料的影响不同,最终会体现在植物群落结构组成上的差异,减少植物群落的多样性[75]。
-
植物根际环境中微塑料污染的效应研究非常有限。微塑料对根际环境的效应是土壤物理化学性质、根系分泌物与根际微生物之间相互作用的结果[76]。植物根系也是微塑料向土壤内部迁移的动力之一,因此,微塑料可能在根际环境中富集并对根际环境产生影响[30]。当小麦根系暴露在1%低密度聚乙烯微塑料时,根际的细菌群落与对照相比有显著差异,说明土壤中微塑料污染对小麦根际环境中细菌群落的组成有显著影响[77]。微塑料与一般的化学污染物质不同,它是一种物理颗粒,对土壤生态系统的效应可能是通过影响土壤物理化学性质[77]、养分转化[58, 78-79]、污染物质释放[80]等,并进而影响土壤微生物组成与功能多样性等综合作用的结果。
-
土壤微塑料污染的生态效应研究才刚起步,相关的基础数据积累少,还无法认识微塑料对不同生物体的效应机制。目前的研究存在如下问题:①相关研究中还存在暴露量与实际环境浓度相差较大、剂量-效应关系不确定、供试土壤性质单一等突出问题;②微塑料的生态效应不仅受暴露量的影响,也受到其粒径大小、形状、聚合物类型等因素共同作用,目前许多研究仅仅考虑暴露量的效应而忽视了其他性质的作用,导致研究结果之间缺乏可比性;③微塑料含有多种添加剂,并会在土壤中富集农药、抗生素、抗性基因等污染物质,在一定条件下,这些添加剂和污染物质会重新释放到土壤或生物体中,影响土壤生态系统。因此,开展土壤微塑料污染的生态效应研究,必须在认识环境微塑料的粒径、化学、结构、表面等基本特性基础上,围绕土壤生态安全相关的生物受体,从多学科角度开展系统研究,具体包括以下几个方面:①加强土壤微塑料污染生态效应方法学的研究,筛选模式生物与敏感的生物标志物,探究环境暴露剂量下,不同性质微塑料的生物作用机制与效应,建立土壤微塑料污染的生态风险评估方法体系;②加强土壤微塑料及其负载污染物对物质转化关键功能微生物的影响研究,阐明土壤微塑料与养分元素、重金属、有机污染物之间相互作用的微生物学机制;③加强研究土壤微塑料及其负载污染物质的植物吸收、转运及在植物体内的积累机制,探讨植物根际环境中微塑料与根系分泌物、微生物、养分元素之间的相互作用机制,明确土壤微塑料污染的植物反馈机制;④加强微塑料及其负载污染物在地下食物网系统的传递、积累机制研究,探明微塑料及其负载污染物在不同营养层生物间的传递、转化与生物富集过程,揭示土壤微塑料污染的地下—地上生物联动效应及其机制;⑤加强土壤“塑料圈”研究,探究不同类型土壤生态系统条件下微塑料表面生物膜和微生物组成与功能特征,及其对土壤中微塑料降解、污染物和养分转化的作用机制。
Ecological effects of microplastics contamination in soils
-
摘要: 土壤环境中微塑料积累量大且不易降解,因此微塑料长期残留对土壤生态系统的影响已引起广泛关注。通过收集近年来有关土壤微塑料污染及其效应相关的文献,全面系统介绍了土壤微塑料积累后,土壤物理环境的变化、土壤动物摄入及其肠道微生物的响应、土壤微生物和土壤酶活性响应、以及植物对微塑料的吸收及其效应等方面的最新研究进展。现有研究结果表明:微塑料污染对土壤容重、团聚体组成和持水性等土壤物理性质有明显改变,而这些改变是影响土壤酶活性、微生物群落组成、甚至植物生长的关键因素。也有一些研究关注土壤无脊椎动物(如蚯蚓Lumbricus terrestris、跳虫Folsomia candida等)对微塑料在土壤中迁移的影响。同时,微塑料也会被这些土壤动物所摄食,并导致土壤动物体内肠道微生物群落组成的变化以及对其生长产生影响。此外,微塑料在陆地生态系统食物链中的积累及其效应也受到关注,比如,被蚯蚓摄食的微塑料可通过鸡Gallus gallus domesticus摄食蚯蚓进入鸡体内积累。在系统介绍土壤微塑料污染生态效应的研究进展基础上,结合微塑料组成与性质的复杂性以及当前研究的不足,提出4个未来研究方向:①建立土壤微塑料污染毒理学诊断的标准化方法体系;②研究土壤微塑料与微生物、植物和土壤动物之间的作用机理;③揭示微塑料与物质转化之间的关键微生物学机制;④开展不同土壤生态系统中的“塑料圈”研究。这些研究成果可为评估土壤微塑料污染的生态效应提供科学支撑。参80Abstract: Large amounts of microplastics have been accumulated in soils and their degradation is relatively slow. The residual time of microplastics in soils could be extended to decades or even over a hundred years. Therefore, the ecological effects of long-term residual of the microplastics in soils has been of concerned widely in recent years. Published papers related to the microplastics and their effects in soils were collected and introduced in order to make a full review in the field. The research advances were presented based on the different ecological receptors, which included change of soil physical environment due to the accumulation of microplastics, ingestion of microplastics by invertebrates from soils and their effects on the enteric microorganism, response of soil microbial community and soil enzyme to microplastics pollution, plant uptake of microplastics and their effects. The studies of effects on soil physical environment in the present of microplastics mainly focus on soil density, soil aggregate composition and water hold capacity. Such effects were supposed to have further impacts on soil enzyme activity, microbial community composition and even plant growth based on current limited studies. Many other studies at present were also concentrated on the migration of microplastics induced by soil invertebrates e.g. earthworm, springtail. Meanwhile, microplastics in the soil might be ingested by soil invertebrates and subsequently caused some negative effects and influence on the gut microorganism community of the soil invertebrates. There were also some studies focusing on the microplastics accumulation through food chain regarding the effects of microplastics on soil animals. For example, microplastics might be accumulated in chicken through the predation of earthworm by chicken. After the introduction of current studies, several research proposal were put forward based on the complication of microplastic’s properties and the shortage of current researches. These proposal contained four aspects: (1) development of standard protocols for the study of ecotoxicology of soil microplastics pollution, (2) studying the interaction mechanism between microplastics and microorganisms, plants and invertebrates, (3) revealing microbiological mechanisms that regulation of the transformation of materials and microplastics in soils, (4) exploring plastishere in soils of different ecosystems. All these researches are expected to be supportive to assessment of the ecological effects of soil microplastics pollution. [Ch, 80 ref.]
-
Key words:
- microplastics /
- soil animals /
- microorganism /
- plant /
- ecological effects
-
山麦冬Liriope spicata为百合科Liliaceae多年生草本植物,在园林绿化中多栽培于林下或林缘半阴处,掩饰裸露土壤,起到补充绿地改善不良景观的作用。山麦冬属Liriope植物只有8种,中国栽培6种,其中包含3个特有种,但山麦冬属植物分布广泛,除极寒地区及高海拔地区外,中国各省均有分布,其地理分布受人为栽培引种因素影响很大,没有特定的地理分布规律[1]。山麦冬成熟时果实表皮由绿转黑,9月结果后观果时期可长达整个冬季,且其花葶较长多矗立于叶子的上方,易于观察,具有很高的园林应用价值。目前,针对山麦冬成熟过程中呈色物质及调控基因尚未报道,但花青素合成途径在植物中是保守的,合成途径中上游合成基因是决定植物组织能否积累花青素的关键[2],而下游修饰基因的表达常与花青素的积累一致,是加深果色花色的关键基因[3-5]。此外,花青素的积累还受转录因子的调控,其中以MYB转录因子与bHLH转录因子最为常见[6]。
用于基因表达定量分析的方法比较多,其中实时荧光定量PCR(RT-qPCR)由于定量准确、成本低且高通量,被广泛应用于基因表达水平研究。但其结果常受RNA质量、反转录效率、引物特异性、初始样品量及扩增效率等因素的影响[7-8],需要引入1个或多个表达稳定的内参基因(reference genes, RGs)来评估目的基因的相对表达[9]。在植物学研究中,曾以肌动蛋白(actin,ACT)[10-12]、组蛋白(histone)[11]、蛋白磷酸酶(protein phosphatase,PP2A)[13]、甘油醛-3-磷酸-脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)[12]、泛素结合酶(ubiquitin conjugating enzyme, UBC)[14-15]以及18S核糖体RNA(18S ribosomal RNA,18S)[16]等基因作为内参基因。但是常见的内参基因也并非适用于任何研究,且目前还未见山麦冬内参基因的报道。鉴于此,本研究基于山麦冬转录组数据,对山麦冬果实发育中稳定表达的内参基因进行研究,为提高果色转变关键基因RT-qPCR分析的准确性提供科学依据。
1. 材料与方法
1.1 材料
在浙江农林大学资源圃,选取生长环境相同,且植株生长状况良好、长势整齐的山麦冬,随机均匀采集15~20株山麦冬植株的各一簇花葶的上、中、下部分果实,基于山麦冬果实生长特性,采集山麦冬幼果期(2020年9月)及成熟期(2020年11月) 2个时期样品,果实从花葶中取下后立即存于−80 ℃冰箱备用。设置3次生物学重复。
1.2 总RNA提取及cDNA合成
使用天根离心柱型RNA试剂盒(天根生物科技有限公司)从每个时期样本中提取总RNA。采用质量分数为1%的琼脂糖凝胶电泳检测RNA的完整性。总RNA的纯度和质量浓度采用NanoDrop ONE微量核酸蛋白浓度测定仪(Therm,美国)测定。总RNA样本质量浓度均高于4×10−5 ng·L−1以上,总RNA纯度[D(260)/D(280)]为1.9~2.1。cDNA的合成使用PrimerScript™ RT Master Mix cDNA (Perfect Real Time)反转录试剂盒,所有样本总RNA加入量按照3×10−5 ng·L−1稀释至同一质量浓度,cDNA置于−20 ℃冰箱保存。
1.3 候选内参基因的筛选及RT-qRCR
基于已获得的山麦冬转录组数据及京都基因与基因组百科全书(KEGG)注释,筛选了多条通路的基因作为内参基因参考库,包括参与山麦冬果实运输和分解代谢的基因(SLC36等),参与代谢过程的基因(PP2C、MGL、PDP、G6PD等),参与信号传导与转运的基因(AUX、GPR107、CNNM等),参与细胞过程的基因(CFL等),参与植物免疫的基因(Trx等),参与遗传信息处理的基因(UGT、PP2A、EF1-α等)共1 648个,参考前人对内参基因的筛选阈值稍作修改后[11-13],以每千个碱基转录每百万映射读取的片段(FPKM)高于5的基因(低表达的难以检测)、变异系数<0.1、变化倍数<0.2为筛选条件,得到前15个候选内参基因(表1)。
表 1 山麦冬15个候选的内参基因Table 1 15 candidate reference genes of L. spicata基因名 基因注释 变异
系数变化
倍数基因名 基因注释 变异
系数变化
倍数SLC36 solute carrier family 36 0.003 0.001 CFL cofilin 0.061 0.178 PP2C protein phosphatase 2C 0.007 0.019 UGT UDP-glucose: glycoprotein glucosyltransferase 0.064 0.184 Trx-1 thioredoxin 0.037 0.107 PP2A protein phosphatase 2A 0.064 0.185 MGL monoacylglycerol Lipase 0.043 0.123 EF1-α elongation factor 1-alpha 0.067 0.193 AUX auxin influx carrier 0.050 0.144 G6PD-1 glucose-6-phosphate dehydrogenase 0.068 0.197 GPR107 G protein-coupled receptor 107 0.056 0.161 G6PD-2 glucose-6-phosphate dehydrogenase 0.045 0.130 PDP pyruvate dehydrogenase phosphatase 0.058 0.169 Trx-2 thioredoxin 1 0.065 0.186 CNNM cation transport mediators 0.061 0.177 根据转录组获得的核酸序列信息,利用primer 5软件设计引物,并交由杭州有康生物技术有限公司合成(表2)。利用TB Green染料(Takara)预反应,体积20 μL,并使用LightCycler® 480 Ⅱ型荧光定量PCR仪(罗氏,瑞士)进行RT-qPCR。反应程序:95 ℃预变性5 min;95 ℃变性10 s;60 ℃退火延伸30 s,40个循环。实验设置3次生物学重复。扩增效率(cDNA稀释浓度梯度为5−1、5−2、5−3、5−4、5−5)计算公式为E=[10(−1/K)–1]×100%,其中:E为扩增效率,K为斜率。15个候选内参基因的扩增效率为91.7%~108.0%(表2)。
表 2 15个候选内参基因的引物序列和扩增子特征Table 2 Primer sequences and amplicon characteristics of 15 candidate reference genes基因名 正向引物序列(5′→3′) 反向引物序列(5′→3′) 产物长度/bp 扩增效率/% 相关系数 SLC36 GTAAGTTTCGCCGAGTGCTT ACTGCAGTAGCAGACCAGTT 148 91.7 0.982 PP2C TGGGCCATGATGTTCCAGAT AGTACACGCAGTCTTCACCT 77 94.8 0.999 Trx-1 TTGTTGGCACCCACAAGTTT CATTCGTGCCACTCCAACAT 72 102.0 0.999 MGL AATGCCTTCACTGGAACAGC GCCGCCAAGTGAGTAAACAA 138 101.0 0.994 AUX TGCAGAGAAACCACCCTTCT CCGAATCCAAATCCGACCAC 99 91.7 0.949 GPR107 ACAGGTGATTGCGAACATCG CTTCGACGTCTCCTTCAACG 166 105.0 0.906 PDP GACGGAGGTCGGTTGGATTT CTGCACATGCATCATCACGA 124 96.2 0.976 CNNM GCTGCACTAACTCCAGCTTC GGCACAACTGTGGTCAACAT 86 96.8 0.999 CFL CGAGGAGAACTGCCAGAAGA GTTGGATCGGTCGCTTGTAG 153 107.0 0.992 UGT TGGAAGCATCCTCACTTGACT TGTCTTCAAATTAGGGTTAGCGA 83 93.5 0.994 PP2A GAGTCGGAGAGGTCGAAGAG GCGGAGCAATTCCTACCATC 121 99.2 0.975 EF1-α CAAGCGTCCCACTGACAAG CCAGGCTTGAGGATACCAGT 111 101.0 0.998 G6PD-1 GATGCAACAGGCCAGAAGAG AGTGCAAACAGTGCAGGAAA 104 97.9 0.996 G6PD-2 ATAACGTTGCCCTCTCCACA ATCCAACTGCAATCCAAGCC 107 108.0 0.999 Trx-2 GTGGTGCACCGTCAGTAAAC CGCTGTGGTTGATGTCTCTG 113 96.0 0.992 1.4 内参基因的稳定性分析及验证
通过4种方法分析内参基因的稳定性:ΔCt值法[17]、geNorm[18]、NormFinder[19]和BestKeeper[20]。利用Excel 2010计算4种方法对候选内参基因几何平均数的排名,综合筛选最适的内参基因。同时根据前期转录组数据筛选了10种目的基因,涵盖花青素合成通路上下游基因以及调控基因。这10种基因在转录组数据加权共表达分析中属于中枢基因,表达量高、与花青素相关性强,且在果实成熟过程中显著上调。目的基因包括C4H、CHS、MT、UFGT、MYB、bHLH,上述基因引物序列及扩增子特征见表3,最后利用SPSS 19.0与Graphpad Prism 8.0分析及作图。
表 3 10个目的基因的引物序列和扩增子特征Table 3 Primer sequences and amplicon characteristics of 10 target genes基因名 正向引物序列(5′→3′) 反向引物序列(5′→3′) 产物长度/bp 扩增效率/% 相关系数 C4H TCTTTGATCACGGCTTGCAG ATGAGATCGACACCGTCCTC 88 109.0 0.992 CHS-1 TGCATTGCACCAGTAGTAGC GCCCTCCTGATCTCCTCAAC 122 104.0 0.995 CHS-2 TTGTTGGCACCCACAAGTTT CATTCGTGCCACTCCAACAT 82 91.7 0.997 MT CCACCGAGAGCAAGAACAAC GGGTACACACTGGTCTCCAA 112 96.2 0.999 UFGT-1 AGCAAGGTGTTGAAGGAGGA AAATTCCGAACCGAGCTTCC 110 91.7 0.935 UFGT-2 CGACGGATCCCATTCGACTA CGCCGCTCCTCCTATTAAC 57 92.9 0.996 MYB-1 GCAAGATCAGGTCCTCCTCA CAAAGTACGTGGCGAAGGAG 162 107.0 0.975 MYB-2 ATGGGAAGATGGTGGCCTTT GAAGGGTGCACAGCTTCAG 70 91.7 0.986 MYB-3 CGAGGAGAACTGCCAGAAGA GGTGCTTGTTGAGAGAGCTG 172 105.0 0.996 bHLH TGCTTAGCAATGGCAACAGG GGCTGCTGACCAGAAGATTG 123 101.0 0.998 2. 结果与分析
2.1 山麦冬候选内参基因的表达量分析
15个候选内参基因的溶解曲线均为单一峰(图1),琼脂糖凝胶电泳检测后出现与预期大小一致的单一条带(图2)。该结果表明引物具有良好的特异性。
根据原始循环阈值(Ct)分布发现:所有候选内参基因的Ct为15.53~28.81,Ct越高,基因的表达量越低,反之表达量越高。本研究中,EF1-α基因表达量最高,PP2C基因表达量最低,其余基因表达量介于两者之间。此外,由箱线图(图3)跨度可初步判定内参基因的稳定性。PP2C、Trx-1、AUX、PP2A、PDP基因的Ct跨度广,不稳定,而GPR107、CNNM、EF1-α、G6PD-2、Trx-2基因最为稳定,其中GPR107、CNNM、G6PD-2基因的Ct中位数与平均数接近,即上述基因相对表达量离散程度低,表达更稳定。然而对原始Ct分析内参基因稳定性的不足,还需引入其他的方法。
2.2 内参基因的稳定性分析
利用ΔCt法、geNorm、NormFider和BestKeeper对15个候选内参基因的稳定性进行分析(表4)。
表 4 4种方法评价15个候选内参基因表达的稳定性Table 4 Expression stability of 15 candidate reference genes evaluated by 4 methods内参基因 ΔCt geNrom NormFinder Beatkeeper 标准差 基因平均表达值 基因稳定值 标准差 变异系数 相关系数 SLC36 2.632 0.854 0.173 0.569 2.523 0.671 PP2C 2.321 0.927 0.416 0.828 3.070 0.824 Trx-1 2.663 1.130 0.510 0.852 3.964 0.832 MGL 2.673 1.007 0.493 0.885 3.918 0.918 AUX 2.652 1.094 0.598 1.063 4.430 0.882 GPR107 2.617 0.817 0.167 0.489 2.253 0.728 PDP 2.737 1.390 0.831 0.642 2.571 0.462 CNNM 2.615 0.847 0.157 0.468 2.015 0.721 CFL 2.274 1.094 0.346 0.532 3.038 0.781 UGT 2.613 0.923 0.237 0.517 2.418 0.651 PP2A 2.693 1.054 0.568 1.057 4.671 0.511 EF1-α 2.127 0.895 0.286 0.393 2.347 0.687 G6PD-1 2.763 1.204 0.692 0.469 2.065 0.009 G6PD-2 2.636 0.880 0.334 0.290 1.323 0.750 Trx-2 2.663 0.989 0.465 0.417 1.790 0.487 ΔCt法是在原始Ct值的基础上,计算每个基因所有样本与其他基因的Ct值之差,并计算其标准差。一般平均标准差越低,基因稳定性越高。该方法中,EF1-α、PP2C、CFL、CNNM是山麦冬果实发育阶段最稳定的内参基因;PDP、G6PD-1、PP2A是最不稳定的内参基因。
geNorm软件通过平均表达值来描述候选内参基因的稳定性,同时还能计算归一化因子之间的两两变异(Vn/n+1,其中n为可使RT-qPCR结果准确的最少基因数目)。该方法中,所有基因的平均表达值都在1.5以下(稳定内参基因的临界值),即该方法判定下的所有基因都可作为内参基因,其中GPR107(0.817)与CNNM(0.847)基因的平均表达值最低,说明最稳定。同时PDP、G6PD-1基因的平均表达值最高,分别为1.390、1.204,最不稳定,这与ΔCt法判定结果一致。此外,利用geNorm计算2个归一化基因的Vn/n+1,确定适合量化果实生长过程的最优内参基因数目。geNorm首先计算2个最稳定的候选内参基因的归一化因子值,然后将剩余候选内参基因按其表达稳定性下降的顺序依次相加。如果基因之间的Vn/n+1大于或等于0.15,则进行RT-qPCR分析时应该再添加1个基因才能达到可靠的结果,一旦Vn/n+1低于0.15,就不需要添加额外的基因[21]。由图4可见:从V4/5开始Vn/n+1小于0.15,即需要使用4个内参基因才能得到可靠的RT-qPCR结果。
NormFinder软件可分析候选内参基因的两两变异性,其中稳定值越小,候选内参基因越稳定。CNNM与GPR107基因的稳定值最小,分别为0.157、0.167,即CNNM与GPR107基因最稳定,这与geNorm分析结果一致;此外,对最差的内参基因评价也与上述2种方法一致:PDP、G6PD-1、AUX是量化果实发育阶段最不适合的内参基因。
Bestkeeper与geNorm、NormFinder软件不同,需导入原始Ct值平均数,计算候选内参基因在所有样品中的标准差、变异系数、相关系数。一般地,稳定的内参基因拥有低的标准差、变异系数及高的相关系数。在Bestkeeper评价中,与geNorm、NormFinder分析结果一致,CNNM与PDP基因分别还是最稳定与最不稳定的内参基因。除此之外,还发现G6PD-2为该方法中最稳定的内参基因,其标准差与变异系数最低,分别为0.290、1.323,相关系数为0.750。
最后通过几何平均数对这4种方法的分析结果进行综合性排序(表5)。根据表5的排名与geNorm推荐的内参基因数目,筛选CNNM、GPR107、EF1-α、G6PD-2作为标准化山麦冬果实RT-qPCR的最优内参组合,PDP为最差内参基因,通过4种算法得出的结果也与最初候选内参基因原始Ct值分布箱线图分析结果一致。
表 5 15个候选内参基因的综合排名Table 5 Comprehensive ranking of reference genes for normalization基因名 几何平均数 排名 基因名 几何平均数 排名 CNNM 2.340 1 PP2C 6.557 9 GPR107 2.913 2 MGL 8.572 10 EF1-α 3.162 3 AUX 10.602 11 G6PD-2 3.722 4 Trx-1 11.199 12 SLC36 5.350 5 G6PD-1 11.977 13 UGT 5.826 6 PP2A 12.368 14 CFL 5.925 7 PDP 14.491 15 Trx-2 6.160 8 2.3 内参基因稳定性的验证
为验证内参基因的有效性,选择10种花青素合成结构基因与调控基因作为目的基因。用单一内参基因:最优内参(CNNM)、最差内参(PDP),及2种内参组合:排名前2位的内参基因(CNNM、GPR107)和排名前4位的内参基因(CNNM、GPR107、EF1-α、G6PD-2)进行归一化。从图5可见:在山麦冬果实花青素合成过程中,使用4种内参方式归一化时,所有的目的基因都上调表达,但变化倍数稍有不同。在山麦冬果实成熟期,使用PDP基因作为内参时,所有目的基因相对表达量均显著高于其他3类,特别是对转录因子bHLH基因的量化时产生严重偏差,使用PDP基因与CNNM+GPR107+EF1-α+G6PD-2基因组合作为内参,bHLH基因的相对表达量分别为6.28与15.70,两者差异高达2.5倍。然而,当使用最优内参基因CNNM进行标准化时,除UFGT基因外,CNNM、GPR107、EF1-α、G6PD-2内参组合无显著差异,使用CNNM基因标准化时,UFGT相较幼果期上调表达50.71倍,使用4种内参组合时,UFGT上调72.49倍。此外,本研究还分析了候选内参排名前2位的基因(CNNM、GPR107)作为目的基因的表达量,发现选用2种内参基因与geNorm软件推荐使用4种内参基因,在10个目的基因中均无显著差异。
从图6可见:利用最差内参PDP得到的目的基因表达量与4种内参基因组合得到的目的基因表达量相关系数为0.868 6 (P<0.01),当使用最优基因CNNM作为内参时,与4种内参组合相关系数可达0.991 6 (P<0.01)。对2种内参组合与geNorm推荐的4个数目内参组合比较发现:通过这2种方法标准化得到的目的基因相关性可达0.999 9 (P<0.01),即仅使用CNNM、GPR107基因作为双内参也可达到geNorm软件推荐的4个内参数目组合的效果。
3. 讨论
山麦冬作为一种优良的地被园林植物及药用植物,研究多集中于提高栽培技术及块茎产量,而针对园林观赏应用的研究较少。在本研究之前没有山麦冬内参的研究报道,作为沿阶草族植物,其近源种也仅有麦冬Ophiopogon japonicus抗逆性研究中曾以微管蛋白基因(tubulin)[22]及Actin [23]作为参考基因。但这2类基因在前期转录组筛选中由于变异系数及变化倍数在候选内参中就已经被排除。本研究根据几何平均数的综合排名,推荐使用内参基因CNNM、GPR107、EF1-α、G6PD-2作为研究山麦冬花青素合成的最优内参组合。EF1-α、G6PD-2属于常见的内参基因,在植物生长发育、抗逆反应、代谢合成中已被广泛应用[24-25]。基于前期转录组数据,新型内参基因CNNM、GPR107也可作为RT-qPCR分析的内参基因,CNNM编码过渡金属转运蛋白,可参与多种金属吸收、排除及区分化[26],GPR107编码G蛋白偶联受体107,广泛存在于细胞表面的膜蛋白,可参与植物体多种细胞信号转导及调控机制保守[27]。上述2种基因在山麦冬果实中表达稳定,其相对表达量平均值与中位数相近,离散程度低,且表达量适中,符合内参基因的标准。在观赏植物中,由于新型内参基因稳定性强于传统内参基因,常被选用标准化目的基因的表达。例如,在异型花柱连翘Forsythia suspensa中,转录组中变化微小的未知基因是研究花开放最适合的内参基因[28];太行花Taihangia rupestris花器官有复杂的性别决定机制,鉴定两性花与雄性花的内参基因是编码铁硫簇组装蛋白、3-巯基丙酮酸硫转移酶与跨膜蛋白50的新型内参基因[11]。SmDnaJ基因在旱柳Salix matsudana各种非生物胁迫下表达最为稳定[29]。bHLH在观赏百合Lilium oriental×Trumpet hybrid体胚诱导、体胚发育中表达最稳定[30],但bHLH是植物颜色育种中的重要靶基因,并不适合作为本研究的内参基因候选,这也证实了不同目标性状需采用不同的内参基因,没有一种内参基因是普适的。
花青素合成路径在植物中是保守的,其中MYB转录因子与bHLH转录因子可形成二元复合体,激活花青素合成酶基因[31-32]。大量研究表明:MYB、bHLH转录因子基因与花青素合成酶基因在紫色系植物组织发育过程中协同上调[3, 33-34]。为验证内参基因的结果,挑选了10个在山麦冬花青素合成调控网络的中枢基因(相关性强且表达量高)作为验证,其中包括转录因子与结构基因(C4H、CHS、MT、UFGT、MYB、bHLH),这10种基因在4种归一化方法下表达模式均显著上调,但趋势稍有不同,选用较差内参PDP标准化结果偏差最大,在山麦冬成熟黑果中所有基因都显著高于其他基因。尽管最优内参基因CNNM对目的基因的归一化可以达到与4种内参组合很高的相关系数,但对UFGT基因的量化存在显著差异,而UFGT基因作为花青素合成通路的下游修饰,对花青素积累至关重要,特别是在山麦冬这类组织颜色深即富含花青素的类型[2, 35],例如在葡萄Vitis vinifera果皮[36]、玫瑰Rosa rugosa [37]、紫皮石刁柏Asparagus officinalis[33]中UFGT都被验证为关键基因,因此仅选用单一基因作为研究山麦冬果皮花青素积累的内参是不合适的,继而在CNNM基因基础上又引入GPR107来规避单内参基因的误差,该内参组合与geNorm推荐的内参组合相关系数最高,在10种目的基因的验证结果中与4种内参组合均无显著差异,且选用双内参组合比4种内参组合可操作性强,因此判定使用CNNM、GPR107作为双内参即可得到可靠的RT-qPCR结果。双内参组合联合使用可以减少实验因素对基因表达的影响,且结果更为准确。暴露于UV-B辐射下的番茄Lycopersicon esculentum幼苗不同组织都应选用特定的内参组合,例如叶中选用肌动蛋白基因与微管蛋白基因,而根中选用微管蛋白与UV-B抗性位点基因更加适合[38];UBQ和EF1-α基因由于表达稳定,可作为内参基因用于鹅掌草Anemone flaccida各器官的不同发育阶段[39]。
4. 结论
本研究基于转录组数据筛选了15个候选内参基因,分析其在山麦冬果实不同时期的表达稳定性。经过10种目的基因验证后,表明以CNNM、GPR107基因作为组合是山麦冬果实花青素生物合成研究的最佳内参基因,而常用的内参基因却并不适用于本研究,这为筛选新型内参基因提供了新思路。
-
[1] ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment [J]. Trends Anal Chem, 2015, 65: 47 − 53. [2] DUIS K, COORS A. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects[J]. Environ Sci Eur, 2016, 28(1): 2. doi: 10.1186/s12302-015-0069-y. [3] de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance [J]. Environ Sci Technol, 2019, 53(10): 6044 − 6052. [4] RILLIG M C, LEHMANN A. Microplastic in terrestrial ecosystems [J]. Science, 2020, 368(6498): 1430 − 1431. [5] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Sci Total Environ, 2017, 586: 127 − 141. [6] FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction [J]. Environ Sci Technol, 2016, 50(11): 5774 − 5780. [7] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [J]. Environ Sci Technol, 2016, 50(20): 10777 − 10779. [8] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Sci Total Environ, 2018, 642: 12 − 20. [9] 费禹凡, 黄顺寅, 王佳青, 等. 设施农业土壤微塑料污染及其对细菌群落多样性的影响[J]. 科学通报, 2021, 66(13): 1592 − 1601. FEI Yufan, HUANG Shunyin, WANG Jiaqing, et al. Microplastics contamination in the protected agricultural soils and its effects on bacterial community diversity [J]. Chin Sci Bull, 2021, 66(13): 1592 − 1601. [10] LAMONT W J. Plastics: modifying the microclimate for the production of vegetable crops [J]. HortTechnology, 2005, 15(3): 477 − 481. [11] HE Defu, LUO Yongming, LU Shibo, et al. Microplastics in soils: analytical methods, pollution characteristics and ecological risks [J]. TrAC Trends Anal Chem, 2018, 109: 163 − 172. [12] ESPÍ E, SALMERÓN A, FONTECHA A, et al. Plastic films for agricultural applications [J]. J Plast Film Sheet, 2016, 22(2): 85 − 102. [13] 赵岩, 陈学庚, 温浩军, 等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报, 2017, 48(6): 1 − 14. ZHAO Yan, CHEN Xuegeng, WEN Haojun, et al. Research status and prospect of control technology for residual plastic film pollution in farmland [J]. Trans Chin Soc Agric Mach, 2017, 48(6): 1 − 14. [14] ZHOU Bianying, WANG Jiaqing, ZHANG Haibo, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film [J]. J Hazard Mater, 2020, 388: 121814. doi: 10.1016/j.jhazmat.2019.121814. [15] BLÄSING M, AMELUNG W. Plastics in soil: analytical methods and possible sources [J]. Sci Total Environ, 2018, 612: 422 − 435. [16] LI Xiaowei, CHEN Lubei, MEI Qingqing, et al. Microplastics in sewage sludge from the wastewater treatment plants in China [J]. Water Res, 2018, 142: 75 − 85. [17] ZHOU Qian, TIAN Chongguo, LUO Yongming. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chin Sci Bull, 2017, 62(33): 3902 − 3909. [18] SCHEURER M, BIGALKE M. Microplastics in swiss floodplain soils [J]. Environ Sci Technol, 2018, 52(6): 3591 − 3598. [19] ZALASIEWICZ J, WATERS C N, IVAR DO SUL J A, et al. The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene [J]. Anthropocene, 2016, 13: 4 − 17. [20] JIANG Xiaojin, LIU Wenjie, WANG Enheng, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China [J]. Soil Till Res, 2017, 166: 100 − 107. [21] MACHADO A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environ Sci Technol, 2018, 52(17): 9656 − 9665. [22] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment [J]. Sci Total Environ, 2019, 670: 1 − 7. [23] WAN Yong, WU Chenxi, XUE Qiang, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil [J]. Sci Total Environ, 2019, 654: 576 − 582. [24] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground [J]. Environ Sci Technol, 2019, 53(19): 11496 − 11506. [25] LIANG Yun, LEHMANN A, BALLHAUSEN M B, et al. Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi [J]. Front Microbiol, 2019, 10. doi: 10.3389/fmicb.2019.02018. [26] LWANGA E H, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris [J]. Environ Pollut, 2017, 220: 523 − 531. [27] RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms [J]. Sci Rep, 2017, 7(1). doi: 10.1038/s41598-017-01594-7. [28] MAAß S, DAPHI D, LEHMANN A, et al. Transport of microplastics by two collembolan species [J]. Environ Pollut, 2017, 225: 456 − 459. [29] ZHU Dong, BI Qingfang, XIANG Qian, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida [J]. Environ Pollut, 2018, 235: 150 − 154. [30] RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems [J]. Front Plant Sci, 2017, 8: 01805. doi: 10.3389/fpls.2017.01805. [31] WANG Jie, COFFIN S, SUN Chengliang, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environ Pollut, 2019, 249: 776 − 784. [32] SELONEN S, DOLAR A, JEMEC KOKALJ A, et al. Exploring the impacts of plastics in soil-The effects of polyester textile fibers on soil invertebrates [J]. Sci Total Environ, 2020, 700: 134451. doi: 10.1016/j.scitotenv.2019.134451. [33] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) [J]. Environ Sci Technol, 2016, 50(5): 2685 − 2691. [34] CHEN Yuling, LIU Xiaoning, LENG Yifei, et al. Defense responses in earthworms (Eisenia fetida) exposed to low-density polyethylene microplastics in soils [J]. Ecotoxicol Environ Saf, 2020, 187: 109788. doi: 10.1016/j.ecoenv.2019.109788. [35] LAHIVE E, WALTON A, HORTON A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure [J]. Environ Pollut, 2019, 255: 113174. doi: 10.1016/j.envpol.2019.113174. [36] KIM S W, AN Y J. Soil microplastics inhibit the movement of springtail species [J]. Environ Int, 2019, 126: 699 − 706. [37] JU Hui, ZHU Dong, QIAO Min. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida [J]. Environ Pollut, 2019, 247: 890 − 897. [38] RODRÍGUEZ-SEIJO A, SANTOS B, FERREIRA DA SILVA E, et al. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms [J]. Environ Chem, 2019, 16(1): 8 − 17. [39] JIANG Xiaofeng, CHANG Yeqian, ZHANG Tong, et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida) [J]. Environ Pollut, 2019, 259: 113896. doi: 10.1016/j.envpol.2019.113896. [40] HUERTA LWANGA E, THAPA B, YANG Xiaomei, et al. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration [J]. Sci Total Environ, 2018, 624: 753 − 757. [41] ZHU Dong, CHEN Qinglin, AN Xinli, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition [J]. Soil Biol Biochem, 2018, 116: 302 − 310. [42] WU Qingqing, TAO Huchun, WONG M H. Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. [J]. Environ Geochem Health, 2019, 41(1): 17 − 26. [43] PANEBIANCO A, NALBONE L, GIARRATANA F, et al. First discoveries of microplastics in terrestrial snails [J]. Food Control, 2019, 106: 106722. doi: 10.1016/j.foodcont.2019.106722. [44] AL-JAIBACHI R, CUTHBERT R N, CALLAGHAN A. Examining effects of ontogenic microplastic transference on Culex mosquito mortality and adult weight [J]. Sci Total Environ, 2019, 651: 871 − 876. [45] CUTHBERT R N, AL-JAIBACHI R, DALU T, et al. The influence of microplastics on trophic interaction strengths and oviposition preferences of dipterans [J]. Sci Total Environ, 2019, 651: 2420 − 2423. [46] LWANGA H E, VEGA J M, QUEJ V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Sci Rep, 2017, 7(1): 14071. doi: 10.1038/s41598-017-14588-2. [47] ZHAO Shiye, ZHU Lixin, LI Daoji. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: not only plastics but also natural fibers [J]. Sci Total Environ, 2016, 550: 1110 − 1115. [48] BOYERO L, LÓPEZ-ROJO N, BOSCH J, et al. Microplastics impair amphibian survival, body condition and function[J]. Chemosphere, 2020, 244: 125500. doi: 10.1016/j.chemosphere.2019.125500. [49] SONG Yang, CAO Chengjin, QIU Rong, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure [J]. Environ Pollut, 2019, 250: 447 − 455. [50] LI Boqing, DING Yunfei, CHENG Xue, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice [J]. Chemosphere, 2020, 244: 125492. doi: 10.1016/j.chemosphere.2019.125492. [51] JIN Yuanxiang, LU Liang, TU Wenqing, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. Sci Total Environ, 2019, 649: 308 − 317. [52] LU Liang, WAN Zhiqin, LUO Ting, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice [J]. Sci Total Environ, 2018, 631/632: 449 − 458. [53] XIE Xiaoman, DENG Ting, DUAN Jiufei, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway [J]. Ecotoxicol Environ Saf, 2020, 190: 110133. doi: 10.1016/j.ecoenv.2019.110133. [54] LUO Ting, WANG Caiyun, PAN Zihong, et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring [J]. Environ Sci Technol, 2019, 53(18): 10978 − 10992. [55] ROMAN L, LOWENSTINE L, PARSLEY L M, et al. Is plastic ingestion in birds as toxic as we think? Insights from a plastic feeding experiment [J]. Sci Total Environ, 2019, 665: 660 − 667. [56] MUSCOLO A, SETTINERI G, ATTINÀ E. Early warning indicators of changes in soil ecosystem functioning [J]. Ecol Ind, 2015, 48: 542 − 549. [57] WANG Jun, LÜ Shenghong, ZHANG Manyun, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils [J]. Chemosphere, 2016, 151: 171 − 177. [58] LIU Hongfei, YANG Xiaomei, LIU Guobin, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017, 185: 907 − 917. [59] HUANG Yi, ZHAO Yanran, WANG Jie, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil [J]. Environ Pollut, 2019, 254: 112983. doi: 10.1016/j.envpol.2019.112983. [60] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil [J]. Environ Sci Eur, 2018, 30(1): 11. doi: 10.1186/s12302-018-0140-6. [61] FEI Yufan, HUANG Shunyin, ZHANG Haibo, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil [J]. Sci Total Environ, 2020, 707: 135634. doi: 10.1016/j.scitotenv.2019.135634. [62] REN Xinwei, TANG Jingchun, LIU Xiaomei, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil [J]. Environ Pollut, 2020, 256: 113347. doi: 10.1016/j.envpol.2019.113347. [63] LI Jiajia, LIU Fanghua, YANG Cuiyun, et al. Inhibition effect of polyvinyl chloride on ferrihydrite reduction and electrochemical activities of Geobacter metallireducens [J]. J Basic Microbiol, 2020, 60(1): 37 − 46. [64] TU Chen, CHEN Tao, ZHOU Qian, et al. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater [J]. Sci Total Environ, 2020, 734. doi: 10.1016/j.scitotenv.2020.139237. [65] RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment [J]. Environ Sci Technol Lett, 2017, 4(7): 258 − 267. [66] ZHANG Mengjun, ZHAO Yanran, QIN Xiao, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil [J]. Sci Total Environ, 2019, 688: 470 − 478. [67] LIAN Jiapan, WU Jiani, XIONG Hongxia, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.) [J]. J Hazard Mater, 2020, 385: 121620. doi: 10.1016/j.jhazmat.2019.121620. [68] JIANG Xiaofeng, CHEN Hao, LIAO Yuanchen, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J]. Environ Pollut, 2019, 250: 831 − 838. [69] CHAE Y, AN Y J. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects via vascular plants [J]. Environ Sci Nano, 2020, 7(3): 975 − 983. [70] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料[J]. 科学通报, 2019, 64(9): 928 − 934. LI Lianzhen, ZHOU Qian, YIN Na, et al. Uptake and accumulation of microplastics in an edible plant [J]. Chin Sci Bull, 2019, 64(9): 928 − 934. [71] LI Lianzhen, LUO Yongming, LI Ruijie, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode [J]. Nat Sust, 2020, 3(11): 929 − 937. [72] QI Yueling, YANG Xiaomei, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth [J]. Sci Total Environ, 2018, 645: 1048 − 1056. [73] DONG Hegan, LIU Tong, HAN Zhiquan, et al. Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties [J]. J Environ Biol, 2015, 36(3): 677 − 684. [74] GAO Minling, LIU Yu, SONG Zhengguo. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort) [J]. Chemosphere, 2019, 237: 124482. doi: 10.1016/j.chemosphere.2019.124482. [75] LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities [J]. Environ Sci Technol, 2020, 54(10): 6166 − 6173. [76] RILLIG M C, de SOUZA MACHADO A A, LEHMANN A, et al. Microplastic effects on plants [J]. New Phytol, 2019, 223(3): 1066 − 1070. [77] QI Yueling, OSSOWICKI A, YANG Xiaomei, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties [J]. J Hazard Mater, 2020, 387: 121711. doi: 10.1016/j.jhazmat.2019.121711. [78] LIU Hongfei, YANG Xiaomei, LIANG Chutao, et al. Interactive effects of microplastics and glyphosate on the dynamics of soil dissolved organic matter in a Chinese loess soil [J]. Catena, 2019, 182: 104177. doi: 10.1016/j.catena.2019.104177. [79] CHEN Huiping, WANG Yuhuang, SUN Xi, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function [J]. Chemosphere, 2020, 243: 125271. doi: 10.1016/j.chemosphere.2019.125271. [80] WANG Jiao, LIU Xianhua, DAI Yexin, et al. Effects of co-loading of polyethylene microplastics and ciprofloxacin on the antibiotic degradation efficiency and microbial community structure in soil [J]. Sci Total Environ, 2020, 741: 140463. doi: 10.1016/j.scitotenv.2020.140463. 期刊类型引用(1)
1. 赵雨,林琳,王群,张国哲,王杰,尚林雪,洪思丹,马清清,顾翠花. 不同组织及干旱胁迫下黄薇内参基因的筛选与验证. 浙江农林大学学报. 2023(03): 665-672 . 本站查看
其他类型引用(1)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200729

计量
- 文章访问数: 2562
- HTML全文浏览量: 852
- PDF下载量: 106
- 被引次数: 2