-
城市化以及随之而来的人口增长和土地表面变化,增加了人为放热和下垫面对太阳辐射吸收,导致城市热岛(urban heat island, UHI)[1]。较高的城市温度会对能源消耗、室外热舒适度、空气质量、人类健康等造成不利影响[2],产生一系列生态环境问题,进而影响社会可持续发展。过去几十年对城市热岛的研究集中在时空分异特征、机制与模拟、影响因子、减缓策略以及与城市化响应等方面[2-5]。就气候区而言,对热带低纬度滨海城市的关注较少[6]。城市是一个复杂的巨系统,具有离散性等级层次;等级理论认为复杂系统具有“可分解性”,通过赋予系统层次关系,可以便捷地研究和描述系统结构与功能、理解其“尺度感”[7]。当前针对城市热岛等级划分的研究较少[3, 8-9],随着景观生态学理论引入城市热岛研究,“城市热力景观”格局研究出现了新思路。陈云浩等[10]建立了热力景观格局评价体系,陈爱莲等[11]筛选出能较准确描述热力景观格局的景观格局指数,邓睿等[12]和杨丽萍等[13]引入景观格局指数描述了热力景观的时空演变特征,池腾龙等[14]使用热环境变化指数、热力景观格局指数和地理信息系统(GIS)标准差椭圆分析描述了武汉市热环境时空演变规律。可见,景观格局指数对热力景观格局评价具有适应性。海口是中国典型热带岛屿型省会城市,热岛具有典型性;随着城镇化不断深入,海口城市规模不断扩大,城市热岛问题日益凸显。王中正[15]使用单期Landsat-8影像论证了温度反演方法,但未对海口热岛时空分异特征进行分析。本研究采用单窗算法对海口5期Landsat遥感影像进行地表温度反演,利用标准化处理构建热场变异指数并划分热岛等级强度,结合目视分析和地理剖面分析研究热环境时空演变,用地统计学分析和景观格局指数法量化热力景观时空分异特征,旨在为人居环境改善、城市生态可持续发展提供理论依据。
-
海口地处海南岛北部、低纬度热带北缘,陆域面积2 284.49 km2,海岸线136.23 km,陆域大部为海拔100 m以下的台地和平原,属热带海洋性季风气候,年均降水量2 607 mm,年均日照时数2 000 h以上,年平均气温24.3 ℃。城市热岛效应在6−8月最为显著。2019年常住人口232.79万人,非农业人口183.39万人,城镇化率78.8%。生态环境问题严重,对居民生活与城市可持续发展造成了不利影响。
-
数据来源为美国地质调查局(USGS)官网。选取原则:低云量、气象状况良好、气温接近、时间统一集中(6−8月);每期由三景影像拼接而成,且以行代号12446的一景为主,其面积占95%以上。详细参数信息见表1。预处理:影像辐射定标;FLASH模型大气校正;以谷歌地球(Google Earth)高分影像和海口市总体规划图为参照,进行几何精校正,误差控制在0.5个像元内。
表 1 海口市遥感影像数据信息
Table 1. POI data classification statistics
行代号 传感器 获取日期(年-月-日) 陆地云量/% 行代号 传感器 获取日期(年-月-日) 陆地云量/% 12446 LANDSAT_5TM 2000-06-19 13.00 12446 LANDSAT_8OLI_TIRS 2015-06-26 0.78 12446 LANDSAT_5TM 2005-06-17 11.00 12446 LANDSAT_8OLI_TIRS 2019-06-21 0.48 12446 LANDSAT_5TM 2010-07-27 8.00 -
参照王中正[15]方法基于单窗算法进行地表温度(land surface temperature,LST)反演,获取海口市地表温度数据集;地面气温参数源于国家气象科学数据共享服务平台。单幅影像利用ENVI 5.0处理生成LST图,各期3幅LST图导入Erdas 8.6进行交叉边界裁剪、融合,之后基于行政边界进行裁剪,生成分辨率为30 m的LST栅格数据(图1),精度可满足研究需求[16-17]。由于大面积云层及阴影会干扰后续分析,因此2000和2005年分别裁剪掉65.662 6和19.359 0 km2的异常低温区域。
-
采用热场变异指数(heat index, HI)界定热岛强度[16],标准化处理后,对热环境景观的时空格局进行纵向比较与分析(图2)。计算公式为:IH=(Tn−Tmean)/Tmean。其中,IH表示相对地表温度,无量纲;Tn表示研究区域内第n点的地表温度;Tmean表示研究范围内的平均地表温度。根据武鹏飞等[17]研究,基于自然断点法划分10个热岛强度空间等级:Ⅰ表示极强冷岛,Ⅱ表示较强冷岛,Ⅲ表示中等冷岛,Ⅳ表示较弱冷岛,Ⅴ表示弱冷岛,Ⅵ表示弱热岛,Ⅶ表示较弱热岛,Ⅷ表示中等热岛,Ⅸ表示较强热岛,Ⅹ表示极强热岛。
-
基于ArcGIS平台的3D Analyst工具,绘制地表温度剖面图。分析剖面线的城市热岛时空分异规律,推断城市热岛在空间方向上的发展态势;结合地物特征,分析“山脊”“谷”“高原”“盆地”和“高峰”及其波动变化的原因[18],判读热岛景观格局的时空异质性。
-
①热环境变化指数。热力景观变化主要包括速度与强度,可用变化速度指数(change speed index,ICS)和变化强度指数(change intensity index,ICI)进行量化,单位均为%。其中,ICS表征变化速度与趋势;ICI是通过空间单元将扩张速度标准化,以描述单位面积可承受的最大强度[14]。ICS和ICI越大,表明相对高温区域扩张速度越快,趋势越明显,热环境效应越强。计算公式为:ICS=(ΔAij/AiΔt)×100%,ICI=(ΔAij/SΔt)×100%。其中,ΔAij表示相对高温区从第i年到第j年间的变化面积;Ai表示第i年的相对高温区域面积;Δ
t表示研究的时间长度;S表示研究区域总面积。②热力景观格局指数。使用30 m精度的栅格数据,基于Fragstats 4.2软件平台计算热力景观格局指数。结合研究需求从斑块类型水平上选取斑块密度(PD)、平均斑块面积(AREA_MN)、最大斑块指数(LPI)、面积加权平均形状指数(SHAPE_AM)、斑块内聚力指数(COHESION)、景观形状指数(LSI)和聚合度(AI)等7个指标,从景观水平上选取斑块数量(NP)、PD、AI、AREA_MN、SHAPE_AM、多样性指数(SHDI)和均匀度指数(SHEI)等7个指标,从数量、形状和结构角度表征热力景观格局时空变化[11-12]。 -
热力景观演变与城市发展密切相关,结合Landsat与谷歌地球影像数据目视解译,得到5个时段不透水面的格局变化图(图3),以与热力景观格局相呼应。
-
斑块尺度与时空分布是景观要素研究的重要参数,可为景观水平的生态保护研究提供理论依据[19]。依据热场变异指数划分的热岛强度等级面积拟合曲线,由图4可知:5期均为“中间大,两头小”的正态分布特征,峰值均集中在Ⅳ、Ⅴ、Ⅵ 等3个等级,3级之和依次占总面积的67.51%、68.19%、60.52%、68.05%和50.25%,表明19 a间Ⅳ、Ⅴ、Ⅵ 等3个等级占主导格局地位;Ⅰ、Ⅱ、Ⅸ、Ⅹ 等4级之和依次占总面积的8.74%、3.93%、6.83%、6.69%和13.98%,同时Ⅰ和Ⅹ 之和占比依次为1.72%、0.37%、1.70%、2.04%和3.24%,表明存在冷、热岛强度等级中心。
-
综合热场变异指数空间分布(图2)与不透水面分布(图3)发现:5期热岛强度等级斑块主要与其城乡建设用地分布相吻合,集中在开发强度大的工商业集中区、人口密集区和部分裸地区域,热场变异指数以这些区域为核心向郊区不断降低,但5期热场变异指数等级内部有明显的时空差异。2000年热岛等级中心呈“单一连片中心主导,多中心散布”形式;“单一连片中心”分布于粤海通道、金沙湾和西海岸片区,是因这一区域正处于开发建设期;“多中心”于主城区主要在旧城、中心商务、水城和灵山片区、药谷和金盘工业园、狮子岭开发区及美兰机场,郊区主要在乡镇镇区和裸露河滩。2005年为“多中心散布”;主城区主要在粤海通道、金沙湾、西海岸、金贸、海甸、中心商务、水城和桂林洋滨海片区、药谷和金盘工业园,2000年的“单一连片中心”依然是高温集中区,但不再连结成片;郊区中心较2000年减少很多。2010年呈“单一中心主导,多次中心集中”及“多中心”的形式;“单一中心”指金沙湾和西海岸片区的高强度开发带;“多次中心”集中于中心城区的秀英、金盘片、大英山和府城片区,城建活动频繁且分布广致使裸地增多、热岛中心集中;“多中心”在主城区有新埠岛、水城、灵山和桂林洋综合片区,狮子岭开发区、火车南站下方的裸地、美兰机场和省教育科研基地,这些区域同样处于快速建设阶段,“多中心”在郊区分布同前。2015年呈“连片中心主导,多中心散布”形式;“连片中心”指中心城区主要片区都存在热岛中心,表明中心城区产热量大、散热不足;“多中心”在主城区有狮子岭开发区、水城片区及其西侧的开发用地、灵山、桂林洋综合片区、美兰机场,郊区主要是各集中居民点、裸露河滩,郊区绿地多、散热功能较城区更好,因而无大片极强热岛。2019年呈“主城区多中心集中,郊区多中心散布”的形式;“主城区多中心”指除灵山片区以外的主要功能区都有极端热岛分布,尤以江东新区极端热岛增长最为显著,其城建范围与速度增长均较快,形成新的热岛集中区,这与海口“东优”发展战略、国际自贸港建设的政策导向相吻合;“郊区多中心”指极端热岛与较集中的聚居点或高强度开发的地点相一致。综上,从2000到2019年热岛等级中心集中区呈“西海岸→建成区→江东新区”和“西海岸→西南老城方向”的转移态势,且不断向城乡交错带扩散,呈范围扩散、速度递增的趋势。极强热岛在郊区分散于主要镇区或者裸地,未形成规模。可见,主要热岛中心分布在主城区,与城镇扩张模式与城市发展阶段密切相关,“摊大饼”式的主城区扩张模式使得人口、建筑密集、城市绿化不足,导致自然散热条件差,因此形成极端热岛集中区;而卫星城镇的密集式开发,亦会形成小型热岛中心。
-
结合海口市不透水面扩散与转移方向(图3),设置3条地表温度剖面,其中,样线的“谷”和“盆地”多表示密林、水域、湿地或生长期稻田,稻田生长阶段不同会导致其LST差别明显;而“山脊”“高原”和“高峰”则多为密集建筑区、裸地和工业区,尤其人口密集的市中心热辐射较严重。由北—南地表温度剖面图(图5A)可知: 2000、2010和2015年地表温度呈“减—增—波动”的特征,2005年整体“递减”,2019年为“减—增—减—增”态势。具体来看,0~15 km的主城区段一直处于“高原”区,5期均波动递减,“谷”出现在3.1 km处的海甸溪、8.7 km处的五公祠附近和14.8 km处的玉龙泉湿地公园,“高峰”各期均不一致;0~15 km的郊区段各年变化均不一致,但“谷”和水域、密林等冷岛区域对应,“高峰”与乡镇镇区或裸地对应。2000年18~36 km呈“盆地”特征,36~66 km段“山脊”“谷”“高峰”交替出现。2005年36~66 km段波动无明显规律,结合热遥感影像可知,此时该段农田大量裸露,60~63 km出现的“山脊”属异常值。2010年22~31 km段集中出现“谷”。2019年整体平稳,28 km处的“高峰”与热岛强度等级中心对应。由西北—东南地表温度剖面图(图5B)可知:5期在0~39 km区段上变化较一致,均为“减—增—减—增—减”的特征;西海岸段(0~15 km)递减,主城区段(9~27 km)是“高原”区,南渡江流域(27~30 km)为“谷”,美兰机场区域(30~39 km)是“高峰”密集区。区别在于2000−2010年西海岸段(0~15 km)处于高速开发阶段,有明显“高峰”,而到2015−2019年随着老城区更新、江东新区开发热,“高峰”消失;三江镇区域(39~54 km)耕地、林地和养殖塘交叉分布,且耕地或采收或处于生长期,5期特点各不相同。由东北—西南地表温度剖面图(图5C)可知:5期在0~18 km区段上变化规律类似,均为“减—增—减”趋势;新埠岛(0~3 km)由“高峰”(西坡新村)骤降到“谷”(横沟河);中心城区(3~15 km)是“高原”区,多“高峰”在金盘工业园;狮子岭开发区(15~21 km)未连成片,与河流、坑塘、林地和耕地相交错,因而“高峰”“谷”交替出现。
-
将Ⅷ、Ⅸ、Ⅹ 等3个等级作为相对高温区量化热岛转移特征。由表2可知:2000−2005年和2005−2010年高温斑块扩张较多,ICS和ICI也较高;2010−2015年ICS和ICI很小,2015−2019年甚至成为负值。结合海口新增高温斑块时空变化(图6)与不透水面分布(图3)可知:就主城区而言,2000−2005年高温斑块扩张主要发生在西海岸、长流、金盘和秀英片区及狮子岭和金鹿工业区、省教育科研基地,2005−2010年主要发生在长流、海甸、府城、滨江和白龙片区及狮子岭和金鹿工业区,2010−2015年主要发生在长流片区及西南老城方向,2015−2019年主要发生在江东片区的美兰机场到桂林洋滨海片区一带及西南老城方向。2000−2005年和2005−2010年郊区温斑块扩张较多,主要是观澜湖地区开发,其次是小型城镇、耕地或河滩的扩张。
表 2 海口市高温斑块扩张的变化速度指数和变化强度指数
Table 2. ICS and ICI of high-temperature plaque expansion in Haikou
时间段 扩张面积/km2 ICS/% ICI/% 2000−2005 105.136 2 12.87 0.92 2005−2010 87.588 0 10.87 1.28 2010−2015 12.588 3 0.59 0.09 2015−2019 −5.462 1 −0.37 −0.06 平均值 49.962 6 5.99 0.56 -
由图7可知:海口热力景观格局在2000−2019年变化较大。就斑块密度来看,Ⅵ、Ⅶ、Ⅷ、Ⅸ、Ⅹ等 5个等级都在2010年达到峰值,之后逐渐减小;表明在城市化过程中,热岛斑块先缩小后扩张,由大而集中到小而分散再到大而集中,热力景观斑块破碎度随之体现为先增加后减小。对于平均斑块面积而言,Ⅷ、Ⅸ、Ⅹ 都在2010年达到谷值,之后逐渐增大,2019年数值分别是2010年的11、19、18倍,说明热岛斑块先逐渐分解后连接成片。5期数据中,最大斑块指数分别出现在Ⅴ、Ⅵ、Ⅵ、Ⅳ、Ⅳ级,表明Ⅳ、Ⅴ和Ⅵ 优势度最大;Ⅹ级的最大斑块指数由2000年的0.13增加到2010年的0.24再减小到2019年的0.15,即优势度先增大后减小,反映了研究期间海口热岛效应先增强后减弱。由面积加权平均形状指数来看,5期数据形状最复杂的分别是Ⅳ、Ⅳ、Ⅳ、Ⅵ、Ⅶ级,表明非极端冷、热岛始终占据主导格局;各期由Ⅳ到Ⅶ的变化规律不一致,但最值均由弱冷岛向弱热岛转移,表明建设活动在一定程度上加剧了热力景观的复杂性。测定各期斑块内聚力指数,Ⅷ、Ⅸ、Ⅹ级变化各不相同,与热岛集中区的转移扩散密不可分,说明海口热岛效应具有阶段性。不同热力等级景观形状指数Ⅳ、Ⅴ、Ⅵ、Ⅶ级较大;Ⅷ、Ⅸ、Ⅹ级较小,热力景观斑块也较简单规则,且皆以2010年为界先递增、后平稳波动。5期数据中聚合度变化整体呈增大趋势,Ⅷ、Ⅸ、Ⅹ 级变化最为显著,表明虽然面积有限,但高温斑块连通性增强,有较强的空间聚合趋势,易出现连片热岛。
-
由表3可知:斑块数、斑块密度和聚合度以2010年为界,先递减后递增,平均斑块面积波动增大,三者共同反映了海口热力景观破碎度先递增后锐减;海口老城区更新、西海岸与长流一带以及江东新区的阶段性开发,导致高温热岛斑块出现阶段性的聚集与扩散,相应斑块复杂性先增大后减小。面积加权平均形状指数呈波动上升的趋势,斑块复杂性波动上升。斑块内聚力指数均大于98.5,表明同类别型斑块具有高连通性。多样性指数和均匀度指数皆以2010年为界,先递减后递增,表明等级斑块均匀度先增加后减小,热力景观丰度、复杂性和异质性先提升后下降。总体上,热力景观破碎度、连通性与聚合度的阶段性变化反映了海口热岛集中区转移、扩散。
表 3 热力景观在景观水平上的景观指数变化
Table 3. Landscape index change of thermal landscape at landscape level
年份 斑块数/个 斑块密度/(个·hm−2) 聚合度/% 平均斑块面积/hm2 面积加权平均形状指数 斑块内聚力指数/% 多样性指数 均匀度指数 2000 24 202 10.932 5 81.598 0 15.830 2 15.830 2 98.894 3 1.889 2 0.820 5 2005 36 831 16.306 7 78.642 7 20.079 1 20.079 1 98.994 7 1.818 4 0.789 7 2010 59 845 26.257 6 73.606 5 17.391 4 17.391 4 98.542 5 1.796 9 0.780 4 2015 16 777 7.361 1 84.217 8 23.567 3 23.567 3 99.387 7 1.856 5 0.806 3 2019 15 432 6.770 9 84.702 0 21.835 3 21.835 3 99.355 7 2.100 5 0.912 2 -
研究发现:5期热岛强度等级均符合正态分布规律,其中较弱冷岛、弱冷岛和弱热岛斑块占主导格局,但极强冷、热岛“两头小”的景观格局依然存在。与陈康林等[3]发现广州市弱冷岛、弱热岛面积之和约占总面积的58%,且极强热、冷岛等级存在的结果较吻合,表明热岛强度等级会对局域热环境产生作用。热岛强度等级中心由西海岸分别向江东新区和西南老城方向转移,与不透水面扩张方向保持一致。结合热环境变化指数分析可知:2000−2010年高温区扩张最快,主要集中在中心城区和西海岸;2010−2019年扩张很慢,高温中心转移到江东新区和西南老城方向,且在美兰机场附近形成连片热岛。与雷金睿等[20]发现海口主城区热岛空间质心分布基本一致;直到2019年,江东新区快速开发导致出现连片热岛,与雷金睿等[20]发现质心仅向西南方向转移不完全一致,是因为研究时间不同。可见,城市扩张具有极强的政策导向性,相关部门应将热环境问题纳入城市发展范畴,以避免江东新区热岛与中心城区接连成片。
地表温度剖面分析表明:中心城区始终是“高原”区,19 a来无显著改善,西海岸的“高峰”随着城市建设重心的东移逐渐消失,狮子岭等工业区、美兰机场区域多“高峰”,“谷”通常出现在水域、林地等降温效果明显的地物周边,进一步验证了等级理论。从斑块类型水平来看,2000−2010年海口热岛斑块不断缩小、大型板块逐渐分解、斑块形状愈加复杂、热岛效应不断增强;2010−2019年热岛斑块不断扩张、小版块逐渐连接成片、斑块形状变化趋于平稳、热岛效应不断减弱;研究期间热岛斑块连通性不断增强、聚合度越来越高,易出现连片热岛。从景观水平看,2000−2010年冷热岛斑块破碎度、复杂性和均匀度不断增大,2010−2019年不断减小;研究期间同类别热力斑块连通性很高。与邓睿等[12]发现重庆2001−2014年各景观指数单续递增或递减的规律不一致,表明两市发展水平及阶段不同。
综上,等级理论为描述热力景观的细节变化奠定了基础,热力景观格局指数利于揭示其空间布局、组成多样性及时空分异特征,是分析热力景观格局的重要工具。当然,热力景观格局是具有尺度依赖性与变异性的,需通过不同幅度下的热力景观进一步比较研究。深入理解城市热岛在经济发展、城市规划建设的不同阶段的时空变化,对改善城市热环境、建设生态宜居城市意义重大。
On the spatial-temporal patterns and differentiation characteristics of thermal landscape in Haikou City
-
摘要:
目的 了解海口市热力景观的时空演变特征,缓解快速城市化引起的城市热环境问题。 方法 以2000、2005、2010、2015和2019年共5期Landsat遥感影像为数据源,采用单窗算法反演地表温度研究热环境时空演变;基于地理信息系统(GIS)平台,结合地统计学和景观格局指数法定量分析城市热岛时空分异特征。 结果 热岛强度等级面积曲线符合正态分布特征,其中较弱冷岛、弱冷岛和弱热岛斑块始终占主导格局;热岛等级中心集中区由西海岸分别向江东新区和西南老城方向扩散转移。温度剖面分析可知:中心城区始终是“高原”区,工业区、美兰机场区域多“高峰”值,大面积水域、林地处通常出现“谷”值。2000−2010年高温区扩张快,热岛斑块不断缩小,大型斑块逐渐分解,斑块形状愈加复杂,热岛效应不断增强;2010−2019年扩张慢,热岛斑块不断扩张,小版块逐渐连接成片,斑块形状变化趋于平稳,热岛效应不断减弱。研究期间,同类别热力斑块连通性始终较高。 结论 海口热力景观演变与城市不同发展阶段相对应,基于等级理论的热力景观格局指数分析,有助理解热力景观的时空演变趋势,为生态可持续城市发展规划提供理论依据。图7表3参20 Abstract:Objective With an analysis of the temporal and spatial evoluation characteristics of the thermal landscape in Haikou City, this study is aimed at solutions to the urban thermal environment problems that attribute to the rapid urbanization. Method With the five-phase Landsat remote sensing images of 2000, 2005, 2010, 2015 and 2019 gathered as the data source, a single-window algorithm was utilized to invert the surface temperature to study the temporal and spatial evolution of the thermal environment. Employing GIS platform and the method of geostatistics and landscape pattern index, we have conducted a quantitative analysis of the spatial and temporal differentiation characteristics of urban heat island. Result The area curve of the heat island intensity conforms to the normal distribution characteristics, and the patches of weaker cold island, weak cold island and weaker heat island persist in their dominant patterns. The heat island intensity reduces from the central concentration area to Jiangdong New District near the west coast and the old urban area in the southwest. In the temperature profile, the principal urban area is always a “plateau” area, with the industrial area and the Meilan Airport area often displaying “peak” values, and the large area of waters and forest land showing “valley” values. During the peried from 2000 to 2010, with the rapid expansion of the high temperature, the heat island plaques continued to shrink, while the large plaques gradually decomposed, making the shape of the plaques continuously cnhanced. During the peride from 2010 to 2019, with the expansion slowing down, the heat island plaques continued to expand, and the small plates gradually fitting together, making the change of patch shape stable, and the heat island effect continuously weakened. Throughout the study, the connectivity of thermal plaques of the same category was consistently high. Conclusion The evolution of Haikou’s thermal landscape is consistent with the different stages of urban development and the analysis of thermal landscape pattern index based on hierarchy theory is conductive understanding the temporal and spatial evolution of thermal landscape, provideing a theoretical basis for ecologically sustainable urban development planning. [Ch, 7 fig. 3 tab. 20 ref.] -
气候问题日益突出,世界各国已达成减少二氧化碳排放以改善气候问题的共识。中国作为碳排放大国之一,需向世界完成减排温室气体的承诺,承受着来自国内外的巨大压力。对强制性或自愿减排仍达不到减排要求的状况,碳排放权交易是有效且低成本的市场手段[1]。建立碳交易市场等碳排放平衡机制,能更加公平有效地实现中国碳减排目标[2],引导企业选择科学的减排路径[3],有利于企业在不影响经济发展的情况下完成减排任务[4],同时抵消机制的引入使得碳交易中的部分资金流向林业,促进林业发展[5]。现阶段通过改变能源结构减排的空间不大[6],应重视其他的节能减排方式。中国森林资源丰富,以森林碳汇抵消碳排放作为减排途径之一是合适的。自2011年开展7个碳排放权交易试点以来,2012年提出要加强电力、煤炭、钢铁、石油石化、化工、建材行业的工业节能,并于2017年正式启动全国碳排放权交易市场。电力作为最先启动的重点减排行业,1 700余家发电企业已正式纳入碳市场,其他行业将陆续启动,现阶段是全国碳市场发展的重要节点。在全球气候变暖和碳排放权(森林碳汇)交易市场启动已成为客观事实的背景下,企业作为节能减排主体,当其不能或因成本过高不愿通过购买设备、更新技术等手段实施工业碳减排,企业将选择通过购买价格较低的森林碳汇来达到减排目标[7]。由于不同地区的环境政策、经济发展水平,不同行业的减排要求,不同企业的管理方式、减排技术水平不同,势必导致各企业的碳边际减排成本存在差异,对森林碳汇的需求价格(本研究指企业愿意通过购买森林碳汇进行减排而非工业减排的最高价格)也不同。碳交易市场上的交易价格受市场需求、当地经济发展、政策鼓励程度等因素影响而有所不同。目前,7个碳排放权交易试点相差较大,若企业通过工业减排的单位成本高于碳汇市场上森林碳汇的单位价格则会进行购买,反之不会进行碳汇交易。由此可见,在允许通过森林碳汇来抵消企业碳排放的情况下,碳汇市场交易价格与企业工业碳边际减排成本的差异将决定企业是否会选择购买森林碳汇来进行碳抵消,直接影响未来森林碳汇的交易。同时,政府是宏观经济管理者,需有效合理地引导企业科学选择减排途径。目前,碳减排政策主要可分为政府引导的政策和市场主导的政策[8]。适当的补贴政策、合理的碳税及明确的碳抵消比例和范围能更好地激励企业进行减排。已有文献大多将政府引导和市场主导的政策共同对比研究,研究主要集中在碳汇补贴和碳税政策方面,且研究发现,综合运用碳减排政策能带来更好的减排和经济效应[9],而不确定的碳减排政策会造成收益的不稳定[10],因此合理的碳减排政策在碳汇交易中起到决定性的作用。中国区域发展存在差异,各地区各行业减排空间不同。本研究基于企业的碳边际减排成本,运用云模型测算企业对森林碳汇的需求价格并模拟政策变化对其影响,合理估算不同地区不同行业的碳减排潜力,有利于促进各地区各行业协同治理,以期为森林碳汇市场建立和发展提供依据。
1. 理论框架、模型设定与数据来源
1.1 理论框架
基于成本收益理论基础[11-12]和机制分析,本研究假设如下:①随各国碳减排政策出台,企业在生产经营过程中必须进行减排行为。②企业工业碳边际减排成本主要取决于企业投入、产出以及二氧化碳排放量3个方面指标。③碳减排政策目前只考虑政府允许抵扣比例、碳税征收率和碳汇补贴额3种。④本研究中所提及的企业对森林碳汇的需求价格为企业购买森林碳汇愿意支付的最高值。⑤企业对森林碳汇的需求价格只受企业的成本收益和政府强制碳减排政策影响,不考虑其他交易成本。
假设企业的总成本(不包含减排成本的其他成本之和)为E,总收益为U,工业减排成本为I,购买森林碳汇抵消减排成本为F。选择工业减排时,企业净收益为Z1=U−E−I;选择购买森林碳汇抵消减排时,企业净收益Z2=U−E−F。当Z1>Z2,即F>I时,企业会选择工业减排;当Z1<Z2,即F<I时,企业会选择购买森林碳汇减排;当Z1=Z2,即F=I时,企业可选择任何一种减排方式。从目前研究来看,一旦森林碳汇交易市场全面建立起来,由于购汇边际减排成本比工业碳边际减排成本低,会促进企业选择通过购买森林碳汇来实现减排。
一般而言F<I,企业会购买森林碳汇来抵消碳排放,如果外部的碳减排政策发生调整则会导致企业工业减排的成本和购买森林碳汇的成本发生变化,企业会选择成本低的减排方式。当政策变化使企业工业减排的成本降低,那么企业愿意购买森林碳汇的价格也会降低,即企业的森林碳汇需求价格受到影响。
情景1:无相应激励碳减排政策下企业对森林碳汇的需求价格。只采用购买森林碳汇来减排,企业的净收益Z如下:
$$ Z=U-E-Pq\text{。} $$ (1) 式(1)中:设市场森林碳汇购买价格为P;企业需要进行的减排量为q。用P1表示情景1下企业对森林碳汇的需求价格,x表示企业各项投入指标,y表示企业产出,c表示企业二氧化碳排放量,i=(1,2,3,
$\cdots $ )表示不同的企业样本。仅从企业生产经营考虑,企业愿意购买森林碳汇支付的最高金额就是企业工业碳边际减排成本,即为企业对森林碳汇的需求价格,价格受企业投入产出以及二氧化碳排放影响。表达式如式(2):$$ {P_{1i}} = f\left( {{x_i},{y_i},{c_i}} \right)\text{。} $$ (2) 情景2:有相应激励碳减排政策下企业对森林碳汇的需求价格。在现有情景下,企业的减排行为同时受到3种碳减排政策(政府允许抵扣比例、碳税征收率、碳汇补贴额)影响,企业的净收益Z′变为式(3):
$$ Z' = U - E - [(P - {V_3})q{V_1} + a(1 - {V_1})q + {V_2}(c - q)]\text{。} $$ (3) 式(3)中:V1~V3为碳减排政策,其中V1为政府允许抵扣比例,V2为碳税征收率,V3为碳汇补贴额,a为企业工业减排的单位成本。用P2表示情景2下企业对森林碳汇的需求价格,P2受企业工业碳边际减排成本和政府碳减排政策共同影响。表达式如式(4):
$$ {P_{2i}} = f\left( {{x_i},{y_i},{c_i},{\rm{ }}{V_1},{V_2},{V_3}} \right)\text{。} $$ (4) 通过对2种情景的比较分析,由式(3)可看出:V1增大、V2减小、V3增大,都会导致净收益Z′增大。这可大致预测企业愿意购买森林碳汇来进行碳抵消的情况下,3种政策因素中政府允许抵扣比例和碳汇补贴额增加,会增加企业的收益;而碳税征收率提高会减少企业的收益。从理论上说,政府允许抵扣比例和碳汇补贴额会增加企业购买森林碳汇的机会和减少企业购买的成本,会促进企业的森林碳汇需求;而提高碳税对企业2种减排方式的成本都会增加,取决于提高碳税后对不同减排方式的影响程度,如果碳税提高对购买森林碳汇减排方式的成本增加更快,那么碳税征收率提高,会抑制企业对碳汇的需求。因此先提出本研究的假说:①政府允许抵扣比例提高,企业森林碳汇需求价格会上升;②碳税征收率提高,企业森林碳汇需求价格会下降;③碳汇补贴额提高,企业森林碳汇需求价格会上升。
1.2 模型设定
1.2.1 方向性距离函数
CHARNES等[13]提出的DEA模型为研究碳边际减排成本提供了基于投入—产出分析的距离函数方法,但此方法存在非期望产出与此相矛盾。方向性距离函数能区分出在增加期望产出的同时降低非期望产出的路径[14],对处理实际生产过程中非期望的环境污染变量更合理。
方向性距离函数以设定的方向向量为权数,求期望产出(
$y$ )的最大值和非期望产出(c)的最小值[15]。y是生产过程中的期望产出,且$ y \in R_ + ^D $ ;c为非期望产出,且$ y \in R_ + ^U $ ;此处使用x代替全行业的投入,且$ x \in R_ + ^N $ ;则企业生产集为P(x)={(y, c)∶x→(y, c)}。P(x)是表示描述所有可以实现的投入产出向量。设方向向量g=(gy, gc),g≠0,本研究中将产出方向性距离函数设置为[16]:
$${\vec D_0}\left( {x,y + a{g_y},c - a{g_c},{g_y}, - {g_c}} \right) = {\vec D_0}\left( {x,y,c,{g_y}, - {g_c}} \right) - a,\, a \in R\text{。}$$ (5) 由此,可计算企业的碳边际减排成本:
$${P_c} = {P_y}\left[ {\frac{{{\partial}∂ {{\vec D}_0}\left( {x,y,c,{g_y}, - {g_c}} \right)}}{{{\partial}∂ c}}\Bigg/\frac{{{\partial}∂ {{\vec D}_0}\left( {x,y,c,{g_y}, - {g_c}} \right)}}{{{\partial}∂ y}}} \right]\text{。}$$ (6) 式(6)中:x为样本企业的投入,y为样本企业期望产品的产量(本研究为样本企业的工业生产总值),c为样本企业非期望产品的产量(本研究为样本企业的二氧化碳排放量)。Py为期望产品y的市场价格,Pc为二氧化碳的影子价格,即样本企业的碳边际减排成本(MAC)。关键数据为企业的投入产出指标,其中投入变量为固定资本投入(X1)、劳动力投入(X2)、工业中间投入(X3),产出变量为工业国内生产总值(y)和二氧化碳排放量(c)。
1.2.2 罗宾斯坦恩博弈模型
合作项目的双方在博弈模型处于均衡状态时才会产生有效的合作[17]。本研究采用经过变形的谈判模型——罗宾斯坦恩讨价还价博弈模型[18-19]来分析企业和政府在减排活动中的博弈关系。减排行为不同于一般的讨价还价,对企业讨价还价能力的刻画指标的研究很少,因此根据相关文献,选择企业的投入产出所测算的碳边际减排成本来体现企业决策地位,而政府则是通过各类碳减排政策。具体模型如下:
$$ {P}_{{\rm{d}}}^{}=l+\left(\frac{1-{\varOmega }_{{\rm{d}}}}{1-{\varOmega }_{{\rm{s}}}{\varOmega }_{{\rm{d}}}}\right)(h-l)\left(\frac{{\varOmega }_{\rm{s}}^{2}}{{\varOmega }_{{\rm{d}}}}\right)\left(\frac{M+1}{10\;000}\right)\text{。}$$ (7) 式(7)中:Pd为森林碳汇的需求价格,l为样本企业碳边际减排成本最低值,h为样本企业碳边际减排成本最高值,Ωs与Ωd为供求激励系数,Ωs表示森林碳汇总量不超过企业基准年排放量的抵扣比例,Ωd表示碳税征收率,M表示森林碳汇补贴额。森林碳汇需求价格不会高于样本企业碳边际减排成本最大值h,否则企业会自行选择工业技术减排;不会低于样本企业碳边际减排成本最低值l,因为经验数据显示,样本企业碳边际减排成本最低值l往往接近于0,森林碳汇供给者无利可图,故拒绝提供森林碳汇。
1.2.3 云模型
由于碳交易过程中存在波动性、模糊性、信息不完备性等条件制约,传统的定量方法会因为政策及企业类型差异大等,影响结果的合理性[20]。为处理定性概念中广泛存在的随机性和模糊性问题,李德毅院士于1995年首次提出不确定性知识的定性定量转换的数学模型——云模型[21-23]。本研究采用云模型方法测算企业对森林碳汇的需求价格,并模拟政策因素对其影响程度,增加结果的可信度。云发生器分为正向云发生器和逆向云发生器[24-25]。本研究采用正向云发生器算法,首先分别求解4个地区3个行业企业对森林碳汇的需求价格的期望、熵和超熵。其次用3个特征值,通过Matlab 8.4软件运用云模型正向发生器实现模拟,通过产生的云图得出企业最可能的需求价格值与区间。
1.3 数据来源
综合考虑7个碳排放权交易试点省(市)的经济情况、地理位置以及特殊的政治经济地位,本研究以中国当前正在进行碳交易试点的7个省(市)中北京、上海、湖北、广东4个省(市)为案例区,选择火电、化工、钢铁3个碳排放密集型代表行业,按照各样本省(市)这3个行业目前参与自愿减排的数量比例,共计选取89家为样本企业。每个样本企业再调查31个具有独立投入—产出核算的能耗单位,总计2 759个减排单位样本的调查数据(表1)。根据国际评估减排效果惯例的时间间隔要求,对2 759个样本减排单位实施自愿减排后连续3 a(2012−2014年)的生产投入—产出数据进行调研观察。基于相关文献研究,关键数据主要为3个投入指标:固定资产投资(X1)、劳动力投入(X2)和工业中间投入(X3);2个产出指标:企业当年总产值(y)和企业当年二氧化碳排放总量(c)[26-27]。根据文献,政策因素选择现有的3个碳减排政策,包括碳税、碳汇补贴和允许抵消比例[28]。
表 1 样本减排单位分布Table 1 Distributionof sample emission reduction unit减排行业 样本减排单位数/个 合计/个 上海市 北京市 广东省 湖北省 火电行业 589 217 124 93 1 023 钢铁行业 403 62 186 155 806 化工行业 527 93 93 217 930 合计 1 519 372 403 465 2 759 2. 企业二氧化碳边际减排成本的测算分析
本研究通过Lingo 12软件运用方向性距离函数的方法,计算所调查的89家样本企业2 759个样本减排单位3 a的碳边际减排成本。表2仅列出各地区各行业样本企业的碳边际减排成本的最低值和最高值。
表 2 各地区各行业样本企业的碳边际减排成本比较Table 2 Comparison of average marginal emission reduction costs of sample enterprises in different regions and industries行业 年份 边际减排成本/(元·t−1) 上海市 北京市 广东省 湖北省 最低 最高 最低 最高 最低 最高 最低 最高 火电行业 第1年 303.03 729.83 303.03 1 471.57 726.94 1 229.92 852.12 1 178.26 第2年 303.03 779.18 520.38 1 020.68 649.02 823.68 887.66 4 627.56 第3年 303.03 1 133.13 303.03 1 456.74 1 017.88 1 248.95 1 409.09 1 545.02 钢铁行业 第1年 303.03 816.30 410.28 579.16 303.04 1 011.54 359.65 517.71 第2年 303.04 1 120.83 573.02 1 576.43 426.82 1 361.52 727.94 1 600.94 第3年 303.03 1 975.53 770.22 1 289.81 1 200.41 2 744.07 996.56 1 243.00 化工行业 第1年 303.03 446.49 474.76 534.75 476.11 608.71 303.03 671.49 第2年 303.03 764.16 440.28 601.87 595.68 708.51 303.04 917.03 第3年 303.02 27 660.20 303.02 1 686.43 2 491.72 3 660.70 593.63 6 139.93 对4个地区3个行业样本企业的碳边际减排成本进行比较(表2),可发现:上海市3个行业的碳边际减排成本的最低值是4个试点中最小的。上海市经济发达且作为各项政策的先行试点市,不断出台与落实相关碳减排政策,当地企业在工业减排方面进行了设备改造、技术革新、使用环保材料等措施降低了碳边际减排成本,但也反映了上海技术水平已经较高,进一步改进提高技术可能性较小。森林碳汇可能是未来的发展方向。广东省和湖北省的企业碳边际减排成本相较其他两省(市)更高,尤其是钢铁行业和化工行业,一方面是地区间行业发展存在差异,另一方面也说明这2个地区企业二氧化碳减排设备与技术更新发展缓慢或政府减排力度不够大,因此,这些地区必须在工业减排方面取得明显进步。从行业来看,钢铁行业和化工行业企业比火电行业更高,这与火电行业作为首批减排企业,已正式启动全国碳排放权交易市场有关,因此其他行业也应尽快纳入减排目标企业中。
3. 企业森林碳汇需求价格的测算分析
在测得企业碳边际减排成本的基础上,通过变形的罗宾斯坦恩博弈模型来测算企业对森林碳汇的需求价格,得到4个地区3个行业样本企业3 a的森林碳汇需求价格均值,可比较分析得出不同地区不同行业森林碳汇需求价格的差异及其原因。为进一步了解企业对森林碳汇的需求价格的可能值、可能区间以及稳定性,引入云模型,在充分考虑研究对象模糊性和随机性的基础上,使测算的森林碳汇需求价格结果更准确与直观。
3.1 基于罗宾斯坦恩博弈模型的森林碳汇需求价格测算分析
根据二手资料,以上海市为基准,Ωs即抵扣比例,为5%;Ωd即碳税征收率没有明文规定,用上海的排污费率代替,为1%;M即碳汇补贴额,取值20元·t−1。根据公式(7)得结果表3。不同地区不同行业的森林碳汇需求价格差别明显。通过地区间的对比,上海市和北京市的企业对森林碳汇的需求价格明显低于广东省和湖北省的企业。这受上海市和北京市的政策要求与设备技术更新所影响。从这方面来讲,广东省和湖北省在未来对森林碳汇的需求会更大。这一结果与企业碳边际减排成本情况基本一致。可见,森林碳汇需求价格与碳边际减排成本呈现出显著正相关关系。对比3个行业测算的森林碳汇需求价格可知,化工行业企业对森林碳汇需求价格最低,说明火电行业和钢铁行业企业工业减排的成本高、潜力小,对森林碳汇需求会更大,即对火电和钢铁行业而言,森林碳汇在未来有很大的市场与发展潜力。
表 3 各地区各行业企业3 a的森林碳汇需求价格Table 3 Demand prices of forest carbon sinks of enterprises in different regions and industries in three years行业 年份 森林碳汇需求价格/(元·t−1) 上海市 北京市 广东省 湖北省 火电行业 第1年 303.25 303.63 727.20 852.29 第2年 303.31 520.64 649.11 889.61 第3年 303.46 303.62 1 018.00 1 409.12 钢铁行业 第1年 303.30 410.37 303.40 359.74 第2年 303.46 573.54 427.34 728.42 第3年 303.90 770.49 1 201.21 996.69 化工行业 第1年 303.11 474.79 476.17 303.22 第2年 303.27 440.36 595.74 303.35 第3年 317.25 303.74 2 492.33 596.52 3.2 基于云模型的森林碳汇需求价格测算分析
为更好地反映不同地区不同行业企业对森林碳汇的需求,本研究运用云模型正向发生器测度,得出不同地区不同行业企业对森林碳汇的需求价格范围和均值。首先,基于所测得的企业碳边际减排成本数据,运用云模型测算3个行业和4个省(市)在碳减排政策实行后的森林碳汇需求价格的期望、熵和超熵。通过Matlab 8.4软件测得结果如表4和表5。
表 4 火电、钢铁和化工行业的森林碳汇需求价格的期望、熵和超熵Table 4 Expectations, entropy and superentropy of demand prices of forest carbon sinks in thermal power, steel and chemical industries行业 期望 熵 超熵 火电行业 631.936 7 169.364 3 59.665 2 钢铁行业 556.821 7 133.101 0 25.257 0 化工行业 575.820 8 93.977 8 44.864 5 表 5 4个省(市)的森林碳汇需求价格的期望、熵和超熵Table 5 Expectations, entropy, and superentropy of demand price of forest carbon sinks in four provinces省份 期望 熵 超熵 上海市 304.923 3 5.662 2 0.306 1 北京市 455.686 7 57.069 0 48.222 9 广东省 876.722 2 198.257 9 93.980 7 湖北省 715.440 0 195.630 3 52.194 6 3.2.1 不同行业间的森林碳汇需求价格差异分析
根据云模型正向发生器通过Matlab 8.4软件产生不同行业企业的云图,分析不同行业企业森林碳汇需求价格的情况(图1)。云图y轴表示隶属度,x 轴表示企业对森林碳汇需求价格的模拟值。如图1A,火电行业企业对森林碳汇需求价格平均值聚集在500~700元·t−1,越靠近中间值云滴越密集,离散程度越低。在隶属度为1时,森林碳汇需求价格平均值为631元·t−1,表示4个样本省(市)的火电行业企业的森林碳汇平均需求价格为631元·t−1。同理,钢铁、化工行业的均值为556和575元·t−1(图1B~图1C)。从需求价格区间来说,火电行业的最小值和最大值相差最大,说明火电行业的熵最大,即所接受的区间最大;而化工行业两边距离小,熵最小。从云图的分散程度来看,钢铁行业图形最“薄”,超熵最小;而火电和化工行业图形较发散,超熵较大,即离散程度大。对比3个行业所模拟的企业对森林碳汇的需求价格,钢铁行业图形正态分布最清晰,图形云层最薄,说明该行业企业的森林碳汇需求价格有较高的稳定性;且明显低于火电行业的需求价格,说明火电行业企业的工业碳边际减排成本较高,即火电行业在通过技术来进行工业减排的发展潜力小,因此森林碳汇在火电行业会有很大的市场。
3.2.2 不同地区间的森林碳汇需求价格差异分析
根据云模型正向发生器通过Matlab 8.4软件产生不同地区企业的云图,分析不同地区企业森林碳汇需求价格的情况。由图2可知:不同地区森林碳汇需求价格相差很大,就森林碳汇需求价格情况的均值来看,上海市、北京市、广东省、湖北省分别约305、456、877、715元·t−1。上海市与北京市的图形较靠近中间值,说明这2个地区的熵较小,价格浮动区间小,比广东省和湖北省更为稳定。上海市与北京市由于前期的政府减排力度与减排设备更新较快,工业减排走在前列,成本相对较低,因此广东省和湖北省森林碳汇需求价格高于其他2个地区,说明广东和湖北对森林碳汇的需求会更大,森林碳汇市场有更好的发展潜力。上海市与湖北省的图形呈现出较好的分布,比较聚拢,说明这2个地区企业的情况较为接近,各企业对森林碳汇的需求价格较为相像,而北京市与广东省的图形较为分散,说明这2个地区企业的情况相差较大,企业间森林碳汇的需求价格上下波动较大。
4. 不同政策情景下的企业森林碳汇需求价格模拟分析
为更好地提升各地区高排放行业未来对森林碳汇的需求潜力,在测得现有政策情景下企业森林碳汇需求价格的基础上,本研究通过改变公式(7)中3个相关政策变量(政府允许碳汇抵消比例、碳税征收率、碳汇补贴额),来模拟不同政策情景下企业的森林碳汇需求价格变化。根据以往学者的研究和调研,选择政府允许抵消比例范围为0%~20%,税收征收率为0%~20%,碳汇补贴额为0~150元·t−1。
4.1 不同行业企业森林碳汇需求价格模拟分析
当其他因素不变,政府允许碳汇抵消比例为0%~20%时,观察企业的森林碳汇需求价格的动态变化。由图3A可知:随着政府允许碳汇抵消比例的提高,各行业企业森林碳汇需求价格上升,因此政府可适当提高允许抵消的比例,来促进企业对森林碳汇的购买。化工行业企业的增长趋势最为明显,其碳边际减排成本是3个行业中相对较高的,即化工行业通过工业减排的成本较高,与其他行业相比不具有优势。该行业希望通过购买森林碳汇等方式来实现间接减排。若政府允许抵扣比例增加,通过购买森林碳汇来实现减排目标是化工行业未来的发展方向。
当其他因素不变,税收征收率范围为0%~20%时,观察企业的森林碳汇需求价格的动态变化。由图3B可知:随着碳税征收率的提高,各行业企业的森林碳汇需求价格先呈现下降趋势,后变化不明显。一方面高碳税对购买森林碳汇的成本增加更快,另一方面也是由于在所选取的年份,可供交易的森林碳汇数量较少,企业购买森林碳汇的成本更高。说明碳税征收率为影响企业是否会选择购买森林碳汇的一个政策因素,但不是关键性因素,即高碳税征收率对企业森林碳汇的需求价格影响不大。因此,政府可适当提高碳税征收率,给企业一定的减排压力,促进企业的减排行为。
当其他因素不变,改变碳汇补贴额,模拟0~150元·t−1的情景下企业森林碳汇需求价格动态变化趋势。由图3C可知:随着碳汇补贴额度的增加,各行业企业的森林碳汇需求价格呈上升趋势,3个行业中,化工行业受政策影响的程度最大。4个样本省(市)中,化工行业较多分布在上海和北京,在技术减排方面相对领先,未来进一步减排的成本反而相对较高,更倾向于购买森林碳汇。因此需要政府加大支持力度,加快森林碳汇的发展,促进该行业减排方式的转型。政府可适当提高碳汇补贴额,既可以促进企业的减排热情,也可以增加企业对森林碳汇的购买需求。
4.2 不同省市企业森林碳汇需求价格模拟分析
由图4A可知:随着政府允许碳汇抵消比例的提高,4个省(市)的企业森林碳汇需求价格上升,其中湖北省企业的增长趋势较为明显。湖北省企业目前通过工业减排的成本相对较高,在碳减排政策允许的情况下,企业更愿意选择成本较低的森林碳汇,若政府提高允许碳汇抵消比例,购买森林碳汇减排会成为当地企业的一种选择。由图4B可知:随着碳税征收率的提高,各省(市)企业的森林碳汇需求价格同样没有明显的变化。由图4C可知:随着碳汇补贴额度的增加,各地区企业的森林碳汇需求价格呈上升趋势,4个省(市)中上海市受政策影响的程度最大,上海市目前的技术已相对发达,随着时间的增加,工业减排将不再有优势,同时森林碳汇是一个低成本的选择。
5. 结论和讨论
5.1 结论
89个样本企业碳边际减排成本存在较大差异且不断增长。一方面说明不同地区在经济发展水平、碳减排政策及减排力度方面的不同,另一方面也说明不同行业企业的减排技术和设备等方面存在差异。每个企业每年的碳边际减排成本不相同且出现上升趋势,说明工业减排已不具有优势,购买森林碳汇来抵消碳排放是未来的发展趋势。各行各业碳边际减排成本高且存在较大差异,企业作为需求方才会有意愿考虑购买森林碳汇,碳汇市场交易也才会进行,这也是本研究的意义所在。
不同省(市)不同行业企业对森林碳汇的需求价格相差甚远。结果显示:上海市、北京市、广东省和湖北省的均值约分别为305、456、877和715元·t−1;火电行业、化工行业、钢铁行业的均值分别为631、556和575元·t−1。上海市与北京市企业对森林碳汇的需求价格低,广东省和湖北省的较高。钢铁行业企业对森林碳汇的需求价格最低,稳定性最强,说明火电和化工行业企业在未来对森林碳汇的需求会更大,尤其是火电行业企业已经正式启动全国碳排放权交易市场,森林碳汇市场在火电行业的发展潜力是巨大的。
政策因素对企业的森林碳汇需求价格有明显的影响。各地区各行业企业的森林碳汇需求价格存在一定的变动范围,最高和最低价格相差甚远,即需要采取一定的方案和措施使价格稳定在一个合理区间,且低于企业的工业碳边际减排成本。其中随着政府允许碳汇抵消比例和碳汇补贴额度增加,企业森林碳汇需求价格会上升,碳税征收率对企业森林碳汇需求价格影响不明显。从行业和地区来看,政府允许碳汇抵消比例变化对化工行业与湖北省的企业影响更大,而碳汇补贴额度的提高对化工行业和上海市的企业的森林碳汇需求促进作用更为明显。因此,合理的允许抵消比例与补贴政策组合下,化工行业将会是未来森林碳汇的重大需求者。
5.2 讨论
中国于2017年已启动全国碳排放权交易市场并在加速建设中,但发展并不完善。目前,试点市场中的广东碳汇市场交易较活跃,2019年成交量突破千万吨,但重庆、天津过少。中国碳排放核查与监测主要针对石化、化工、建材、钢铁、有色、造纸、电力、航空八大行业。本研究涉及行业仅为碳排放密集型的火电、钢铁和化工3个行业,不能完全反映自愿减排的其他碳排放小的行业和个人。从碳汇市场长远发展来看,要鼓励更多行业进入碳汇市场,期待后续加强对其他市场参与主体的研究。
目前,试点碳市交易价格普遍不高且差距很大。2019年成交均价北京市最高为83.27元·t−1,深圳市最低,仅为10.84元·t−1,试点市场平均成交均价为27.76元·t−1,与本研究所测算的企业森林碳汇需求价格相差较远。本研究仅从森林碳汇的需求方企业来进行森林碳汇的价格研究,未充分考虑森林碳汇供给方和政府,因此多方参与的森林碳汇定价机制还需后续进一步研究,以探索合理的碳汇价格,提高企业森林碳汇需求的同时保障森林碳汇供给者的利益。
-
表 1 海口市遥感影像数据信息
Table 1. POI data classification statistics
行代号 传感器 获取日期(年-月-日) 陆地云量/% 行代号 传感器 获取日期(年-月-日) 陆地云量/% 12446 LANDSAT_5TM 2000-06-19 13.00 12446 LANDSAT_8OLI_TIRS 2015-06-26 0.78 12446 LANDSAT_5TM 2005-06-17 11.00 12446 LANDSAT_8OLI_TIRS 2019-06-21 0.48 12446 LANDSAT_5TM 2010-07-27 8.00 表 2 海口市高温斑块扩张的变化速度指数和变化强度指数
Table 2. ICS and ICI of high-temperature plaque expansion in Haikou
时间段 扩张面积/km2 ICS/% ICI/% 2000−2005 105.136 2 12.87 0.92 2005−2010 87.588 0 10.87 1.28 2010−2015 12.588 3 0.59 0.09 2015−2019 −5.462 1 −0.37 −0.06 平均值 49.962 6 5.99 0.56 表 3 热力景观在景观水平上的景观指数变化
Table 3. Landscape index change of thermal landscape at landscape level
年份 斑块数/个 斑块密度/(个·hm−2) 聚合度/% 平均斑块面积/hm2 面积加权平均形状指数 斑块内聚力指数/% 多样性指数 均匀度指数 2000 24 202 10.932 5 81.598 0 15.830 2 15.830 2 98.894 3 1.889 2 0.820 5 2005 36 831 16.306 7 78.642 7 20.079 1 20.079 1 98.994 7 1.818 4 0.789 7 2010 59 845 26.257 6 73.606 5 17.391 4 17.391 4 98.542 5 1.796 9 0.780 4 2015 16 777 7.361 1 84.217 8 23.567 3 23.567 3 99.387 7 1.856 5 0.806 3 2019 15 432 6.770 9 84.702 0 21.835 3 21.835 3 99.355 7 2.100 5 0.912 2 -
[1] SANTAMOURIS M, DING L, FIORITO F, et al. Passive and active cooling for the outdoor built environment: analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects[J]. Solar Energy, 2017, 154: 14 − 33. [2] QI Jinda, DING Lan, LIM Samsung. Ontology-based knowledge representation of urban heat island mitigation strategies[J]. Sustainable Cities Soc, 2020, 52: 101875. doi: 10.1016/j.scs.2019.101875. [3] 陈康林, 龚建周, 陈晓越. 广州市热岛强度的空间格局及其分异特征[J]. 生态学杂志, 2017, 36(3): 792 − 799. CHEN Kanglin, GONG Jianzhou, CHEN Xiaoyue. Spatial pattern and differentiation characteristics of urban heat island intensity in Guangzhou City [J]. Chin J Ecol, 2017, 36(3): 792 − 799. [4] 白杨, 王晓云, 姜海梅, 等. 城市热岛效应研究进展[J]. 气象与环境学报, 2013, 29(2): 101 − 106. BAI Yang, WANG Xiaoyun, JIANG Haimei, et al. Progress of urban heat island effect [J]. J Meteorol Environ, 2013, 29(2): 101 − 106. [5] HUANG Qunfang, LU Yuqi. Urban heat island research from 1991 to 2015: a bibliometric analysis [J]. Theor Appl Climatol, 2017, 131(3/4): 1055 − 1067. [6] KOTHARKAR R, RAMESH A, BAGADE A. Urban heat island studies in South Asia: a critical review [J]. Urban Clim, 2018, 24: 1011 − 1026. [7] 邬建国. 景观生态学: 概念与理论[J]. 生态学杂志, 2000, 19(1): 42 − 52. WU Jianguo. Landscape ecology: concepts and theories [J]. Chin J Ecol, 2000, 19(1): 42 − 52. [8] 王清川, 郭立平, 张绍恢. 不同气象条件下廊坊城市热岛效应变化特征[J]. 气象与环境学报, 2009, 25(6): 44 − 48. WANG Qingchuan, GUO Liping, ZHANG Shaohui. Urban heat island effect under different meteorological conditions over Langfang, Hebei Province [J]. J Meteor Environ, 2009, 25(6): 44 − 48. [9] 李丽光, 王宏博, 贾庆宇, 等. 辽宁省城市热岛强度特征及等级划分[J]. 应用生态学报, 2012, 23(5): 1345 − 1350. LI Liguang, WANG Hongbo, JIA Qingyu, et al. Urban heat island intensity and its grading in Liaoning Province of Northeast China [J]. Chin J Appl Ecol, 2012, 23(5): 1345 − 1350. [10] 陈云浩, 李晓兵, 史培军, 等. 上海城市热环境的空间格局分析[J]. 地理科学, 2002, 22(3): 317 − 323. CHEN Yunhao, LI Xiaobing, SHI Peijun, et al. Study on spatial pattern of urban heat environment in Shanghai City [J]. Sci Geogr Sin, 2002, 22(3): 317 − 323. [11] 陈爱莲, 孙然好, 陈利顶. 传统景观格局指数在城市热岛效应评价中的适用性[J]. 应用生态学报, 2012, 23(8): 2077 − 2086. CHEN Ailian, SUN Ranhao, CHEN Liding, et al. Applicability of traditional landscape metrics in evaluating urban heat island effect [J]. Chin J Appl Ecol, 2012, 23(8): 2077 − 2086. [12] 邓睿, 刘亮, 徐二丽. 基于Landsat时间序列数据的重庆市热力景观格局演变分析[J]. 生态环境学报, 2017, 26(8): 1349 − 1357. DENG Rui, LIU Liang, XU Erli. Study on the evolution of thermal landscape pattern in Chongqing City based on time-series landsat data [J]. Ecol Environ Sci, 2017, 26(8): 1349 − 1357. [13] 杨丽萍, 王乐, 孙晓辉, 等. 基于遥感的西安市热力景观格局演变[J]. 水土保持研究, 2017, 24(1): 250 − 255, 264. YANG Liping, WANG Le, SUN Xiaohui, et al. Evolution of the thermal landscape patterns in Xi’an City based on remote sensing [J]. Res Soil Water Conserv, 2017, 24(1): 250 − 255, 264. [14] 池腾龙, 曾坚, 刘晨. 近30年武汉市热环境格局演化机制及扩散模式研究[J]. 国土资源遥感, 2017, 29(4): 197 − 204. CHI Tenglong, ZENG Jian, LIU Chen. A study of evolution mechanism and diffusion mode pattern of thermal environment for Wuhan City in the past 30 years [J]. Remote Sensing Land Resour, 2017, 29(4): 197 − 204. [15] 王中正. 基于遥感影像的城市热岛效应研究及系统的设计: 以海口为例[D]. 海口: 海南大学, 2018. WANG Zhongzheng. Urban Heat Island Effect Research and System Design based on Remote Sensing Image: A Case Study of Haikou City [J]. Haikou: Hainan Univeristy, 2018. [16] 李军, 赵彤, 朱维, 等. 基于Landsat 8的重庆主城区城市热岛效应研究[J]. 山地学报, 2018, 36(3): 452 − 461. LI Jun, ZHAO Tong, ZHU Wei, et al. Urban heat island effect based on Landsat 8 image in urban districts of Chongqing, China [J]. Mount Res, 2018, 36(3): 452 − 461. [17] 武鹏飞. 基于TM影像的北京市城市热岛效应及其影响研究[D]. 北京: 北京林业大学, 2010. WU Pengfei. Study on Urban Heat Island and Its Influence in Beijing City based on TM Images[J]. Beijing: Beijing Forestry University, 2010. [18] 姚玉龙, 刘普幸, 陈丽丽. 基于遥感影像的合肥市热岛效应时空变化特征及成因[J]. 生态学杂志, 2013, 32(12): 3351 − 3359. YAO Yulong, LIU Puxing, CHEN Lili. Spatiotemporal variation characteristics and causes of urban heat islands in Hefei City, Anhui Province of China based on remote sensing [J]. Chin J Appl Ecol, 2013, 32(12): 3351 − 3359. [19] 刘灿然, 陈灵芝. 北京地区植被景观中斑块大小的分布特征[J]. 植物学报, 1999, 41(2): 199 − 205. LIU Canran, CHEN Lingzhi. Distribution characteristics of patch sizes in the vegetation landscape in Beijing [J]. Acta Bot Sin, 1999, 41(2): 199 − 205. [20] 雷金睿, 陈宗铸, 吴庭天, 等. 1989−2015年海口城市热环境与景观格局的时空演变及其相互关系[J]. 中国环境科学, 2019, 39(4): 1734 − 1743. LEI Jinrui, CHEN Zongzhu, WU Tingtian, et al. Spatio-temporal evolution and interrelationship between thermal environment and landscape patterns of Haikou City, 1989 − 2015 [J]. China Environ Sci, 2019, 39(4): 1734 − 1743. 期刊类型引用(9)
1. 陈丽荣,万深玮,王一冰,李丹,刘雨声. 公众森林碳汇购买意愿影响因素研究——基于TPB—NAM整合模型. 资源开发与市场. 2024(01): 42-51 . 百度学术
2. 蒋欣强,彭红军,苏世伟. 国际林业碳汇基金运作模式研究与启示. 世界林业研究. 2023(03): 9-15 . 百度学术
3. 李明晖,王恺. 双碳背景下碳市场经济学理论与演化规律研究进展. 油气储运. 2023(11): 1242-1250+1260 . 百度学术
4. 杨凯迪,张伟. 黄河流域森林碳汇生态产品价值核算研究. 黄河文明与可持续发展. 2023(02): 103-122 . 百度学术
5. 沈哲鑫. 基于区块链的碳抵消研究综述与展望. 中国商论. 2022(04): 112-115 . 百度学术
6. 陈周光,龙飞,祁慧博. 中国森林碳汇定价研究. 价格月刊. 2022(03): 9-16 . 百度学术
7. 王雅茹,贾瑜,赵华,顾永强. “双碳”目标下油气行业发展的应对之策. 石油石化绿色低碳. 2022(02): 73-76 . 百度学术
8. 朱梅钰,龙飞,祁慧博,张哲. 基于行业减排的森林碳汇需求空间测度与分类. 浙江农林大学学报. 2021(02): 377-386 . 本站查看
9. 王丽华,许跃坤. 简析我国碳汇林发展现状. 阿坝师范学院学报. 2021(04): 66-73 . 百度学术
其他类型引用(8)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200648