留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

美洲黑杨杂交子代苗期性状遗传变异及选择

严艳兵 潘惠新

李兴鹏, 张杨, 王瑞珍, 等. 碳氮培养条件下伊氏杀线虫真菌的代谢组研究[J]. 浙江农林大学学报, 2022, 39(6): 1313-1320. DOI: 10.11833/j.issn.2095-0756.20210828
引用本文: 严艳兵, 潘惠新. 美洲黑杨杂交子代苗期性状遗传变异及选择[J]. 浙江农林大学学报, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803
LI Xingpeng, ZHANG Yang, WANG Ruizhen, et al. Metabolome of nematicidal fungus Esteya vermicola in carbon and nitrogen culture[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1313-1320. DOI: 10.11833/j.issn.2095-0756.20210828
Citation: YAN Yanbing, PAN Huixin. Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803

美洲黑杨杂交子代苗期性状遗传变异及选择

DOI: 10.11833/j.issn.2095-0756.20200803
基金项目: 江苏省科技计划项目(BE2016387)
详细信息
    作者简介: 严艳兵(ORCID: 0000-0003-4877-4761),从事杨树遗传改良研究。E-mail: 1447025861@qq.com
    通信作者: 潘惠新(ORCID: 0000-0001-5231-6937),教授,从事杨树遗传改良研究。E-mail: hxpan@njfu.com.cn
  • 中图分类号: S722.5

Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides

  • 摘要:   目的  分析美洲黑杨Populus deltoides杂种苗期生长性状和叶片性状的遗传变异及遗传相关性,为杨树新品种选育提供材料。  方法  以美洲黑杨不同品种为亲本进行杂交试验,测定了9个杂交组合子代苗期生长性状和叶片性状,并通过方差分析、遗传参数估算、遗传相关分析及通径分析等,了解美洲黑杨杂种生长性状和叶片性状的遗传变异规律及性状间遗传互作,并依此开展美洲黑杨优良杂交组合的联合选择。  结果  杂交组合间3个生长性状与5个叶片性状存在显著(P<0.05)或极显著(P<0.01)差异。苗高、地径、材积与叶长、叶宽、叶柄长、叶周长、叶面积的家系遗传力均达0.8以上,受强度遗传控制,遗传变异系数为8.6%(叶长)~31.13%(材积),有利于优良杂交组合的选择。相关分析表明:叶长、叶宽、叶柄长、叶周长、叶面积与苗高、地径、材积间均达极显著正遗传相关(P<0.01)。相关遗传进度分析表明:除叶形指数、侧脉夹角和叶宽基距外,其他叶片性状对3个生长性状的遗传相关进度和间接选择效率较高。通径分析表明:苗高和地径对材积的直接遗传控制作用较大,叶长、叶宽、叶柄长、叶面积和叶周长通过苗高和地径对材积产生较大的间接遗传控制作用。利用综合指数选择法开展美洲黑杨9个杂交组合的生长与叶片性状联合选择,选出3个速生优质的杂交组合(B106×NL15、S3239×NL15、NL447×SY2),材积遗传增益达26.90%。  结论  美洲黑杨杂交组合子代1年生苗的3个生长性状和5个叶片性状均存在丰富变异,遗传互作显著;苗高和地径对材积的直接作用最大,5个叶片性状对材积也产生较大的间接控制效应。综合指数选择法能有效地选出速生优质杂交组合,材积遗传增益较高,杨树遗传改良效果较好。表8参18
  • 松材线虫Bursaphelenchus xylophilus病在亚洲和欧洲造成严重的生态和经济损失[1-2],伊氏杀线虫真菌Esteya vermicola (EV菌)是松材线虫的内寄生真菌,产生的新月形孢子能侵染并杀死松材线虫,在松材线虫的生物防治方面具有良好的应用前景[3]。同时,EV菌亦可侵染拟松材线虫B. mucronatus、水稻干尖线虫Aphelenchoides besseyi等线虫。研究表明:EV真菌胞内存在共生细菌[4],共生细菌对真菌的生物学和生态学具有重要的作用,如Rhizopus microsporus胞内的共生细菌Burkholderia能产生植物毒素根霉素,然后由宿主真菌分泌到环境中,导致水稻枯萎病[5]。菌丝内的共生微生物(细菌或病毒)是重要的能直接或间接改变真菌和宿主关系的互作生物[6-8],提高宿主真菌的生态适应性[9-10]。存在共生细菌的真菌对碳氮源如何响应,其代谢产物发生何种变化,目前尚未见相关报道。

    代谢组学是系统生物学研究中非常重要的一个环节,旨在研究生物体或组织,甚至单个细胞的全部小分子代谢物成分及其动态变化[11]。通过对代谢物质的分析,可以从生物样本中检测并筛选出具有重要生物学意义和显著差异的代谢物质,并以此为基础研究生物体的代谢过程和变化机制[12]。对EV菌在不同碳、氮培养条件下代谢物的变化进行分析,明确显著差异代谢物,特别是重要的信号分子,不仅为EV菌的应用提供重要理论基础,而且对深入研究内共生细菌在EV菌的功能亦具有重要意义。

    伊氏杀线虫真菌Esteya vermicola CBS115803购于荷兰菌物保存中心。

    碳培养基为24 g 马铃薯葡萄糖肉汤培养基(PDB,Becton, Dickinson and Company,美国)和10 g琼脂溶于1 L双蒸水。氮培养基为5 g酵母粉(OXOID公司,英国)和10 g琼脂溶于1 L双蒸水。

    Nano高分辨液质联用分析仪QE (Thermo Q-Exactive,德国);赛多利斯BSA124S电子天平;真空浓缩仪(Labogene MaixVac Alpha, 丹麦);Sigma 3-30KS高速离心机,KQ5 200DE型数控超声波清洗器(昆山市超声仪器有限公司,中国);色谱级甲醇(Fisher,美国)。

    配制碳、氮固体培养基,培养基凝固后放入已灭菌的尼龙膜(孔径3 μm,赛多利斯),接种EV菌后于25 ℃培养7 d。将长满菌丝和孢子的尼龙膜用无菌镊子取出,用超纯水冲洗尼龙膜,再用无菌的吸水纸吸掉尼龙膜接触培养基面的水分,而后将菌丝和孢子刮入2 mL圆底灭菌干燥离心管,装样品前后分别称量离心管的质量,迅速将样品管放入液氮中淬灭后于−80 ℃保存。每处理设置5次生物学重复,编号依次为C1~C5和N1~N5。加入冷冻洁净无菌的直径为3 mm的钢珠2个,液氮冷冻条件下使用莱驰RETSCH MM 400研磨2 min。将研磨好的样品管置于干冰上,加入2 mL预冷的体积分数为80%甲醇于−80 ℃冰箱静置1 h,4 ℃、14 000 g离心20 min后将上清液转移至另一相同体积离心管,真空浓缩干燥样品后于−80 ℃保存。用300 μL体积分数为90%甲醇超声复溶并经0.45 μm的滤膜过滤,完成亲水代谢产物提取。

    采用非靶标的高效液相色谱-质谱联用技术(HPLC-MS)对样品进行测定和代谢物识别。色谱柱:Waters ACQUITY UPLC®(2.1 mm×100.0 mm,1.7 μm)。流动相:0.1%甲酸-水溶液(A),0.1%甲酸-乙腈(B)。洗脱条件:0~0.5 min,95%B;0.5~7.0 min,95%~65% B;7.0~8.0 min,65%~40% B;8.0~9.0 min,40%B;9.0~9.1 min,40%~95%B;9.1~12.0 min,95%B。质谱参数条件:鞘气,310 275 Pa;辅助气,103 425 Pa;喷雾电压,4 000 V (正)/3 500 V (负);离子传输管温度:350 ℃。在采集软件(Xcalibur 4.0.27,Thermo)的控制下,采用一级质谱全扫描(全MS)结合自动触发二级质谱扫描(MS/MS)模式,使用阴、阳离子模式2种电离方式采集质谱数据。运行时间:0~18 min。分辨率:全MS,170000;MS/MS,17500。

    对原始数据进行基线过滤、峰识别、积分、保留时间校正、峰对齐和归一化,最终得到1个保留时间、质荷比和代谢物信号(峰面积)的数据矩阵。将处理后的代谢物信号与一级和二级数据库进行匹配,将其中二级得分<30的化合物可信予以剔除。分析时10份样品共插入3个质量对照(QC)样本以考察整个分析过程中仪器的稳定性,QC样本每种化合物的峰面积的变异系数若>30%,则予以剔除。未检出值设定为0,缺失值由其余重复样品的均值填补。

    由Metaboanalyst 4.0在线软件(https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml)完成。利用对数转换和pareto缩放对各代谢物相对含量进行标准化处理。使用主成分分析法(PCA)和偏最小二乘法判别法(PLS-DA)评估不同处理的分组情况。结合以下2个标准对2种培养基的阴阳离子模式的差异化合物进行筛选:经FDR (false discovery rate)校正的t检验的P<0.05;正交偏最小二乘判别分析(OPLS-DA)中变量投影重要性(variable influence on projection,VIP)得分>1。

    代谢通路分析由Metaboanalyst 4.0 (https://www.metaboanalyst.ca/MetaboAnalyst/upload/PathUploadView.xhtml)中的代谢通路分析模块(pathway analysis module)完成。该分析将选定的差异代谢物与KEGG (Kyoto encyclopedia of genes and genomes)数据库(2019年10月)和人类代谢组数据库(HMDB)进行匹配,然后选择酵母Saccharomyces cerevisiae的代谢通路库作为参照进行富集分析和拓扑分析。富集分析中采用参数超几何法(hypergeometric test)检验每个代谢通路的显著性(P<0.05);拓扑分析中差异显著性检验的方法为相对介数中心性(relative-betweeness centrality)。

    阳离子模式下鉴定到的化合物多于阴离子模式下鉴定的化合物。阴、阳离子模式分别检测出279和461种化合物,其中74种为2种模式共同检出,共计666种化合物。通过质量控制过滤处理,阴、阳离子模式分别有176和362种化合物,其中2种模式共同含有40种化合物,共计498种化合物。数据总的缺失值的比例平均为0.74%:阴离子模式下,碳和氮培养基下的代谢物缺失率均为0.23%;阳离子模式下,碳培养基下的缺失率为2.38%,高于氮培养基0.11%。

    阴离子和阳离子模式下EV菌菌丝体代谢物的主成分分析得分图(图1A~B)显示:前2个主成分分别解释了94.9% (主成分1为92.5%,主成分2为2.4%)和92.5% (主成分1为89.5%,主成分2为3.0%)的变异。2种离子模式下EV菌代谢谱在碳、氮培养基培养后差异大,分组明显。偏最小二乘法判别法的分组结果(图1C~D)与主成分分析法结果一致。

    图 1  碳、氮培养条件下EV菌代谢物的PCA和PLS-DA分析
    Figure 1  PCA and PLS-DA of EV metabolites under carbon and nitrogen culture conditions

    采用火山图的形式进行差异化合物展示,见图2t检验差异显著(P<0.05)的化合物共有444种,占总数的89.2%;阴离子和阳离子模式分别有162和310种,28种为2种模式共有。VIP>1的化合物共有469种,占总数的94.2%;阴离子和阳离子模式分别有167和334种,32种为2种模式共有。利用VIP>1筛选出的化合物包含t检验法的筛选结果,表明后者更严格,且更符合统计要求。

    图 2  碳、氮培养条件下EV菌的差异代谢物
    Figure 2  Differential metabolites of EV bacteria under carbon and nitrogen culture conditions

    以碳为对照组,在氮组中上调代谢物的数量是下调的3.4倍,分别为342和102种;上调和下调代谢物分别有309和86种匹配到HMDB数据库,有159和71种匹配到KEGG数据库。磷酸胍基乙酸酯和对甲酚硫酸盐是在氮培养下大量产生的特有代谢物,尿囊素、光色素、吲哚和海藻糖等是代谢物在氮培养条件下显著上调(表1)。

    表 1  部分差异化合物
    Table 1  Part of significantly different metabolites
    化合物名称质荷比保留时间/min二级数据库得分变化倍数PKEGG编号
    磷酸胍基乙酸酯 198.03 9.86 62 12.46 1.13×10−13 C03166
    对甲酚硫酸盐 187.01 6.17 53 12.41 8.88×10−15
    邻氨基苯甲酸酯 136.04 2.00 50 9.93 1.67×10−8 C00108
    尿酸 190.05 1.29 40 8.26 6.26×10−7 C01717
    尼古丁 163.12 4.68 44 5.51 1.14×10−6 C16150
    4-羟基-2-喹啉羧酸 188.03 5.76 30 5.48 9.62×10−8 C01717
    烟酸 124.04 3.50 41 5.17 1.71×10−7 C00253
    尿囊素 159.05 5.46 50 5.09 2.53×10−4 C01551
    吲哚丙烯酸 188.07 7.98 98 4.20 4.68×10−8
    2-吡咯烷酮 86.06 3.79 41 4.10 2.57×10−5 C11118
    咪唑乙酸 127.05 9.62 69 3.54 1.56×10−7 C02835
    组胺 112.09 5.74 45 3.34 2.79×10−8 C00388
    谷胱甘肽 306.08 1.02 58 3.26 5.97×10−4 C00051
    光色素 243.09 1.58 70 3.00 2.79×10−4 C01727
    肌肽 227.11 12.66 55 2.40 3.30×10−5 C00386
    甜菜碱醛 102.09 6.73 68 2.25 9.68×10−3 C00576
    吲哚 118.07 8.32 57 2.12 4.40×10−3 C00463
    苹果酸 133.01 0.90 43 1.90 2.86×10−5 C00711
    甜菜碱 118.09 8.30 51 1.88 2.79×10−8 C00719
    胍基乙酸d 118.06 8.26 38 1.87 1.19×10−3 C00581
    葫芦巴碱 138.06 9.05 38 1.59 1.71×10−7 C01004
    海藻糖 341.11 1.04 78 1.34 6.16×10−5 C01083
    左旋肉碱 162.11 9.31 72 1.34 2.97×10−6 C00318
    邻乙酰左旋肉碱 204.12 8.54 73 1.32 1.69×10−6 C02571
    茶碱 181.07 2.24 55 −1.64 6.07×10−7 C07130
    二乙醇胺 106.09 8.16 45 −1.73 1.42×10−4 C06772
    去甲肾上腺素 170.08 5.83 57 −2.40 1.52×10−5 C00547
    阿魏酸盐 193.05 5.36 32 −3.58 2.87×10−5 C01494
    核糖醇 151.06 1.01 46 −4.08 3.13×10−8 C00474
    甲基咪唑乙酸 141.07 9.52 41 −4.51 2.90×10−8 C05828
    赤藓糖醇 121.05 1.04 75 −5.20 2.80×10−5 C00503
    下载: 导出CSV 
    | 显示表格

    表2图3可见:利用KEGG数据库对氮培养中上调和下调的显著差异代谢产物进行富集分析。上调代谢产物主要富集到氨基酸代谢通路,包括氨酰基tRNA的生物合成,精氨酸和脯氨酸代谢,精氨酸生物合成,牛磺酸和低牛磺酸代谢,丙氨酸、天冬氨酸和谷氨酸代谢。下调的显著差异代谢产物主要涉及糖类代谢通路,包括氨基糖和核苷酸糖代谢、半乳糖代谢、戊糖和葡萄糖醛酸酯的相互转化、淀粉和蔗糖代谢。

    表 2  碳、氮培养条件下EV菌差异代谢物富集到的KEGG通路
    Table 2  Enriched KEGG pathways by differential metabolites of EV under carbon and nitrogen culture conditions
    代谢通路编号代谢通路名称匹配情况P影响大小
    上调 sce00970 氨酰基tRNA的生物合成 18/46 4.38×10−4 0.11
    sce00330 精氨酸和脯氨酸代谢 10/25 7.53×10−3 0.33
    sce00220 精氨酸生物合成 8/18 8.05×10−3 0.60
    sce00430 牛磺酸和低牛磺酸代谢 4/7 2.28×10−2 1.00
    sce00250 丙氨酸、天冬氨酸和谷氨酸代谢 8/22 3.06×10−2 0.81
    下调 sce00520 氨基糖和核苷酸糖代谢 8/24 3.41×10−4 0.48
    sce00052 半乳糖代谢 5/17 8.98×10−3 0.82
    sce00040 戊糖和葡萄糖醛酸的相互转化 4/12 1.22×10−2 0.27
    sce00500 淀粉和蔗糖代谢 4/15 2.79×10−2 0.35
      说明:匹配情况为匹配化合物个数/通路化合物总数
    下载: 导出CSV 
    | 显示表格
    图 3  差异代谢产物富集到的显著代谢通路
    Figure 3  Significant metabolic pathways enriched by differential metabolites

    本研究在代谢组水平探究含内共生细菌的生防真菌EV菌对不同碳氮培养基的化学响应,鉴定到一些差异显著的化合物,尤其是在氮源培养基中特有的代谢产物,并定位到重要代谢途径上。磷酸胍基乙酸酯和对甲酚硫酸盐是在氮培养下EV菌大量产生的特有代谢物,尿囊素、光色素、吲哚和海藻糖等是氮培养条件下显著上调的代谢物。对甲酚硫酸盐是细菌代谢酪氨酸的产物[13]。已有研究证实:拟杆菌科Bacteroidaceae、双歧杆菌科Bifidobacteriaceae、梭菌科Clostridiaceae、肠杆菌科Enterobacteriaceae、肠球菌科Enterococcaceae、优杆菌科Eubacteriaceae、梭杆菌科Fusobacteriaceae、毛螺菌科Lachnospiraceae、乳杆菌科Lactobacillaceae、紫单胞菌科Porphyromonadaceae、葡萄球菌科Staphylococcaceae、疣微菌科Ruminococcaceae和韦荣氏菌科Veillonellaceae等细菌是对甲酚硫酸盐的产生菌[14]。已有研究表明:细菌也可以降解对甲酚[15],真菌Trichosporon cutaneumAspergillus fumigatus也可以利用对甲酚作为碳源[16-17]。因此推测:对甲酚硫酸盐可能是在高氮源培养下,由于碳源严重缺乏,EV菌胞内共生细菌代谢酪氨酸产生对甲酚或对甲酚硫酸盐,从而将其做为碳源进一步利用。

    多种革兰氏阳性细菌和革兰氏阴性细菌(迄今为止共有85种)都会产生大量的吲哚。作为细胞间信号分子,吲哚控制细菌生理的多个方面,例如孢子形成、质粒稳定性、耐药性、生物膜形成和吲哚产生细菌的毒力[18]。在细菌中,吲哚由氨基酸色氨酸的降解产物产生。吲哚是细菌Ⅲ型分泌系统表达的信号分子[19]。EV真菌细菌共生体可产生吲哚,根据上述目前的研究只在细菌发现吲哚的产生,因此我们推测胞内细菌可能是吲哚的产生者,细菌可以利用吲哚这一信号分子协调两者行为,以在真菌胞内生存。

    前期研究表明:EV菌基因组中含有比其他杀线虫真菌,如Arthrobotrys oligosporaDactylellina haptotylaDrechmeria coniospora更多的尿囊素转运蛋白[20]。此外,EV菌胞内的共生细菌属于假单孢属Pseudomonas[6]。尿囊素是腺嘌呤和鸟嘌呤代谢的中间产物,尿囊素可以被某些真菌、细菌和植物用作碳和氮的来源,尿囊素或尿囊素通路的衍生物可能有助于提高真菌向宿主植物提供氮的能力[21]。如在一些外生菌根真菌中,已鉴定出尿囊素/尿囊酸转运蛋白[21-22]。研究发现:假单孢属的细菌和酵母Saccharomyces cerevisiae也可以降解尿囊素[23-24]。在氮源充足的氮培养条件下,尿囊素代谢产物约是碳培养条件下的32倍,因此,尿囊素很可能是EV菌供给胞内共生细菌氮源的一种形式。

    海藻糖在自然界中分布广泛,包括细菌、真菌、植物、无脊椎动物和哺乳动物。由于其特殊的物理特性,海藻糖能够保护细胞的完整性免受各种环境损害和营养限制。细菌可以使用海藻糖作为碳和能量的唯一来源,一些分枝杆菌中海藻糖可作为细胞壁的结构成分,而酵母细胞在很大程度上不能以海藻糖为碳源生长[25]。在根瘤菌-豆科Leguminosae植物共生期间,海藻糖在根瘤发育过程中被储存在根瘤中,并成为细菌的主要碳水化合物,而与所供应的碳源和氮源类型无关[26]。内源性海藻糖在碳缺乏或在给定培养基中碳源耗尽后被动员。海藻糖很可能是EV共生细菌的一种碳源,在碳源缺乏时作为储备能源(氮培养下产生的海藻糖是碳培养下的2.5倍)。

    光色素是核黄素的光敏分解产物。关于光色素的酶促转化路径已在假单胞菌等细菌中进行研究[27]。已有研究认为:光色素是细菌群感效应的信号分子[28],是能影响植物生长的细菌信号分子[29],同时也是共生的信号分子[30-31]。不同的营养条件(如氮和磷)可改变细菌产生光色素的浓度[30]。本研究使用的氮源是有机氮源。在该氮培养下产生的光色素是碳培养下的8倍,氮培养条件下光色素的产量远高于碳培养条件,不同于前人报道的高浓度硝酸盐降低光色素的产量[30]

    差异最显著的代谢物多数未能富集到显著的代谢通路,原因在于这些化合物的代谢通路尚未研究透彻,或者它们是EV菌的特异化合物,尚未包括在参照数据库中。无论以真菌还是细菌数据库为参照,富集到的显著代谢通路基本一致,均与氨基酸和糖类代谢相关,而这些通路是真菌和细菌共有的,无法区分内共生细菌对其真菌宿主代谢的影响。笔者曾试图利用多种抗生素去除内共生细菌以解决该问题,并未获得成功,需要更深入的研究。

  • 表  1  美洲黑杨杂交亲本信息

    Table  1.   Basic information of parents in hybrid experiment of P. deltoides

    杂交亲本来源
    S3239、SH3(洪3)、SH2(洪2)、
     NL3804(南林3804杨)
    起源于美国密西西比河下游的美洲黑杨无性系,属美洲黑杨,原产地美国密西西比河下游第38号
     洲,1991年从美国南方林业试验站引进,2008年从美洲黑杨种质资源库中选出
    NL447(南林447杨)来源于I-69×445杂种无性系(属于欧美杨,开花早)
    NL780(南林780杨)来源于85杨半同胞家系
    B106来源于小叶杨与美洲黑杨优良亲本回交F1代杂种无性系
    SY2(泗杨2号)来源于母本I-69杨×S3239杂种无性系
    NL15(南林15杨)来源于I-69×S3244杂种无性系,母本I-69杨来源20世纪70年代引自意大利杨树研究所,父本S3244来 自美国密西西比河下游第32号洲
    下载: 导出CSV

    表  2  美洲黑杨不同杂交组合生长性状与叶片性状方差分析

    Table  2.   Variance analysis of growth and leaf traits of different hybrid combinations in P. deltoides

    性状  变异来源自由度FP性状  变异来源自由度FP
    苗高  组合间88.3720.000***叶柄长 组合间86.8650.000***
    地径  组合间85.9510.000***侧脉夹角组合间83.2880.009**
    材积  组合间85.0550.001***叶宽基距组合间83.4690.007**
    叶长  组合间86.6960.000***叶面积 组合间86.7480.000***
    叶宽  组合间88.0970.000***叶周长 组合间86.6770.000***
    叶形指数组合间83.8850.004**
      说明:***表示P<0.001;**表示P<0.01
    下载: 导出CSV

    表  3  美洲黑杨杂种苗期生长性状和叶片性状变异分析

    Table  3.   Analysis on variation of growth traits and leaf traits of P. deltoides hybrids at seedling stage

    性状     苗高/cm地径/mm材积/cm3叶长/cm叶宽/cm叶形指数叶柄长/cm侧脉夹角/(°)叶宽基距/cm叶面积/cm2叶周长/cm
    平均值    150.109.9541.1613.6313.131.0417.2772.622.46142.2558.59
    最小值    119.948.2321.9012.0411.320.9686.1869.522.00110.9551.16
    最大值    170.6311.7160.6215.9815.251.0938.6475.423.05188.7169.15
    遗传变异系数/%12.2111.9731.138.609.373.3610.522.5612.3416.659.45
    表型变异系数/%15.5416.0943.8811.2211.725.1813.644.2519.9821.6912.34
    家系遗传力  0.8810.8320.8020.8510.8770.7430.8540.6960.7120.8520.850
    单株遗传力  0.6480.5530.5030.5880.6400.4190.5950.3640.3820.5900.587
    下载: 导出CSV

    表  4  美洲黑杨不同杂交组合叶片性状与生长性状的相关性分析

    Table  4.   Correlation analysis between leaf and growth traits of different hybrid combinations of P. deltoides

    性状  苗高地径材积叶长叶宽叶形指数叶柄长侧脉夹角叶宽基距叶面积叶周长
    苗高  0.788**0.880**0.653*0.792**−0.615*0.708**−0.0780.0890.697**0.735**
    地径  0.711**0.988**0.857**0.969**−0.570*0.960**0.2060.2870.967**0.978**
    材积  0.833**0.977**0.882**1.010**−0.628*0.958**0.2040.3110.980**1.004**
    叶长  0.543*0.762**0.760**0.941**−0.1280.990**0.3880.4040.956**0.969**
    叶宽  0.672*0.881**0.892**0.923**−0.4541.063**0.3590.3570.988**0.984**
    叶形指数−0.415−0.395−0.4300.069−0.320−0.5060.0140.057−0.377−0.330
    叶柄长 0.552*0.860**0.847**0.899**0.983**−0.3290.2770.603*1.052**1.050**
    侧脉夹角0.1700.3790.3890.4440.495−0.1680.491−0.0610.4720.507
    叶宽基距−0.1420.1380.1190.3530.2870.1670.408−0.0240.3290.282
    叶面积 0.579*0.872**0.858**0.943**0.985**−0.2270.974**0.564*0.2701.001**
    叶周长 0.606*0.866**0.860**0.957**0.973**−0.1630.949**0.591*0.2280.993**
      说明:对角线下方为表型相关,对角线上方为遗传相关;*表示P<0.05,**表示P<0.01
    下载: 导出CSV

    表  5  美洲黑杨不同杂交组合叶片性状对生长性状的间接选择

    Table  5.   Indirect selection of leaf traits to growth traits in different hybrid combinations of P. deltoides

    性状  苗高地径材积
    相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%
    叶长  26.49274.802.378106.2727.106114.66
    叶宽  32.61592.102.729121.9731.508133.28
    叶形指数−23.310−65.82−1.478−66.03−18.031−76.27
    叶柄长 28.78581.282.669119.3029.505124.81
    侧脉夹角−2.862−8.080.51723.105.67023.98
    叶宽基距3.3039.330.72832.558.74236.98
    叶面积 28.29579.902.685119.9930.137127.48
    叶周长 29.81084.172.713121.2430.847130.48
    下载: 导出CSV

    表  6  美洲黑杨不同杂交组合各性状对材积的通径分析

    Table  6.   Path analysis of volume in different hybrid combinations of P. deltoides

    性状  通过叶长通过叶宽通过叶柄长通过叶面积通过叶周长通过苗高通过地径
    叶长  0.327−0.5420.1600.269−0.1820.2720.485
    叶宽  0.308−0.5750.1710.278−0.1840.3300.548
    叶柄长 0.324−0.6120.1610.296−0.1970.2950.543
    叶面积 0.313−0.5690.1700.282−0.1870.2900.547
    叶周长 0.317−0.5660.1690.282−0.1870.3070.554
    苗高  0.213−0.4550.1140.196−0.1380.4170.445
    地径  0.281−0.5590.1550.273−0.1840.3290.565
      说明:粗体为各性状对材积的直接作用,其他为各性状通过另一性状对材积的间接作用
    下载: 导出CSV

    表  7  不同性状组合指数选择方程

    Table  7.   Index selection equation of different characteristics

    指数选择方程综合育种值
    选择进展(△H)
    指数遗
    传力
    综合选择指
    数的估计准确度
    I1=0.0975X1−0.189 0X2+0.6725X3+2.5578X4+2.8459X5+0.1195X6−0.3977X710.080.8680.928
    I2=0.1047X1−1.1988X2−0.4551X3+2.036 0X4+3.6552X5+0.0774X6 8.620.8720.930
    I3=−0.1347X1+4.1451X2+13.6535X4+4.0199X5−0.7178X6 7.350.8960.937
    I4=0.0954X1+0.0249X2+2.022 0X5+0.0613X6 5.710.8620.926
    下载: 导出CSV

    表  8  美洲黑杨优良家系生长性状与叶片性状遗传增益估算

    Table  8.   Estimation of genetic gain of growth and leaf characteristics in superior families of P. deltoides

    杂交组合 苗高/%地径/%材积/%叶柄长/%叶面积/%
    B106×NL153.0614.6929.0016.0727.82
    S3239×NL159.5614.1437.9112.5419.60
    NL447×SY28.36 3.2713.80 3.135.89
    平均增益/%6.9910.7026.9011.5016.85
    下载: 导出CSV
  • [1] 徐纬英. 杨树[M]. 哈尔滨: 黑龙江人民出版社, 1988: 237 − 253.
    [2] 李善文, 张志毅, 何承忠, 等. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37 − 41.

    LI Shanwen, ZHANG Zhiyi, HE Chengzhong, et al. Progress on hybridization breeding of poplar in china [J]. For Res, 2004, 17(2): 37 − 41.
    [3] 杨洋, 张蕾, 宋菲菲, 等. 人工林速生材高值化利用研究进展[J]. 林产工业, 2020, 57(5): 53 − 55.

    YANG Yang, ZHANG Lei, SONG Feifei, et al. Research progress on high value utilization of fast-growing wood in plantation [J]. China For Prod Ind, 2020, 57(5): 53 − 55.
    [4] 李世峰, 戴咏梅, 潘惠新, 等. 杨树不同杂交组合苗期性状遗传变异[J]. 南京林业大学学报(自然科学版), 2003, 27(3): 47 − 50.

    LI Shifeng, DAI Yongmei, PAN Huixin, et al. Genetic variation of the seedling traits in various types of poplar crosses [J]. J Nanjing For Univ Nat Sci Ed, 2003, 27(3): 47 − 50.
    [5] 罗敬. 美洲黑杨杂交试验及杂种苗期重要性状变异研究[D]. 南京: 南京林业大学, 2008.

    LUO Jing. Study on Populus deltoids Hybridization and Genetic Variations of Seedling Important Traits of Hybrids [D]. Nanjing: Nanjing Forestry University, 2008.
    [6] 李火根, 黄敏仁, 王明庥. 美洲黑杨×欧美杨F1无性系一级分枝特性与生长及干形关系的研究[J]. 南京林业大学学报, 1994, 18(1): 7 − 13.

    LI Huogen, HUANG Minren, WANG Mingxiu. Study on relationship between first-order branch characteristics and growth traits, stem form for Populus deltoides×Populus euramericana F1 clones [J]. J Nanjing For Univ, 1994, 18(1): 7 − 13.
    [7] 王瑞文, 黄国伟, 李振芳, 等. 黑杨派杨树不同杂交组合F1代遗传分析及苗期选择[J]. 中国农学通报, 2017, 33(10): 48 − 52.

    WANG Ruiwen, HUANG Guowei, LI Zhenfang, et al. F1 genetic analysis and seedling selection of different cross combinations of black popular [J]. Chin Agric Sci Bull, 2017, 33(10): 48 − 52.
    [8] 王庆斌, 张玉波, 刘国刚, 等. 美洲黑杨杂种无性系引种苗期选择[J]. 东北林业大学学报, 2002, 30(5): 11 − 14.

    WANG Qingbin, ZHANG Yubo, LIU Guogang, et al. Introduction selection of Populus deltoides hybrid clones in seedling stage [J]. J Northeast For Univ, 2002, 30(5): 11 − 14.
    [9] 王明庥, 黄敏仁, 吕士行, 等. 黑杨派新无性系研究: 苗期测定[J]. 南京林业大学学报, 1987, 11(2): 1 − 12.

    WANG Mingxiu, HUANG Minren, LÜ Shixing, et al. Study on new clones of Aegeiros popular: nursery testing [J]. J Nanjing For Univ, 1987, 11(2): 1 − 12.
    [10] 王庆斌, 张玉波, 邹威, 等. 杨树新品种生长性状遗传相关及通径分析[J]. 林业科技, 2011, 36(1): 5 − 7.

    WANG Qingbin, ZHANG Yubo, ZOU Wei, et al. Correlation and path analysis on new poplar variety growth traits [J]. For Sci Technol, 2011, 36(1): 5 − 7.
    [11] 冯延芝, 乔杰, 王保平, 等. 南方低山丘陵区泡桐无性系主要性状的综合选择[J]. 林业科学研究, 2017, 30(6): 969 − 976.

    FENG Yanzhi, QIAO Jie, WANG Baoping, et al. Comprehensive selection of main phenotypic characters of Palllownia clones in the hilly area of southern China [J]. For Res, 2017, 30(6): 969 − 976.
    [12] 王明庥. 林木育种学概论[M]. 北京: 中国林业出版社, 1989: 109 − 115.
    [13] 秦光华, 姜岳忠, 乔玉玲, 等. 黑杨派杨树杂交F1子代苗期遗传测定[J]. 东北林业大学学报, 2011, 39(4): 29 − 32.

    QIN Guanghua, JIANG Yuezhong, QIAO Yuling, et al. Genetic testing of F1 hybrid progeny of Aaigeiros section at seeding stage [J]. J Northeast For Univ, 2011, 39(4): 29 − 32.
    [14] ZHU Yanhua, KANG Hongzhang, XIE Qiang, et al. Pattern of leaf vein den-sity and climate relationship of Quercus variabilis populations remains unchanged with environmental changes [J]. Trees, 2012, 26: 597 − 607.
    [15] 李金花, 张绮纹, 苏晓华, 等. 美洲黑杨与不同种源青杨杂种苗叶片和生长性状多水平变异研究[J]. 林业科学研究, 2002, 15(1): 76 − 82.

    LI Jinhua, ZHANG Qiwen, SU Xiaohua, et al. Multi-level genetic variation in leaf and growth of hybrid system between Populus deltoides and P. cathayana [J]. For Res, 2002, 15(1): 76 − 82.
    [16] 成星奇, 贾会霞, 孙佩, 等. 丹红杨×通辽1号杨杂交子代叶形性状的遗传变异分析[J]. 林业科学研究, 2019, 32(2): 100 − 110.

    CHENG Xingqi, JIA Huixia, SUN Pei, et al. Genetic variation analysis of leaf morphological traits in Populus deltoides cl. ‘Danhong’×P. simonii cl. ‘Tongliao 1’ hybrid progenies [J]. For Res, 2019, 32(2): 100 − 110.
    [17] 张勇, 朱文, 高梅, 等. 橡胶树无性系苗期生长和叶片表型性状比较分析[J]. 西部林业科学, 2020, 49(3): 66 − 73.

    ZHANG Yong, ZHU Wen, GAO Mei, et al. Comparison analysis of phenotypic growth and leaf traits of Hevea brasiliensis clones at seedling stage [J]. J West For Sci, 2020, 49(3): 66 − 73.
    [18] 李春明, 严冬, 夏辉, 等. 毛白杨种内杂交无性系苗期生长量及叶片性状变异研究[J]. 植物研究, 2016, 36(1): 62 − 67.

    LI Chunming, YAN Dong, XIA Hui, et al. Variations of growth and leaf traits of intraspecific hybridization clones of Populus tomentosa [J]. Bull Bot Res, 2016, 36(1): 62 − 67.
  • [1] 应学兵, 陈萍梅, 李璐瑶, 王宏, 吴皓天, 张毅隽, 张学荣, 臧运祥.  不同茄子品种的综合评价 . 浙江农林大学学报, 2025, 42(2): 357-364. doi: 10.11833/j.issn.2095-0756.20240394
    [2] 李柯豫, 陈荣, 刘琏, 蔡晓郡, 姜郑楚, 谢前丹, 俞晨良, 喻卫武.  雌性榧树种实性状和SSR标记的遗传变异 . 浙江农林大学学报, 2025, 42(1): 94-102. doi: 10.11833/j.issn.2095-0756.20240254
    [3] 沈汉, 郑成忠, 邱勇斌, 汪清华, 华克达, 缪强, 范艳如, 姜景民, 韦一, 刘军.  10年生香椿生长与形质性状的种源变异及选择 . 浙江农林大学学报, 2024, 41(3): 597-605. doi: 10.11833/j.issn.2095-0756.20230481
    [4] 晏姝, 韦如萍, 王润辉, 黄荣, 郑会全.  南洋楹半同胞家系苗期变异及选择 . 浙江农林大学学报, 2024, 41(2): 306-313. doi: 10.11833/j.issn.2095-0756.20230371
    [5] 陈晓蕾, 邵伟丽, 厉思源, 刘志高, 马红玲, 申亚梅, 董彬, 张超.  6个铁线莲品种杂交F1代表型性状遗传分析 . 浙江农林大学学报, 2023, 40(1): 72-80. doi: 10.11833/j.issn.2095-0756.20220214
    [6] 杨艳, 唐洁, 李永进, 汤玉喜, 黎蕾.  7个南方适生杨树无性系生长和木材纤维性状分析与评价 . 浙江农林大学学报, 2022, 39(4): 807-813. doi: 10.11833/j.issn.2095-0756.20210481
    [7] 尹焕焕, 刘青华, 周志春, 万雪琴, 余启新, 丰忠平.  马尾松无性系木材基本密度和纤维形态的变异及选择 . 浙江农林大学学报, 2020, 37(6): 1186-1192. doi: 10.11833/j.issn.2095-0756.20190720
    [8] 丁绍刚, 朱嫣然.  基于层次分析法与模糊综合评价法的医院户外环境综合评价体系构建 . 浙江农林大学学报, 2017, 34(6): 1104-1112. doi: 10.11833/j.issn.2095-0756.2017.06.019
    [9] 张晓飞, 李火根, 尤录祥, 曹健.  鹅掌楸不同交配组合子代苗期生长变异及遗传稳定性分析 . 浙江农林大学学报, 2011, 28(1): 103-108. doi: 10.11833/j.issn.2095-0756.2011.01.016
    [10] 黄信金.  柳杉种源变异与联合选择 . 浙江农林大学学报, 2010, 27(6): 884-889. doi: 10.11833/j.issn.2095-0756.2010.06.013
    [11] 黄德龙.  福建柏优树子代测定及初步选择 . 浙江农林大学学报, 2009, 26(3): 449-454.
    [12] 胡斌, 樊军锋, 高建设, 周永学.  美洲黑杨与青杨、川杨和卜氏杨人工杂交及杂种苗生长和抗病性状测定 . 浙江农林大学学报, 2009, 26(6): 778-783.
    [13] 尹增芳, 樊汝汶.  美洲黑杨次生木质部导管分化进程的超微结构分析 . 浙江农林大学学报, 2008, 25(4): 431-436.
    [14] 张飞, 房伟民, 陈发棣, 赵宏波, 贾文珂.  切花菊花器性状的遗传变异与相关性研究 . 浙江农林大学学报, 2008, 25(3): 293-297.
    [15] 郑蓉.  福建麻竹地理种源多性状综合评价及选择 . 浙江农林大学学报, 2005, 22(5): 507-512.
    [16] 刘永红, 樊军锋, 杨培华, 韩创举.  油松单亲子代苗期生长性状遗传分析 . 浙江农林大学学报, 2005, 22(5): 513-517.
    [17] 管兰华, 潘惠新, 黄敏仁, 施季森.  美洲黑杨×欧美杨F1 无性系遗传变异 . 浙江农林大学学报, 2004, 21(4): 376-381.
    [18] 郑仁华, 陈国金, 傅忠华, 俞白楠, 杨宗武, 傅玉狮, 潘琼蓉.  马尾松优树子代遗传评价及选择 . 浙江农林大学学报, 2001, 18(2): 144-149.
    [19] 童再康, 郑勇平, 罗士元, 杨惠平, 史红正.  黑杨派南方型新无性系纸浆材材性变异与遗传 . 浙江农林大学学报, 2001, 18(1): 21-25.
    [20] 林同龙.  杉木杂交后代胸径生长和木材体积质量的遗传变异及联合选择 . 浙江农林大学学报, 2000, 17(2): 142-145.
  • 期刊类型引用(0)

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200803

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1144

计量
  • 文章访问数:  676
  • HTML全文浏览量:  139
  • PDF下载量:  29
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-06-11
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2021-12-08

美洲黑杨杂交子代苗期性状遗传变异及选择

doi: 10.11833/j.issn.2095-0756.20200803
    基金项目:  江苏省科技计划项目(BE2016387)
    作者简介:

    严艳兵(ORCID: 0000-0003-4877-4761),从事杨树遗传改良研究。E-mail: 1447025861@qq.com

    通信作者: 潘惠新(ORCID: 0000-0001-5231-6937),教授,从事杨树遗传改良研究。E-mail: hxpan@njfu.com.cn
  • 中图分类号: S722.5

摘要:   目的  分析美洲黑杨Populus deltoides杂种苗期生长性状和叶片性状的遗传变异及遗传相关性,为杨树新品种选育提供材料。  方法  以美洲黑杨不同品种为亲本进行杂交试验,测定了9个杂交组合子代苗期生长性状和叶片性状,并通过方差分析、遗传参数估算、遗传相关分析及通径分析等,了解美洲黑杨杂种生长性状和叶片性状的遗传变异规律及性状间遗传互作,并依此开展美洲黑杨优良杂交组合的联合选择。  结果  杂交组合间3个生长性状与5个叶片性状存在显著(P<0.05)或极显著(P<0.01)差异。苗高、地径、材积与叶长、叶宽、叶柄长、叶周长、叶面积的家系遗传力均达0.8以上,受强度遗传控制,遗传变异系数为8.6%(叶长)~31.13%(材积),有利于优良杂交组合的选择。相关分析表明:叶长、叶宽、叶柄长、叶周长、叶面积与苗高、地径、材积间均达极显著正遗传相关(P<0.01)。相关遗传进度分析表明:除叶形指数、侧脉夹角和叶宽基距外,其他叶片性状对3个生长性状的遗传相关进度和间接选择效率较高。通径分析表明:苗高和地径对材积的直接遗传控制作用较大,叶长、叶宽、叶柄长、叶面积和叶周长通过苗高和地径对材积产生较大的间接遗传控制作用。利用综合指数选择法开展美洲黑杨9个杂交组合的生长与叶片性状联合选择,选出3个速生优质的杂交组合(B106×NL15、S3239×NL15、NL447×SY2),材积遗传增益达26.90%。  结论  美洲黑杨杂交组合子代1年生苗的3个生长性状和5个叶片性状均存在丰富变异,遗传互作显著;苗高和地径对材积的直接作用最大,5个叶片性状对材积也产生较大的间接控制效应。综合指数选择法能有效地选出速生优质杂交组合,材积遗传增益较高,杨树遗传改良效果较好。表8参18

English Abstract

李兴鹏, 张杨, 王瑞珍, 等. 碳氮培养条件下伊氏杀线虫真菌的代谢组研究[J]. 浙江农林大学学报, 2022, 39(6): 1313-1320. DOI: 10.11833/j.issn.2095-0756.20210828
引用本文: 严艳兵, 潘惠新. 美洲黑杨杂交子代苗期性状遗传变异及选择[J]. 浙江农林大学学报, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803
LI Xingpeng, ZHANG Yang, WANG Ruizhen, et al. Metabolome of nematicidal fungus Esteya vermicola in carbon and nitrogen culture[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1313-1320. DOI: 10.11833/j.issn.2095-0756.20210828
Citation: YAN Yanbing, PAN Huixin. Genetic variation and selection of seedling traits in hybrid progeny of Populus deltoides[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1144-1152. DOI: 10.11833/j.issn.2095-0756.20200803
  • 杨树为杨柳科Salicaceae杨属Populus植物,共包括五大杨派100余种,在世界范围内广泛分布,以30°~60° N的温带或暖温带地区较为常见[1],是短期轮伐的造林树种,对解决生态环境治理和木材短缺问题有利[2]。目前中国林业发展中推广的杨树新优品种主要来源于人工杂交选育,具有早期速生、材质好、抗性强等特点,创造了巨大的生态效益、经济效益以及社会效益[3]。因此杂交育种仍然是目前乃至今后培育杨树良种的重要手段。美洲黑杨Populus deltoides原产于北美密西西比河下游地区,是中国引种的南方型平原地区重要速生工业用材树种和绿化造林树种之一,是人工杂交选育新品种的常用亲本。李世峰等[4]发现:美洲黑杨杂交组合苗高和胸径平均值均超过亲本(T120和I-69)。罗敬[5]以美洲黑杨与小叶杨P. simonii为亲本进行杂交发现:获得的130株杂交子代苗高和地径在组合间和组合内都存在广泛变异。李火根等[6]以美洲黑杨与欧美杨P.×euramericana作亲本构建杂交组合,结果发现:得到的F1代13个无性系及亲本I-69杨的生长量和分枝特性在无性系间存在较大差异。王瑞文等[7]以黑杨派不同杂种无性系为亲本开展杂交试验,并估算杂种苗期生长性状遗传参数,结果表明:F1代杂种优势明显,通过综合评价可初步筛选出优良杂交组合及优良无性系。王庆斌等[8]以I-69杨为母本,青杨P. cathayana和小黑杨P. simonii×P. nigra为父本进行杂交,初选了一批杂种新无性系并进行了综合分析评价,为杨树改良和新品种选育提供了指导。但目前杨树发展过程中也存在着一些急需解决的问题,如品种单一,低产林分多,良种化率不高,飘絮严重等,严重影响长江中下游平原地区杨树生产与发展,亟待选育出适合本地速生、优质、高产及无絮的南方型美洲黑杨新品种进行更新换代。本研究选择速生、优质、高产及抗性较好的美洲黑杨作亲本构建杂交组合,对杂种苗期生长性状和叶片性状进行遗传变异分析,并通过综合指数选择法选出生长量较大的优良杂交组合,以期为长江中下游地区杨树良种化生产提供材料。

    • 研究区位于南京市栖霞区八卦洲街道外沙村南京林业大学无絮杨育种基地(32°13′N,118°48′E),该地区属亚热带季风气候区,四季分明、温暖湿润、雨量集中,全年平均气温为15.4 ℃,土壤肥沃,土壤结构良好,透气透水性较强,土壤中性偏碱。

    • 2020年3月进行杂交试验。9个杂交组合分别为:NL15 (P. deltoids ‘Nanlin 15’,♀)×S3239(P. deltoides,♂),SY2(P. deltoids ‘Siyang-2’,♀)×NL447(P. deltoides ‘Nanlin 447’,♂),NL15(♀)×NL780(P. deltoides ‘Nanlin 780’,♂),NL15(♀)×SH3(P. deltoids ‘Hong-3’,♂),NL15(♀)×B106(小叶杨回交F1代,♂),SY2(♀)×NL3804(P. deltoids ‘Nanlin 3804’,♂),NL15(♀)×SH2(P. deltoids ‘Hong-2’,♂),SY2(♀)×SH2(♂),NL15(♀)×NL447(♂),各杂交亲本遗传背景信息详见表1。5月收集所有的杂交种子带回实验室处理,随后在研究区河泥苗床上播种育苗,7月初将所有的杂种苗分区移栽到普通苗床上,遮阳数日,苗期正常水分管理。每个杂交组合按单因素随机排列,6株为1小区。

      表 1  美洲黑杨杂交亲本信息

      Table 1.  Basic information of parents in hybrid experiment of P. deltoides

      杂交亲本来源
      S3239、SH3(洪3)、SH2(洪2)、
       NL3804(南林3804杨)
      起源于美国密西西比河下游的美洲黑杨无性系,属美洲黑杨,原产地美国密西西比河下游第38号
       洲,1991年从美国南方林业试验站引进,2008年从美洲黑杨种质资源库中选出
      NL447(南林447杨)来源于I-69×445杂种无性系(属于欧美杨,开花早)
      NL780(南林780杨)来源于85杨半同胞家系
      B106来源于小叶杨与美洲黑杨优良亲本回交F1代杂种无性系
      SY2(泗杨2号)来源于母本I-69杨×S3239杂种无性系
      NL15(南林15杨)来源于I-69×S3244杂种无性系,母本I-69杨来源20世纪70年代引自意大利杨树研究所,父本S3244来 自美国密西西比河下游第32号洲
    • 2020年10月调查苗高和地径。苗高用精确到1 cm的3 m塔尺测量,地径用精确到1 mm的游标卡尺测量,材积根据王明庥等[9]的方法计算,公式为:VD2H×10−2/12。其中V为材积(cm3),H为苗高(cm),D为地径(mm)。

    • 2020年9月,从各杂交组合小区内选取2个标准株,各株采集第5~7片叶。测定叶长(cm)、叶宽(cm)、叶柄长(cm),叶宽基距(叶最宽处距叶基距离,cm)用直尺测量,侧脉夹角(主脉与最大叶宽处侧脉的夹角,°)用量角器测量,叶面积(cm2)和叶周长(cm)用IMAGE J的图像处理功能计算获得,叶形指数=叶长/叶宽。

    • 采用R语言、DPS软件和Excel 2016对试验数据进行统计分析、处理和绘图。

      用R语言进行性状方差分析,线性模型如下:Xijk=μ+ti+bj+eijkXij=u+ti+eij。其中:XijXijk为实际观测值,μ为总体平均数,ti为组合效应,bj为区组效应,eijeijk为随机误差。

      遗传参数估计公式:

      $$ {h}_{1}^{2}=\frac{r{\sigma }_{\mathrm{f}}^{2}}{{\sigma }_{\mathrm{e}}^{2}+r{\sigma }_{\mathrm{f}}^{2}}\times 100\%; $$
      $$ {h}_{2}^{2}=\frac{{\sigma }_{\mathrm{f}}^{2}}{{\sigma }_{\mathrm{e}}^{2}+{\sigma }_{\mathrm{f}}^{2}}\times 100\%; $$
      $$ {C}_{\mathrm{v}\mathrm{g}}=\frac{\sqrt{{\sigma }_{\mathrm{s}}^{2}}}{\overline X}\times 100\%; $$
      $$ {C}_{\mathrm{v}\mathrm{e}}=\frac{\sqrt{{\sigma }_{\mathrm{e}}^{2}}}{\overline X}\times 100\mathrm{\%}; $$
      $$ {C}_{\mathrm{v}\mathrm{p}}=\frac{\sqrt{{\sigma }_{\mathrm{p}}^{2}}}{\overline X}\times 100\%{\text{。}} $$

      其中:$ {h}_{1}^{2} $$ {h}_{2}^{2} $为家系和单株遗传力,r为各组合的重复数,Cvg为遗传变异系数,Cve为环境变异系数,Cvp为表型变异系数,σs为遗传标准差,σe为环境标准差,σp为表型标准差,σf为遗传方差,$ \overline X $为各性状的平均值。

      遗传进度和选择效率计算:

      $$ {G_{\rm{s}}} = q \times \sqrt {\sigma _y^2} \times \sqrt {h_y^2} \times 100\% ; $$
      $$ {G_{\rm{y}}} = q \times \sqrt {h_x^2} \times \sqrt {h_y^2} \times {r_{xy}} \times \sqrt {\sigma _{{\rm{p}}y}^2} ; $$
      $$ E = \left( {{G_{\rm{y}}}/{G_{\rm{s}}}} \right)/100\% {\text{。}} $$

      其中:Gs为直接选择遗传进度,q为选择强度,$ {\sigma }_{y}^{2} $为性状y的遗传方差,$ {h}_{y}^{2} $为性状y的遗传力;Gy为相关遗传进度,$ {h}_{x}^{2} $为性状x的遗传力,rxy为性状x与性状y的遗传相关,$ {\sigma }_{\mathrm{p}y}^{2} $为性状y的表型方差;E为选择效率。

      通径分析模型。根据遗传相关系数建立多元高斯方程组,求解方程组,计算得到直接通径系数,具体参照王庆斌等[10]方法。计算间接通径系数=rda×baY,其中rda为自变量d与自变量a之间的遗传相关系数,baY为自变量a与响应变量Y之间的直接通径系数。计算遗传增益:△G$=\dfrac{{h}_{1}^{2}S}{u}\times 100\mathrm{\%}{\text{;其中}}$S为选择差,u为某一性状总均值。

      多性状综合指数选择。指数选择法采用Smith-Hazel指数选择对各杂交组合进行综合评价,公式为:$I=\displaystyle\sum _{g=1}^{n}{b}_{{g}}{x}_{{g}}$。其中:I为选择指数值,bgg性状的指数系数,xgg性状的表型均值。指数系数计算公式为:bg=P−1GW;其中P为每个性状的表型协方差矩阵,G为遗传协方差矩阵,W为每个性状的经济权重构成的向量;利用等权重法估算杂交组合各性状的经济权重Wg,假设各性状表型标准差的单位变化具有同等重要性,即Wg=1/${\sigma }_{{g}}$[11],其中${\sigma }_{g}$表示各性状的表型标准差。

    • 表2可知:杂种苗期生长性状与叶片性状在杂交组合间均达到差异极显著水平(P<0.01),表明不同杂交组合间子代苗高、地径、材积和各叶片性状均存在较大差异。杂种苗期生长性状和叶片性状的遗传变异分析得出(表3):9个杂交组合的子代苗高、地径、材积平均值分别为150.10 cm、9.95 mm、41.16 cm3,其中NL3804×SY2子代苗高最大(170.63 cm),NL447×NL15最小(119.94 cm),两者相差42.26%。B106×NL15子代地径最大,为11.71 mm,NL447×NL15子代地径最小,为8.23 mm,前者为后者的1.17倍;S3239×NL15子代材积最大(60.62 cm3),NL447×NL15最小(21.90 cm3),两者相差2.76倍。叶片长度均值为13.63 cm,B106×NL15平均叶片长度最大,达15.98 cm,超出群体均值的17.24%,是最小组合SH3×NL15(12.04 cm)的1.32倍;叶片宽度均值为13.13 cm,B106×NL15平均叶片宽度最大,为15.25 cm,高于总均值16.14%,是叶片宽度最小组合NL780×NL15 (11.32 cm)的1.34倍;叶长/叶宽平均值为1.041,NL780×NL15长宽比最大,达1.093,SH3×NL15最小,为0.968;叶柄长度平均值为7.27 cm,组合B106×NL15最大(8.64 cm),超出总均值18.84%,是最小组合NL447×NL15(6.18 cm)的1.76倍;侧脉夹角平均值为72.62°,最大组合为S3239×NL15,达75.42°,最小为NL3804×SY2,只有69.52°;叶宽基距平均值达2.46 cm,最大组合为NL447×SY2,可达 3.05 cm,最小为SH3×NL15,只有2.00 cm;叶面积平均值为142.25 cm2,最大组合B106×NL15 (188.71 cm2)与最小组合NL780×NL15 (110.95 cm2)相差1.70倍;叶周长平均值为 58.59 cm,最大组合B106×NL15 (69.15 cm)与最小组合NL780×NL15 (51.16 cm)相差35.16%。由表3可知:各性状表型变异系数均大于遗传变异系数,其中材积的遗传变异系数(31.13%)和表型变异系数(43.88%)均最大,说明具有较大选择潜力;除叶形指数和侧脉夹角外,其他叶片性状的表型变异系数均大于10%,其中叶面积表型性状变异最大(21.69%),说明具有较大的选择空间。各性状的家系遗传力均大于单株遗传力,其中苗高、地径、材积、叶长、叶宽、叶柄长、叶面积和叶周长的家系遗传力均大于0.8;单株遗传力为0.503~0.648,均属偏强度遗传控制;叶形指数、侧脉夹角和叶宽基距的家系遗传力分别为0.743、0.696、0.712,单株遗传力分别为0.419、0.364、0.382,均为中度以上遗传控制。

      表 2  美洲黑杨不同杂交组合生长性状与叶片性状方差分析

      Table 2.  Variance analysis of growth and leaf traits of different hybrid combinations in P. deltoides

      性状  变异来源自由度FP性状  变异来源自由度FP
      苗高  组合间88.3720.000***叶柄长 组合间86.8650.000***
      地径  组合间85.9510.000***侧脉夹角组合间83.2880.009**
      材积  组合间85.0550.001***叶宽基距组合间83.4690.007**
      叶长  组合间86.6960.000***叶面积 组合间86.7480.000***
      叶宽  组合间88.0970.000***叶周长 组合间86.6770.000***
      叶形指数组合间83.8850.004**
        说明:***表示P<0.001;**表示P<0.01

      表 3  美洲黑杨杂种苗期生长性状和叶片性状变异分析

      Table 3.  Analysis on variation of growth traits and leaf traits of P. deltoides hybrids at seedling stage

      性状     苗高/cm地径/mm材积/cm3叶长/cm叶宽/cm叶形指数叶柄长/cm侧脉夹角/(°)叶宽基距/cm叶面积/cm2叶周长/cm
      平均值    150.109.9541.1613.6313.131.0417.2772.622.46142.2558.59
      最小值    119.948.2321.9012.0411.320.9686.1869.522.00110.9551.16
      最大值    170.6311.7160.6215.9815.251.0938.6475.423.05188.7169.15
      遗传变异系数/%12.2111.9731.138.609.373.3610.522.5612.3416.659.45
      表型变异系数/%15.5416.0943.8811.2211.725.1813.644.2519.9821.6912.34
      家系遗传力  0.8810.8320.8020.8510.8770.7430.8540.6960.7120.8520.850
      单株遗传力  0.6480.5530.5030.5880.6400.4190.5950.3640.3820.5900.587
    • 表4可知:在表型和遗传上,3个生长性状(苗高、地径和材积)之间均呈极显著正相关(P<0.01);叶长、叶宽、叶柄长、叶面积、叶周长分别与生长性状间呈显著(P<0.05)或极显著(P<0.01)正相关。叶形指数与生长性状间在遗传上呈显著负相关(P<0.05),在表型上负相关,但相关性不显著;侧脉夹角、叶宽基距与生长性状间相关性均不显著。叶长、叶宽、叶柄长、叶面积和叶周长相互之间存在着显著(P<0.05)或极显著(P<0.01)正相关,叶形指数、侧脉夹角和叶宽基距与其余叶片性状间呈较弱相关或负相关,相关性均未达到显著水平,表明叶形指数、侧脉夹角和叶宽基距与其他性状间的遗传互作较小。

      表 4  美洲黑杨不同杂交组合叶片性状与生长性状的相关性分析

      Table 4.  Correlation analysis between leaf and growth traits of different hybrid combinations of P. deltoides

      性状  苗高地径材积叶长叶宽叶形指数叶柄长侧脉夹角叶宽基距叶面积叶周长
      苗高  0.788**0.880**0.653*0.792**−0.615*0.708**−0.0780.0890.697**0.735**
      地径  0.711**0.988**0.857**0.969**−0.570*0.960**0.2060.2870.967**0.978**
      材积  0.833**0.977**0.882**1.010**−0.628*0.958**0.2040.3110.980**1.004**
      叶长  0.543*0.762**0.760**0.941**−0.1280.990**0.3880.4040.956**0.969**
      叶宽  0.672*0.881**0.892**0.923**−0.4541.063**0.3590.3570.988**0.984**
      叶形指数−0.415−0.395−0.4300.069−0.320−0.5060.0140.057−0.377−0.330
      叶柄长 0.552*0.860**0.847**0.899**0.983**−0.3290.2770.603*1.052**1.050**
      侧脉夹角0.1700.3790.3890.4440.495−0.1680.491−0.0610.4720.507
      叶宽基距−0.1420.1380.1190.3530.2870.1670.408−0.0240.3290.282
      叶面积 0.579*0.872**0.858**0.943**0.985**−0.2270.974**0.564*0.2701.001**
      叶周长 0.606*0.866**0.860**0.957**0.973**−0.1630.949**0.591*0.2280.993**
        说明:对角线下方为表型相关,对角线上方为遗传相关;*表示P<0.05,**表示P<0.01
    • 为进一步了解苗期叶片性状对生长性状的相关遗传进度和间接选择效率,参照王明庥[12]方法研究估算5%入选率(选择强度为2.06)下间接选择的相关遗传进度和选择效率。由表5可以看出:利用叶长、叶宽、叶柄长、叶面积和叶周长对生长性状进行间接选择,相关遗传进度较大,苗高、地径、材积分别为26.492~32.615、2.378~2.729、27.106~31.508,间接选择效率苗高、地径、材积分别为74.8%~92.1%、106.27%~121.97%、114.66%~133.28%,其中对材积的选择效率最大。叶形指数、侧脉夹角和叶宽基距对生长性状的相关遗传进度和间接选择效率均较低,表明叶形指数、侧脉夹角和叶宽基距不适合作为生长性状的间接选择性状。

      表 5  美洲黑杨不同杂交组合叶片性状对生长性状的间接选择

      Table 5.  Indirect selection of leaf traits to growth traits in different hybrid combinations of P. deltoides

      性状  苗高地径材积
      相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%相关遗传进度间接选择效率/%
      叶长  26.49274.802.378106.2727.106114.66
      叶宽  32.61592.102.729121.9731.508133.28
      叶形指数−23.310−65.82−1.478−66.03−18.031−76.27
      叶柄长 28.78581.282.669119.3029.505124.81
      侧脉夹角−2.862−8.080.51723.105.67023.98
      叶宽基距3.3039.330.72832.558.74236.98
      叶面积 28.29579.902.685119.9930.137127.48
      叶周长 29.81084.172.713121.2430.847130.48
    • 单株材积是影响苗期生长量的主要因子。由苗高、地径、叶片性状对材积的遗传作用(表4表5)可知:苗高、地径、叶长、叶宽、叶柄长、叶面积和叶周长等7个性状对材积生长量具有较强的遗传控制作用。由表6可知:7个性状对材积生长量均呈不同程度的遗传控制,其中地径对材积的直接控制作用最大,通径系数达0.565,其次为苗高,通径系数达0.417,同时苗高通过地径对材积产生较大的间接遗传控制作用;叶长、叶宽、叶柄长、叶面积和叶周长对材积的直接通径系数均较弱,但这些性状通过地径对材积生长量的间接通径系数较大,达0.485~0.554,说明这些性状对材积生长量具有较大的正向间接遗传控制作用,并且这种间接遗传控制作用主要是通过与地径的遗传相关来实现。

      表 6  美洲黑杨不同杂交组合各性状对材积的通径分析

      Table 6.  Path analysis of volume in different hybrid combinations of P. deltoides

      性状  通过叶长通过叶宽通过叶柄长通过叶面积通过叶周长通过苗高通过地径
      叶长  0.327−0.5420.1600.269−0.1820.2720.485
      叶宽  0.308−0.5750.1710.278−0.1840.3300.548
      叶柄长 0.324−0.6120.1610.296−0.1970.2950.543
      叶面积 0.313−0.5690.1700.282−0.1870.2900.547
      叶周长 0.317−0.5660.1690.282−0.1870.3070.554
      苗高  0.213−0.4550.1140.196−0.1380.4170.445
      地径  0.281−0.5590.1550.273−0.1840.3290.565
        说明:粗体为各性状对材积的直接作用,其他为各性状通过另一性状对材积的间接作用
    • 采用多性状综合指数选择法对9个杂交组合进行综合评价。由于叶形指数、侧脉夹角和叶宽基距与生长性状间的遗传互作及对材积生长量的直接或间接遗传控制均较弱,因此利用苗高(X1)、地径(X2)、叶片长(X3)、叶片宽(X4)、叶柄长(X5)、叶面积(X6)和叶周长(X7)等7个性状构建选择指数方程,进行生长性状与叶形性状的联合选择。根据等权重法估算各性状指标的经济权重,经济权重向量分别为W=(0.085,1.059,1.088,1.166,1.721,0.056,0.238)。

      不同性状组合的指数选择方程和性状综合育种值选择进展(表7)显示:指数方程I1I2I3的综合育种值选择进展(△H)、指数遗传力和综合选择指数的估计准确度均较高,但苗高和地径的偏回归系数均存在负值,即为负向遗传进展;生长性状是育种改良的首要目标,不能以牺牲生长量的改良进行选择,所以这些方程不太理想。以苗高、地径、叶面积和叶柄长构建指数方程I4,其各性状的偏回归系数均为正值,即均为正向选择;综合育种值选择进展为5.71,指数遗传力为0.862,综合选择指数的估计准确度为0.926,方程较为理想。

      表 7  不同性状组合指数选择方程

      Table 7.  Index selection equation of different characteristics

      指数选择方程综合育种值
      选择进展(△H)
      指数遗
      传力
      综合选择指
      数的估计准确度
      I1=0.0975X1−0.189 0X2+0.6725X3+2.5578X4+2.8459X5+0.1195X6−0.3977X710.080.8680.928
      I2=0.1047X1−1.1988X2−0.4551X3+2.036 0X4+3.6552X5+0.0774X6 8.620.8720.930
      I3=−0.1347X1+4.1451X2+13.6535X4+4.0199X5−0.7178X6 7.350.8960.937
      I4=0.0954X1+0.0249X2+2.022 0X5+0.0613X6 5.710.8620.926

      根据方程I4计算各杂交组合的选择指数,按30%的入选率[12]选出B106×NL15、S3239×NL15、NL447×SY2 等3个杂交组合(表8)。其中B106×NL15、S3239×NL15的材积和叶面积的遗传增益较大,分别达29.00%、27.82%和37.91%、19.60%。从整体评价效果来看,材积生长量所获得遗传增益最大,达26.90%,超出总均值33.55%;叶片性状中叶面积所获得遗传增益最大,达16.85%,高于总均值19.78%。

      表 8  美洲黑杨优良家系生长性状与叶片性状遗传增益估算

      Table 8.  Estimation of genetic gain of growth and leaf characteristics in superior families of P. deltoides

      杂交组合 苗高/%地径/%材积/%叶柄长/%叶面积/%
      B106×NL153.0614.6929.0016.0727.82
      S3239×NL159.5614.1437.9112.5419.60
      NL447×SY28.36 3.2713.80 3.135.89
      平均增益/%6.9910.7026.9011.5016.85
    • 选育出速生、优质、高产及无絮的南方型美洲黑杨新品种进行更新换代是目前开展美洲黑杨杂交试验的主要目的,其中生长性状是黑杨派良种选育的首要目标。本研究对美洲黑杨9个杂交组合子代苗期生长性状进了遗传变异分析,发现苗高、地径和材积等3个生长性状在杂交组合间均存在极显著差异,生长性状家系遗传力均达0.80以上,均大于单株遗传力,表明生长性状受强度遗传控制[13];其中材积性状的遗传变异最大(31.13%),说明选择潜力较大,苗高次之(12.21%),地径相对较小(11.97%)。生长性状变异主要来源于杂交组合间基因型的遗传基础差异。叶片是植物重要的营养器官,尤其叶柄和叶面积对林木的同化产物运输、光合产物的积累起着重要作用。本研究中杂交组合间各叶片性状差异显著,叶长、叶宽、叶柄长、叶周长和叶面积的家系遗传力均在0.85以上,表明这些叶片性状受较强的遗传控制[14];叶柄长和叶面积的表型变异系数和遗传变异系数较大,均超过10%,说明选择空间较大;叶长、叶宽和叶周长的遗传变异系数均低于10%,选择空间相对较小。与李金花等[15]对美洲黑杨与青杨杂交子代叶形、成星奇等[16]对美洲黑杨与小叶杨杂交子代叶片的研究结果类似。叶形指数和侧脉夹角的家系遗传力相对较弱,遗传变异较低,受环境影响较明显。

      研究美洲黑杨苗期叶片性状与生长性状间的遗传互作,对美洲黑杨早期选择具有重大意义。本研究中苗高、地径和材积等3个生长性状间的遗传相关和表型相关十分密切。叶片性状中叶长、叶宽、叶柄长、叶面积和叶周长间均呈极显著正遗传相关,并与苗高和地径间也存在极显著或显著正遗传相关,而叶形指数、侧脉夹角和叶宽基距与其他性状间存在负弱相关或相关性不显著;与张勇等[17]对橡胶树Hevea brasiliensis无性系生长和叶片表型性状的研究结果相类似,表明叶长、叶宽、叶柄长、叶面积、叶周长与生长性状间的遗传互作较明显。通过叶片性状联合对苗高、地径和材积进行间接选择,发现叶长、叶宽、叶柄长、叶面积和叶周长对3个生长性状的遗传相关进度和间接选择效率较大,而叶形指数、侧脉夹角和叶宽基距的间接选择效率较弱,说明叶形指数、侧脉夹角和叶宽基距不适合作为评选优良杂交组合的标准。材积是评价苗期生长量的主要因子,利用通径分析方法分析苗高、地径和叶片性状对材积生长量的遗传控制作用大小及控制途径,结果发现苗高、地径对材积的直接遗传控制作用最大,苗高通过地径对材积的间接控制作用也较大,可知苗高和地径是影响材积生长量的首要因子,在综合评价过程中苗高和地径性状可作为主要选择目标;叶片性状中,叶柄长、叶面积对材积的直接通径系数较小,叶宽和叶周长的直接通径系数为负,即为负向选择,但这些叶片性状通过苗高和地径对材积产生的正向间接遗传控制作用较大,说明叶片性状对材积的控制途径主要通过与苗高和地径间的遗传相互作用来实现。这与李春明等[18]对毛白杨Populus tomentosa杂种无性系苗高、地径的构成因素研究结果相类似,表明开展苗期生长性状与叶片性状的联合选择是可行的。

      育种目标是杂交亲本选择与选配的首先考虑因素。美洲黑杨作为中国南方型速生工业用材和绿化造林树种,速生、优质和高产是主要育种目标。本研究选用生长量较大、干形圆满通直及抗褐斑病的主要美洲黑杨(S3239、南林3804、南林15杨和泗杨2号等)品种作亲本,研究生长性状与叶形性状间的遗传互作,进行生长性状与叶片性状的联合改良;以苗高、地径作为选择依据,选出B106×NL15、S3239×NL15、NL447×SY2等3个速生、高产的优良杂交组合,同时发现材积生长量获得的遗传增益最大(26.90%),改良效果较好。但本研究只是1年生苗和单地点试验数据,后续研究需增加多年多点的无性系苗期对比试验,以便选出性状更优良、遗传稳定的优良杂种无性系。

参考文献 (18)

目录

/

返回文章
返回