留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓解城市热岛效应的南京市绿色基础设施网络构建方法

赵晨晓 刘春卉 魏家星

赵晨晓, 刘春卉, 魏家星. 缓解城市热岛效应的南京市绿色基础设施网络构建方法[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200816
引用本文: 赵晨晓, 刘春卉, 魏家星. 缓解城市热岛效应的南京市绿色基础设施网络构建方法[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200816
ZHAO Chenxiao, LIU Chunhui, WEI Jiaxing. Green infrastructure network construction method for mitigating urban heat island effect in Nanjing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200816
Citation: ZHAO Chenxiao, LIU Chunhui, WEI Jiaxing. Green infrastructure network construction method for mitigating urban heat island effect in Nanjing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200816

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

缓解城市热岛效应的南京市绿色基础设施网络构建方法

doi: 10.11833/j.issn.2095-0756.20200816
基金项目: 国家自然科学基金资助项目(32001360);中国科学院专项资金资助项目(XDA23020200);江苏省自然科学基金资助项目(BK20190545)
详细信息
    作者简介: 赵晨晓(ORCID: 0000-0002-8932-3839),从事风景园林规划与生态修复研究。E-mail: xiqianws@163.com
    通信作者: 魏家星(ORCID: 0000-0003-1246-0293),副教授,博士,从事风景园林规划与生态修复研究。E-mail: weijx@njau.edu.cn
  • 中图分类号: TU986

Green infrastructure network construction method for mitigating urban heat island effect in Nanjing

  • 摘要:   目的  绿色基础设施网络作为覆盖城市的生态网络,对于热岛效应有着重要的调节和改善作用。探究绿色基础设施构建方法并进行合理规划布局是改善城市热环境问题的有效措施。  方法  以江苏省南京市主城区为研究对象,基于形态学空间格局分析,选取连通性高、降温效应显著的“源”斑块,将反映景观格局的景观格局指数和反映地表覆盖特征的地表降温率进行叠加并构建阻力面,进而采用最小成本路径方法生成廊道。  结果  ①识别出降温率高的507个核心区斑块,结合景观连通性分析选择了25个斑块作为“源”斑块;②基于最小成本路径方法识别出20条廊道,与“源”斑块共同构建出以缓解热岛效应为导向的城市绿色基础设施网络;③结合南京市绿地系统规划进行网络优化,提出“三环、六带、多线”的总体空间结构。  结论  多种方法的综合运用使缓解热岛效应导向的绿色基础设施网络构建更加合理,同时为建构绿色基础设施网络,改善人居环境提供了新的研究思路与方法。图5表6参27
  • 图  1  核心区斑块重要值分级示意图

    Figure  1  Grading of cores by dPC value

    图  2  降温“源”斑块选取示意图

    Figure  2  Selection of cool “source” cores

    图  3  成本路径阻力面示意图

    Figure  3  Cost path resistance surface

    图  4  绿色基础设施降温网络构建示意图

    Figure  4  Cooling network of GI

    图  5  南京主城区绿色基础设施降温网络结构

    Figure  5  Structure of cooling network for GI

    表  1  7种类型地表温度分析

    Table  1.   Seven landscape connectivity types and their average temperature

    类型平均温度/℃降温率/% 类型平均温度/℃降温率/%
    支线 31.191.2 桥接区30.902.1
    边缘 30.423.6环  31.021.7
    孤岛 31.430.4孔隙 30.423.6
    核心区29.028.0
    下载: 导出CSV

    表  2  斑块重要值分级

    Table  2.   Grading of cores by dPC (delta PC decomposed) value

    等级斑块个数斑块重要值取值区间连通性重要程度
    第1等级 979.551 5~0.738 7极强
    第2等级 16 0.591 5~0.113 0强 
    第3等级 76 0.084 8~0.009 2中 
    第4等级287 0.008 7~0.000 2弱 
    第5等级119 0.000 1~0.000 0极弱
    下载: 导出CSV

    表  3  各级斑块地表温度分析

    Table  3.   Analysis of surface temperature of patches at different levels

    等级面积占比/%平均温度/℃降温率/%
    第1等级0.7528.519.7
    第2等级0.1229.177.6
    第3等级0.0730.274.1
    第4等级0.0530.383.7
    第5等级0.0130.692.8
    下载: 导出CSV

    表  4  景观格局指数与地类温度的相关性分析

    Table  4.   Correlation analysis between landscape pattern index and land type temperature

    指数地类A地类B指数地类A地类B
    斑块类型面积0.902−0.125边界密度   0.8650.248
    斑块所占面积0.902−0.125景观形状指数 0.928−0.871
    斑块数量  −0.8950.984边缘面积分维数0.782−0.989
    斑块密度  −0.8950.984斑块凝聚度  0.5520.326
    最大斑块指数0.7090.352景观聚集度  −0.9390.843
    下载: 导出CSV

    表  5  各用地类型景观特征阻力值

    Table  5.   Landscape characteristic resistance value of land use types

    用地类型斑块数量景观形状指数景观聚集度指数阻力值计算标准化处理景观特征阻力值
    耕地(地类A)23346.81489.237−157.5210.122122
    林地30026.12888.888−206.2780.09191
    草地3510.37185.364−32.5080.202202
    水体51531.09684.228−347.8470.0011
    建设用地1 83144.08787.7211 222.1371.0011 001
    裸地329.60674.74229.2590.241241
    耕地(地类B)23346.81489.237157.5210.323323
    下载: 导出CSV

    表  6  各用地类型地表覆盖阻力值

    Table  6.   Ground cover resistance values of land use types

    用地
    类型
    平均
    温度/℃
    降温
    率/%
    降温率
    标准化
    地表覆盖
    阻力值
    成本路径
    阻力值
    耕地  31.3880.5390.4272.3454
    林地  30.2354.1930.6761.4822
    草地  28.9648.2200.9501.0548
    水体  28.7308.9611.0011.001
    建设用地33.358−5.7050.0011 000.001000
    裸地  31.5580.0000.3902.5658
    下载: 导出CSV
  • [1] GEDZELMAN S D, AUSTIN S, CERMAK R, et al. Mesoscale aspects of the urban heat island around New York City [J]. Theor Appl Climatol, 2003, 75(1/2): 29 − 42.
    [2] 车通, 林芙蓉, 武思凡, 等. 快速城市化进程中扬州城市热环境与景观格局的动态关联[J]. 扬州大学学报(农业与生命科学版), 2020, 41(3): 120 − 126.

    CHE TONG, LIN Furong, WU Sifan, et al. Dynamic relationships between the urban thermal environment and the pattern of landscape development in Yangzhou City [J]. J Yangzhou Univ Agric Life Sci Ed, 2020, 41(3): 120 − 126.
    [3] 张炜, 杰克·艾亨, 刘晓明. 生态系统服务评估在美国城市绿色基础设施建设中的应用进展评述[J]. 风景园林, 2017, 24(2): 101 − 108.

    ZHANG WEI, JACK A, LIU Xiaoming. A review of the application of ecosystem service valuation in urban green infrastructure development of United States [J]. Landscape Archit, 2017, 24(2): 101 − 108.
    [4] 庄晓林, 段玉侠, 金荷仙. 城市风景园林小气候研究进展[J]. 中国园林, 2017, 33(4): 23 − 28. doi:  10.3969/j.issn.1000-6664.2017.04.005

    ZHUANG Xiaolin, DUAN Yuxia, JIN Hexian. Research review on urban landscape micro-climate [J]. Chin Landscape Archit, 2017, 33(4): 23 − 28. doi:  10.3969/j.issn.1000-6664.2017.04.005
    [5] 孔繁花, 尹海伟, 刘金勇, 等. 城市绿地降温效应研究进展与展望[J]. 自然资源学报, 2013, 28(1): 171 − 181. doi:  10.11849/zrzyxb.2013.01.017

    KONG Fanhua, YIN Haiwei, LIU Jinyong, et al. Research progress and prospect of cooling effect of urban green space [J]. J Nat Resour, 2013, 28(1): 171 − 181. doi:  10.11849/zrzyxb.2013.01.017
    [6] SANTAMOURIS M, BAN-WEISS G, OSMOND P, et al. Progress in urban greenery mitigation science-assessment methodologies advanced technologies and impact on cities [J]. J Civil Eng Manage, 2018, 24(8): 638 − 671. doi:  10.3846/jcem.2018.6604
    [7] HAMAMDA S, OHTA T. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas [J]. Urban For Urban Greening, 2010, 9(1): 15 − 24. doi:  10.1016/j.ufug.2009.10.002
    [8] 谢紫霞, 张彪, 佘欣璐, 等. 上海城市绿地夏季降温效应及其影响因素[J]. 生态学报, 2020, 40(19): 6749 − 6760.

    XIE Zixia, ZHANG Biao, SHE Xinlu, et al. The summer cooling effect and its influencing factors ofurban green spaces in Shanghai [J]. Acta Ecol Sin, 2020, 40(19): 6749 − 6760.
    [9] 栾庆祖, 叶彩华, 刘勇洪, 等. 城市绿地对周边热环境影响遥感研究——以北京为例[J]. 生态环境学报, 2014, 23(2): 252 − 261. doi:  10.3969/j.issn.1674-5906.2014.02.011

    LUAN Qingzu, YE Caihua, LIU Yonghong, et al. Effect of urban green land on thermal environment of surroundings based on remote sensing: a case study in Beijing, China [J]. Ecol Environ Sci, 2014, 23(2): 252 − 261. doi:  10.3969/j.issn.1674-5906.2014.02.011
    [10] KONG Fanhua, YAN Weijiao, ZHENG Guang, et al. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation [J]. Agric For Meteorol, 2016, 217: 22 − 34.
    [11] 刘焱序, 彭建, 王仰麟. 城市热岛效应与景观格局的关联: 从城市规模、景观组分到空间构型[J]. 生态学报, 2017, 37(23): 7769 − 7780.

    LIU Yanxu, PENG Jian, WANG Yanglin. Relationship between urban heat island and landscape patterns: from city size and landscape composition to spatial configuration [J]. Acta Ecol Sin, 2017, 37(23): 7769 − 7780.
    [12] 马瑞明, 谢苗苗, 郧文聚. 城市热岛“源—汇”景观识别及降温效率[J]. 生态学报, 2020, 40(10): 3328 − 3337.

    MA Ruiming, XIE Miaomiao, YUN Wenju. “Source-sink” landscape identification of the urban heat island and the cooling efficiency [J]. Acta Ecol Sin, 2020, 40(10): 3328 − 3337.
    [13] ISHWAR D, KATHRYN G A, TIMOTHY A W, et al. Phenology of trees and urbanization: a comparative study between New York City and Ithaca, New York [J]. Geocarto Int, 2011, 26(7): 507 − 526. doi:  10.1080/10106049.2011.607517
    [14] 吴健生, 刘洪萌, 黄秀兰, 等. 深圳市生态用地景观连通性动态评价[J]. 应用生态学报, 2012, 23(9): 2543 − 2549.

    WU Jiansheng, LIU Hongmeng, HUANG Xiulan, et al. Dynamic evaluation on landscape connectivity of ecological land: a case study of Shenzhen, Guangdong Province of South China [J]. Chin J Appl Ecol, 2012, 23(9): 2543 − 2549.
    [15] 董子燕, 张友水. 基于城市景观格局和连通性的地表温度贡献分析[J]. 地理信息世界, 2020, 27(4): 75 − 82. doi:  10.3969/j.issn.1672-1586.2020.04.012

    DONG Ziyan, ZHANG Youshui. Land surface temperature contribution analysis based on urban landscape pattern and connectivity [J]. Geomatics World, 2020, 27(4): 75 − 82. doi:  10.3969/j.issn.1672-1586.2020.04.012
    [16] KONG F H, YIN Haiwei, NAKAGISHI N, et al. Urban green space network development for biodiversity conservation: identification based on graph theory and gravity modeling [J]. Landscape Urban Plann, 2010, 95(1/2): 16 − 27.
    [17] WEBER T, SLOAN A, WOLF J. Maryland’s green infrastructure assessment: development of a comprehensive approach to land conservation [J]. Landscape Urban Plann, 2006, 77(1/2): 94 − 110.
    [18] 许霖峰. 应对热岛效应的深圳低碳城绿色基础设施规划策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    XU Linfeng. Green Infrastructure Planning Strategy for Alleviating Urban Heat Island in Shenzhen Low-carbon City[D]. Harbin: Harbin Institute of Technology, 2013.
    [19] 邬建国. 景观生态学: 格局、过程、尺度与等级[M]. 北京: 高等教育出版社, 2000: 27 − 31.
    [20] 滕明君. 快速城市化地区生态安全格局构建研究: 以武汉市为例[D]. 武汉: 华中农业大学, 2011.

    TENG Mingjun. Planning Ecological Security Patterns in a Rapidly Urbanizing Context: a Case Study in Wuhan, China[D]. Wuhan: Huazhong Agricultural University, 2011.
    [21] 姚圩琴. 基于气候适应性的杭州主城区绿色基础设施构建策略研究[D]. 杭州: 浙江农林大学, 2007.

    YAO Weiqin. The Research on the Constructive Strategies of Green Infrastructure Based on the Climate Adaptability in Hangzhou Downtown[D]. Hangzhou: Zhejiang A&F University, 2007.
    [22] 徐文彬, 尹海伟, 孔繁花. 基于生态安全格局的南京都市区生态控制边界划定[J]. 生态学报, 2017, 37(12): 4019 − 4028.

    XU Wenbin, YIN Haiwei, KONG Fanhua. Development of ecological control boundaries in Nanjing metropolis district based on ecological security patterns [J]. Acta Ecol Sin, 2017, 37(12): 4019 − 4028.
    [23] SHI Xuemin, QIN Mingzhou. Research on the optimization of regional green infrastructure network [J]. Sustainability, 2018, 10(12): 4649. doi: 10.3390/su10124649.
    [24] 黄河, 余坤勇, 高雅玲, 等. 基于MSPA的福州绿色基础设施网络构建[J]. 中国园林, 2019, 35(11): 70 − 75.

    HUANG HE, YU Kunyong, GAO Yaling, et al. Building green infrastructure network of Fuzhou using MSPA [J]. Chin Landscape Archit, 2019, 35(11): 70 − 75.
    [25] 戴菲, 毕世波, 孙培源. PM_(2.5)消减效应导向下的城市绿色基础设施网络优化: 以湖北省武汉市江汉区为例[J]. 风景园林, 2020, 27(10): 51 − 56.

    DAI Fei, BI Shibo, SUN Peiyuan. Urban green infrastructure network optimization guided by PM2.5 reduction effect: a case study of Jianghan District, Wuhan City, Hubei Province [J]. Landscape Archit, 2020, 27(10): 51 − 56.
    [26] 安超, 沈清基. 基于空间利用生态绩效的绿色基础设施网络构建方法[J]. 风景园林, 2013, 20(2): 22 − 31. doi:  10.3969/j.issn.1673-1530.2013.02.007

    AN CHAO, SHEN Qingji. Method of constructing network of green infrastructure based on ecological performance of space utilization [J]. Landscape Archit, 2013, 20(2): 22 − 31. doi:  10.3969/j.issn.1673-1530.2013.02.007
    [27] 王晶晶, 尹海伟, 孔繁花, 等. 基于供需匹配度视角的环太湖区域绿色基础设施网络构建[J]. 城市建筑, 2017(12): 19 − 24.

    WANG Jingjing, YIN Haiwei, KONG Fanhua, et al. The green infrastructure network planning in the area around Taihu Lake based on the matching degree between supply and demand [J]. Urban Archit, 2017(12): 19 − 24.
  • [1] 李玉杰, 卢娟, 陈思佳, 付晖.  海口市热力景观时空格局与分异特征 . 浙江农林大学学报, 2021, 38(4): 712-722. doi: 10.11833/j.issn.2095-0756.20200648
    [2] 崔凤娇, 邵锋, 齐锋, 王誉洁, 张泰龙, 余海盈.  植被对城市热岛效应影响的研究进展 . 浙江农林大学学报, 2020, 37(1): 171-181. doi: 10.11833/j.issn.2095-0756.2020.01.023
    [3] 周媛.  多元目标导向下的成都中心城区绿地生态网络构建 . 浙江农林大学学报, 2019, 36(2): 359-365. doi: 10.11833/j.issn.2095-0756.2019.02.018
    [4] 孙敏, 陈健, 林鑫涛, 杨山.  城市景观格局对PM2.5污染的影响 . 浙江农林大学学报, 2018, 35(1): 135-144. doi: 10.11833/j.issn.2095-0756.2018.01.018
    [5] 唐思嘉, 汤孟平, 赵赛赛, 杜秀芳, 沈钱勇, 庞春梅.  天目山毛竹竞争空间格局的动态分析 . 浙江农林大学学报, 2018, 35(2): 199-208. doi: 10.11833/j.issn.2095-0756.2018.02.002
    [6] 沈啸, 张建国.  基于网络文本分析的绍兴镜湖国家城市湿地公园旅游形象感知 . 浙江农林大学学报, 2018, 35(1): 145-152. doi: 10.11833/j.issn.2095-0756.2018.01.019
    [7] 丁绍刚, 朱嫣然.  基于层次分析法与模糊综合评价法的医院户外环境综合评价体系构建 . 浙江农林大学学报, 2017, 34(6): 1104-1112. doi: 10.11833/j.issn.2095-0756.2017.06.019
    [8] 李洪滨, 朱诚棋, 周湘, 马良进, 苏秀.  红哺鸡竹异香柱菌的形态学和分子鉴定 . 浙江农林大学学报, 2016, 33(6): 1040-1044. doi: 10.11833/j.issn.2095-0756.2016.06.016
    [9] 过萍艳, 蒋文伟, 吕渊.  浙江省慈溪市宗汉街道城镇绿地生态网络构建 . 浙江农林大学学报, 2014, 31(1): 64-71. doi: 10.11833/j.issn.2095-0756.2014.01.010
    [10] 魏兆兆, 谢云, 孟辉, 关玉梅, 吴窈窈.  3种类型浙江红山茶的花粉形态学研究 . 浙江农林大学学报, 2012, 29(4): 634-638. doi: 10.11833/j.issn.2095-0756.2012.04.024
    [11] 申亚梅, 钱超, 范义荣, 童再康.  12种(包括3品种)木兰属植物花粉形态学研究 . 浙江农林大学学报, 2012, 29(3): 394-400. doi: 10.11833/j.issn.2095-0756.2012.03.011
    [12] 郭慧慧, 蒋文伟, 梅艳霞.  基于高空间分辨率航空影像的宁波鄞州新城区城市景观格局分析 . 浙江农林大学学报, 2012, 29(3): 344-351. doi: 10.11833/j.issn.2095-0756.2012.03.005
    [13] 孙晓萍, 蔡晓彤, 陈亮, 崔寅, 陈明晶, 王福章, 吴媛, 叶丹.  杭州市城市绿地养护网络化管理探讨 . 浙江农林大学学报, 2011, 28(5): 753-760. doi: 10.11833/j.issn.2095-0756.2011.05.011
    [14] 应君, 张青萍, 王末顺, 吴晓华.  城市绿色基础设施及其体系构建 . 浙江农林大学学报, 2011, 28(5): 805-809. doi: 10.11833/j.issn.2095-0756.2011.05.021
    [15] 高峰, 卢尚琼, 徐青香, 姜庆臣.  无线传感器网络在设施农业中的应用进展 . 浙江农林大学学报, 2010, 27(5): 762-769. doi: 10.11833/j.issn.2095-0756.2010.05.020
    [16] 吴伟光, 赵明水, 刘微, 邹祖兴, 顾蕾.  基于SWOT 分析构建天目山国家级自然保护区管理策略 . 浙江农林大学学报, 2006, 23(1): 13-18.
    [17] 付晓萍, 田大伦, 黄智勇.  模拟酸雨对植物形态学效应的影响 . 浙江农林大学学报, 2006, 23(5): 521-526.
    [18] 方永才, 吴光豪, 张君飞.  林业学科SCI 网络版期刊的指标分析及中国论文分布 . 浙江农林大学学报, 2004, 21(2): 216-221.
    [19] 朱曦, 汪梅蓉, 韩红.  3 种鹭骨骼比较形态学研究 . 浙江农林大学学报, 2003, 20(3): 240-244.
    [20] 潘继进, 颜务林, 夏有根.  中美林业科学研究文献基础比较分析 . 浙江农林大学学报, 1995, 12(3): 299-304.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200816

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1

计量
  • 文章访问数:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-07
  • 修回日期:  2021-06-02

缓解城市热岛效应的南京市绿色基础设施网络构建方法

doi: 10.11833/j.issn.2095-0756.20200816
    基金项目:  国家自然科学基金资助项目(32001360);中国科学院专项资金资助项目(XDA23020200);江苏省自然科学基金资助项目(BK20190545)
    作者简介:

    赵晨晓(ORCID: 0000-0002-8932-3839),从事风景园林规划与生态修复研究。E-mail: xiqianws@163.com

    通信作者: 魏家星(ORCID: 0000-0003-1246-0293),副教授,博士,从事风景园林规划与生态修复研究。E-mail: weijx@njau.edu.cn
  • 中图分类号: TU986

摘要:   目的  绿色基础设施网络作为覆盖城市的生态网络,对于热岛效应有着重要的调节和改善作用。探究绿色基础设施构建方法并进行合理规划布局是改善城市热环境问题的有效措施。  方法  以江苏省南京市主城区为研究对象,基于形态学空间格局分析,选取连通性高、降温效应显著的“源”斑块,将反映景观格局的景观格局指数和反映地表覆盖特征的地表降温率进行叠加并构建阻力面,进而采用最小成本路径方法生成廊道。  结果  ①识别出降温率高的507个核心区斑块,结合景观连通性分析选择了25个斑块作为“源”斑块;②基于最小成本路径方法识别出20条廊道,与“源”斑块共同构建出以缓解热岛效应为导向的城市绿色基础设施网络;③结合南京市绿地系统规划进行网络优化,提出“三环、六带、多线”的总体空间结构。  结论  多种方法的综合运用使缓解热岛效应导向的绿色基础设施网络构建更加合理,同时为建构绿色基础设施网络,改善人居环境提供了新的研究思路与方法。图5表6参27

English Abstract

赵晨晓, 刘春卉, 魏家星. 缓解城市热岛效应的南京市绿色基础设施网络构建方法[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200816
引用本文: 赵晨晓, 刘春卉, 魏家星. 缓解城市热岛效应的南京市绿色基础设施网络构建方法[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200816
ZHAO Chenxiao, LIU Chunhui, WEI Jiaxing. Green infrastructure network construction method for mitigating urban heat island effect in Nanjing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200816
Citation: ZHAO Chenxiao, LIU Chunhui, WEI Jiaxing. Green infrastructure network construction method for mitigating urban heat island effect in Nanjing[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200816

返回顶部

目录

    /

    返回文章
    返回