留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力

陈涛 周利军 齐实 孙保平 聂泽旭

陈涛, 周利军, 齐实, 孙保平, 聂泽旭. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210142
引用本文: 陈涛, 周利军, 齐实, 孙保平, 聂泽旭. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210142
CHEN Tao, ZHOU Lijun, QI Shi, SUN Baoping, NIE Zexu. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210142
Citation: CHEN Tao, ZHOU Lijun, QI Shi, SUN Baoping, NIE Zexu. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210142

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力

doi: 10.11833/j.issn.2095-0756.20210142
基金项目: “十三五”国家重点研发计划项目(2017YFC0505602)
详细信息
    作者简介: 陈涛(ORCID: 0000-0002-0180-134X),从事水土保持研究。E-mail: ahbbct723@163.com
    通信作者: 孙保平(ORCID: 0000-0002-5809-7517),教授,从事流域治理和水土保持研究。E-mail: sunbp@bjfu.edu.cn
  • 中图分类号: S718.5

Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area

  • 摘要:   目的  探究四川省华蓥市典型林分下土壤团聚体稳定性变化特征及其影响因素,为阐明该地区团聚体组成及其稳定性机制提供理论依据。  方法  选取华蓥市山区5种典型林分(柏木Cupressus funebris纯林、杉木Cunninghamia lanceolata纯林、马尾松Pinus massoniana-檵木Loropetalum chinense混交林、马尾松-杉木混交林、近自然经营杉木纯林)为研究对象,通过测定林分表层(0~15 cm)和亚表层(15~30 cm)土壤理化性质,分析土壤理化性质对团聚体变化特征和土壤抗蚀性的影响。  结果  ①5种典型林分土壤大团聚体质量百分比为77%~93%,且不同林分间平均质量直径(MWD)和土壤可蚀性存在显著差异(P<0.05),其平均质量直径柏木林最大(2.33 mm),马尾松-檵木混交林最小(1.53 mm)。土壤可蚀性从大到小依次为近自然经营杉木纯林、柏木林、杉木纯林、马尾松-杉木混交林、马尾松-檵木混交林。②冗余分析表明:速效钾、土壤总孔隙度和土壤有机碳与平均质量直径呈显著正相关(P<0.05),与土壤可蚀性呈显著负相关(P<0.05);土壤容重与平均质量直径呈显著负相关性(P<0.05),与土壤可蚀性呈显著正相关(P<0.05)。  结论  5种典型林分中,柏木林和近自然经营杉木纯林土壤水稳性团聚体最稳定、抗侵蚀性强,马尾松-檵木混交林土壤水稳性团聚体稳定性最低。传统经营模式下柏木林地土壤团聚体更稳定,土壤抗蚀性更强;近自然经营模式有利于土壤团聚体稳定性和土壤抗蚀性的提高。图3表3参32
  • 图  1  不同林分类型不同土层各粒径团聚体质量百分比

    Figure  1  Mass percentage of aggregates in different soil layers of different forest types

    图  2  不同林分不同土层土壤可蚀性变化

    Figure  2  Changes in K value of different forests types and different soil layers

    图  3  土壤理化性质与团聚体稳定性的RDA排序    

    Figure  3  RDA ranking of soil physical and chemical properties and aggregate stability

    表  1  样地基本情况

    Table  1.   Basic situation of the sample plot

    林分纬度(N)经度(E)海拔/m坡度/(°)坡向/(°)树高/m胸径/cm郁闭度
    柏木纯林     30°25′17″106°49′59″51825西偏北101.801.98未郁闭
    马尾松-杉木混交林30°26′15″106°50′43″1 10031东偏南1015.6031.380.76
     近自然经营杉木纯林 30°18′06″106°47′45″1 40933北偏西1014.3020.510.85
    马尾松-檵木混交林30°26′12″106°50′47″57533东偏南1016.4019.210.83
    杉木纯林     30°18′28″106°47′47″1 13333东偏南7015.8032.370.72
    下载: 导出CSV

    表  2  不同林分类型土壤水稳性团聚体稳定性

    Table  2.   Stability of soil water-stable aggregates of different forest types

    土层深
    度/cm
    林分类型平均质量
    直径/mm
    大团聚体
    质量百分比/%
    土层深
    度/cm
    林分类型平均质量
    直径/mm
    大团聚体
    质量百分比/%
    0~15 柏木纯林     2.60±0.41 a 89.43±3.63 b 15~30 柏木纯林     2.06±0.12 a 88.14±4.65 a
    马尾松-杉木混交林 1.43±0.56 b 80.75±7.98 a 马尾松-杉木混交林 2.37±0.13 b 85.19±3.78 a
    马尾松-檵木混交林 1.29±0.09 b 77.09±4.28 a 马尾松-檵木混交林 1.77±0.11 a 81.24±1.40 ab
    杉木纯林     1.70±0.32 b 82.93±7.27 ab 杉木纯林     2.49±0.19 b 93.72±1.44 a
    近自然经营杉木纯林 2.51±0.68 a 90.12±3.51 b 近自然经营杉木纯林 1.81±0.12 a 87.54±5.34 a
      说明:不同小写字母表示同一土层深度不同林分间差异达显著水平(P<0.05)
    下载: 导出CSV

    表  3  土壤基本理化性质

    Table  3.   Basic physical and chemical properties of soil

    土层/
    cm
    林分容重/
    (g·cm−3)
    非毛管孔
    隙度/%
    毛管孔
    隙度/%
    总孔
    隙度/%
    毛管持水量/
    (g·kg−1)
    土壤有机碳/
    (g·kg−1)
    速效磷/
    (mg·kg−1)
    速效钾/
    (mg·kg−1)
    0~15柏木纯林     1.30 a3.00 b44.89 a47.89 a345.98 b32.38 b31.30 a97.56 ac
    马尾松-杉木混交林 1.44 ab3.76 b34.48 a38.23 a255.31 b29.76 b35.01 a70.94 b
    马尾松-檵木混交林 1.46 a4.96 b33.42 a38.38 a230.80 b30.17 b29.88 a76.84 ab
    杉木纯林     1.20 a4.37 b38.93 a43.31 a313.08 b40.74 ab37.56 a91.55 abc
    近自然经营杉木纯林0.93 b7.61 a47.25 a54.85 a505.79 a52.74 a25.37 a117.65 a
    15~30柏木纯林     1.44 a2.60 b42.87 b45.47 b302.63 a37.16 ab29.00 a92.92 a
    马尾松-杉木混交林 1.45 a3.69 b38.30 ab42.01 b282.42 a31.39 b30.13 a77.81 b
    马尾松-檵木混交林 1.40 a4.05 b40.63 ab44.68 b290.84 a33.20 b28.51 a89.58 a
    杉木纯林     1.26 a6.31 a40.93 ab47.24 b331.51 a43.13 ab36.22 a94.89 a
    近自然经营杉木纯林0.99 b7.59 a57.78 a55.38 a601.41 b54.18 a41.41 a109.81 a
      说明:不同小写字母表示同一土层深度不同林分间差异达显著水平(P<0.05)
    下载: 导出CSV
  • [1] 谢贤健, 张彬. 基于耦合关联分析的护岸植被恢复土壤抗蚀性综合评价[J]. 土壤, 2019, 51(3): 609 − 616.

    XIE Xianjian, ZHANG Bin. Comprehensive evaluation on recovery of soil anti-erodibility by revetment vegetation based on coupling relationship analysis [J]. Soil, 2019, 51(3): 609 − 616.
    [2] 雷贤斌, 蒋钵, 黄卫东, 等. 浅析华蓥市人工林近自然森林经营[J]. 四川林勘设计, 2015(2): 104 − 105.

    LEI Xianbin, JIANG Bo, HUANG Weidong, et al. Analysis of near natural forest management of plantation in Huaying City [J]. Sichuan For Explor Des, 2015(2): 104 − 105.
    [3] WANG Qing, WANG Dan, WEN Xuefa, et al. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands[J]. PloS ONE, 2015, 10(2). doi: 10.1371/journal.pone.0117033.
    [4] 黄晓强, 信忠保, 赵云杰, 等. 北京山区典型人工林土壤团聚体组成及其有机碳分布特征[J]. 水土保持学报, 2016, 30 (1): 236 − 243.

    HUANG Xiaoqiang, XIN Zhongbao, ZHAO Yunjie, et al. Soil aggregate composition and distribution characteristics of soil organic carbon of typical plantations in mountainous area of Beijing [J]. J Soil Water Conserv, 2016, 30 (1): 236 − 243.
    [5] DAS B, CHAKRABORTY D, SINGH V K, et al. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system [J]. Soil Till Res, 2014, 136(C): 9 − 18.
    [6] 李嘉, 刘楠, 韩进斌, 等. 冻融对五台山典型林线植被土壤水稳性大团聚体的影响[J]. 干旱区资源与环境, 2020, 34(5): 140 − 146.

    LI Jia, LIU Nan, HAN Jinbin, et al. Effects of freeze-thaw cycles on soil water-stable macroaggregates in typical timberline vegetation of Wutai Mountain [J]. J Arid Land Resour Environ, 2020, 34(5): 140 − 146.
    [7] ZUO Fenglin, LI Xiaoyan, YANG Xiaofan, et al. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow [J]. J Soil Sediment, 2020, 20(5): 272 − 283.
    [8] KRAUSE L, KLUMPP E, NOFZ I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols[J]. Geoderma, 2020, 374. doi: 10.1016/j.geoderma.2020.114421.
    [9] OKOLO C C, GEBRESAMUEL G, AMANUEL A Z, et al. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment[J]. Agric Ecosyst Environ, 2020, 297. doi. 10.1016/j. agee. 2020.106924.
    [10] 谢钧宇, 曹寒冰, 孟会生, 等. 不同施肥措施及施肥年限下土壤团聚体的大小分布及其稳定性[J]. 水土保持学报, 2020, 34(3): 274 − 281, 290.

    XIE Junyu, CAO Hanbing, MENG Huisheng, et al. Effects of different fertilization regimes and fertilization ages on size distribution and stability of soil aggregates [J]. J Soil Water Conserv, 2020, 34(3): 274 − 281, 290.
    [11] 赵友朋, 孟苗婧, 张金池, 等. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5): 84 − 90.

    ZHAO Youpeng, MENG Miaojing, ZHANG Jinchi, et al. Study on the composition and stability of soil aggregates of the main forest stands in Fengyang Mountain, Zhejiang Province [J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(5): 84 − 90.
    [12] 程欢, 宫渊波, 付雨欣, 等. 四川盆地西南缘不同林分类型土壤团聚体稳定性及有机碳组分特征[J]. 水土保持学报, 2018, 32 (5): 109 − 115.

    CHENG Huan, GONG Yuanbo, FU Yuxin, et al. Soil aggregate stability and characteristics of organic carbon components in three forests of the southwest edge of Sichuan Basin [J]. J Soil Water Conserv, 2018, 32 (5): 109 − 115.
    [13] 张万儒, 杨光滢, 屠星南. 森林土壤分析方法[M]. 北京: 中国标准出版社, 2000.
    [14] BISSONNAIS Y, PRIETO I, ROUMET C, et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: Effect of plant roots and soil characteristics [J]. Plant Soil, 424(1/2). doi: 10.1007/s11104-017-3423-6.
    [15] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007, 44(1): 7 − 13.

    ZHANG Keli, PENG Wenying, YANG Hongli. Soil erodibility and its estimation for agricultural soil in China [J]. Acta Pedol Sin, 2007, 44(1): 7 − 13.
    [16] LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility (Ⅰ) Theory and methodology [J]. Eur J Soil Sci, 1996, 47(1): 425 − 437.
    [17] 卢金伟. 土壤团聚体水稳定性及其与土壤可蚀性之间关系研究[D]. 杨凌: 西北农林科技大学, 2002.

    LU Jinwei. Water Stability of Soil Aggregates and Its Relationship with Soil Erodibility[D]. Yangling: Northwest A&F University, 2002.
    [18] CHAPLOT V, COOPER M. Soil aggregate stability to predict organic carbon outputs from soils [J]. Geoderma, 2015, 243: 205 − 213.
    [19] 谈正鑫. 盱眙月亮山典型人工林水土保持功能研究[D]. 南京: 南京林业大学, 2015.

    TAN Zhengxin. Research on Soil and Water Conservation Function of Artificial Forest in Xuyi Moon Mountains[D]. Nanjing: Nanjing Forestry University, 2015.
    [20] 张文旭, 李建红, 郭灵辉, 等. 太行山油松人工林土壤微团聚体变化特征及其影响因素[J]. 山地学报, 2019, 37(6): 797 − 807.

    ZHANG Wenxu, LI Jianhong, GUO Linghui, et al. Change features of soil micro-aggregates of Pinus tabulaeformis plantation at different developmental stages in the southern taihang mountain and its relationship with soil nutrients [J]. J Mt Sci, 2019, 37(6): 797 − 807.
    [21] 黄瑞灵, 周华坤, 刘泽华, 等. 坡向与海拔对青海省拉鸡山不同植被土壤种子库的影响[J]. 生态学杂志, 2013, 32(10): 2679 − 2686.

    HUANG Ruiling, ZHOU Huakun, LIU Zehua, et al. Effects of slope aspect and altitude on the soil seed bank under different vegetations in Laji Mountains of Qinghai [J]. Chin J Ecol, 2013, 32(10): 2679 − 2686.
    [22] 吕宸, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸土壤抗蚀性研究[J]. 水土保持学报, 2020, 34(2): 9 − 17.

    LÜ Chen, GONG Yuanbo, CHE Mingxuan, et al. Study on the soil erosion resistance of alpine shrub meadow in western Sichuan [J]. J Soil Water Conserv, 2020, 34(2): 9 − 17.
    [23] 郑子成, 李延轩, 张锡洲, 等. 不同土地利用方式下土壤团聚体的组成及稳定性研究[J]. 水土保持学报, 2009, 23(5): 228 − 231. doi:  10.3321/j.issn:1009-2242.2009.05.049

    ZHENG Zicheng, LI Yanxuan, ZHANG Xizhou, et al. Study on the composition and stability of soil aggregates under different land use [J]. J Soil Water Conserv, 2009, 23(5): 228 − 231. doi:  10.3321/j.issn:1009-2242.2009.05.049
    [24] 冯嘉仪, 储双双, 王婧, 等. 华南地区几种典型人工林土壤有机碳密度及其与土壤物理性质的关系[J]. 华南农业大学学报, 2018, 39(1): 83 − 90.

    FENG Jiayi, CHU Shuangshuang, WANG Jing, et al. Soil organic carbon density and its relationship with soil physical properties of typical plantations in South China [J]. J South China Agric Univ, 2018, 39(1): 83 − 90.
    [25] 龙健, 赵畅, 张明江, 等. 不同坡向凋落物分解对土壤微生物群落的影响[J]. 生态学报, 2019, 39(8): 2696 − 2704.

    LONG Jian, ZHAO Chang, ZHANG Mingjiang, et al. Effect of litter decomposition on soil microbes on different slopes [J]. Acta Ecol Sin, 2019, 39(8): 2696 − 2704.
    [26] 王进, 刘子琦, 鲍恩俣, 等. 喀斯特石漠化区林草恢复对土壤团聚体及其有机碳含量的影响[J]. 水土保持学报, 2019, 33(6): 249 − 256.

    WANG Jin, LIU Ziqi, BAO Entao, et al. Effects of forest and grass restoration on soil aggregates and its organic carbon in Karst Rocky Desertification Areas [J]. J Soil Water Conserv, 2019, 33(6): 249 − 256.
    [27] OADES J M. Soil organic matter and structural stability mechanisms and implications for management [J]. Plant Soil., 1984, 76(1/3): 319 − 337.
    [28] 宋日, 刘利, 马丽艳, 等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响[J]. 南京农业大学学报, 2009, 32(3): 93 − 97.

    SONG Ri, LIU Li, MA Liyan, et al. Effects of crop root exudates on the size and stability of soil aggregate [J]. J Nanjing Agric Univ, 2009, 32(3): 93 − 97.
    [29] 王小云. 土壤团聚体与土壤侵蚀关系研究进展[J]. 安徽农业科学, 2016, 44(23): 106 − 108. doi:  10.3969/j.issn.0517-6611.2016.23.036

    WANG Xiaoyun. Research progress of the relationship between soil aggregates and soil erosion [J]. Anhui Agric Sci, 2016, 44(23): 106 − 108. doi:  10.3969/j.issn.0517-6611.2016.23.036
    [30] 聂富育. 四川盆地西缘4种人工林土壤团聚体及氮动态特征[D]. 成都: 四川农业大学, 2017.

    NIE Fuyu. Soil Aggregates and Labile Nitrogen Dynamics in 4 Plantations in the Western Edge of Sichuan Basin [D]. Chengdu: Sichuan Agricultural University, 2017.
    [31] 张琪, 方海兰, 史志华, 等. 侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J]. 林业科学, 2007, 43(增刊 1): 77 − 82.

    ZHANG Qi, FANG Hailan, SHI Zhihua, et al. Advances in influence factors of aggregate stability under erosion [J]. Sci Silv Sin, 2007, 43(suppl 1): 77 − 82.
    [32] 王清奎, 汪思龙, 高洪, 等. 土地利用方式对土壤有机质的影响[J]. 生态学杂志, 2005, 24(4): 360 − 363. doi:  10.3321/j.issn:1000-4890.2005.04.002

    WANG Qingkui, WANG Silong, GAO Hong, et al. Influence of land use on soil organic matter [J]. Chin J Ecol, 2005, 24(4): 360 − 363. doi:  10.3321/j.issn:1000-4890.2005.04.002
  • [1] 马瑞婷, 董晓明, 靳珊珊, 胡林坡, 闫东锋.  间伐对栓皮栎人工林林下荆条根茎叶主要功能性状的影响 . 浙江农林大学学报, 2021, 38(3): 567-576. doi: 10.11833/j.issn.2095-0756.20200551
    [2] 隋夕然, 吴丽芳, 王妍, 王紫泉, 肖羽芯, 刘云根, 杨波.  滇中岩溶高原不同石漠化程度土壤团聚体养分及酶活性特征 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20210168
    [3] 张荣, 李婷婷, 金锁, 鱼舜尧, 王宇, 李禹江, 齐锦秋, 郝建锋.  人为干扰对蒙顶山木荷次生林物种多样性及土壤理化性质的影响 . 浙江农林大学学报, 2020, 37(5): 867-875. doi: 10.11833/j.issn.2095-0756.20190554
    [4] 黄庆阳, 曹宏杰, 王立民, 谢立红, 倪红伟.  五大连池火山熔岩台地植物多样性与土壤养分的关系 . 浙江农林大学学报, 2019, 36(1): 80-87. doi: 10.11833/j.issn.2095-0756.2019.01.011
    [5] 许俊丽, 张桂莲, 张希金, 高志文, 仲启铖, 张亚萍, 宋坤, 达良俊.  上海市人工林土壤理化性质与群落特征的相关性 . 浙江农林大学学报, 2018, 35(6): 1017-1026. doi: 10.11833/j.issn.2095-0756.2018.06.004
    [6] 刘肖肖, 戴伟, 戴奥娜.  北京山地4种阔叶林土壤酶活性及动力学特征 . 浙江农林大学学报, 2018, 35(5): 794-801. doi: 10.11833/j.issn.2095-0756.2018.05.002
    [7] 郭建曜, 王渌, 杨静, 马风云, 马雪松, 王文波, 董玉峰.  鲁中南山地黑松人工林土壤和林下植被的动态格局 . 浙江农林大学学报, 2018, 35(2): 209-218. doi: 10.11833/j.issn.2095-0756.2018.02.003
    [8] 郭茜, 陆扣萍, 胡国涛, 杨兴, 袁国栋, 沈磊磊, 王海龙.  死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响 . 浙江农林大学学报, 2017, 34(2): 244-252. doi: 10.11833/j.issn.2095-0756.2017.02.007
    [9] 张俊叶, 司志国, 俞元春, 李旭冉, 郭伟红.  徐州市樟树黄化病与土壤理化性质的关系 . 浙江农林大学学报, 2017, 34(2): 233-238. doi: 10.11833/j.issn.2095-0756.2017.02.005
    [10] 王敬, 韦新良, 徐建, 范佩佩.  天目山针阔混交林林木空间分布格局特征 . 浙江农林大学学报, 2014, 31(5): 668-675. doi: 10.11833/j.issn.2095-0756.2014.05.002
    [11] 王玉娟, 陈永忠, 王瑞, 王湘南, 彭邵锋, 杨小胡, 杨杨.  稻草覆盖对油茶幼林土壤理化性质及油茶生长的影响 . 浙江农林大学学报, 2012, 29(6): 811-816. doi: 10.11833/j.issn.2095-0756.2012.06.002
    [12] 周斌, 余树全, 张超, 伊力塔.  不同树种林分对空气负离子浓度的影响 . 浙江农林大学学报, 2011, 28(2): 200-206. doi: 10.11833/j.issn.2095-0756.2011.02.005
    [13] 周单红, 马世锋, 王少登, 姜丽丽, 张汝民, 侯平.  4种景观林对空气微生物的抑制作用 . 浙江农林大学学报, 2010, 27(1): 93-98. doi: 10.11833/j.issn.2095-0756.2010.01.015
    [14] 刘为华, 张桂莲, 徐飞, 王亚萍, 余雪琴, 王开运.  上海城市森林土壤理化性质 . 浙江农林大学学报, 2009, 26(2): 155-163.
    [15] 张履勤, 章明奎.  林地与农地转换过程中红壤有机碳、氮和磷库的演变 . 浙江农林大学学报, 2006, 23(1): 75-79.
    [16] 徐秋芳, 姜培坤, 俞益武, 孙建敏.  不同林用地土壤抗蚀性能研究 . 浙江农林大学学报, 2001, 18(4): 362-365.
    [17] 项小强, 王金治, 查印水, 李月清.  变时相生长模型技术及其在小班数据更新中的应用 . 浙江农林大学学报, 1999, 16(3): 279-282.
    [18] 邱仁辉, 周新年, 杨玉盛.  半悬索道集材对林地土壤理化性质的影响 . 浙江农林大学学报, 1998, 15(1): 37-41.
    [19] 俞元春, 赵永艳, 曾曙才.  苏南丘陵不同林分类型土壤养分的动态特性 . 浙江农林大学学报, 1998, 15(1): 32-36.
    [20] 宋漳.  不同林分土壤放线菌的分布及其与土壤因子的关系 . 浙江农林大学学报, 1997, 14(1): 41-44.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210142

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1

计量
  • 文章访问数:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-23
  • 修回日期:  2021-06-24

华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力

doi: 10.11833/j.issn.2095-0756.20210142
    基金项目:  “十三五”国家重点研发计划项目(2017YFC0505602)
    作者简介:

    陈涛(ORCID: 0000-0002-0180-134X),从事水土保持研究。E-mail: ahbbct723@163.com

    通信作者: 孙保平(ORCID: 0000-0002-5809-7517),教授,从事流域治理和水土保持研究。E-mail: sunbp@bjfu.edu.cn
  • 中图分类号: S718.5

摘要:   目的  探究四川省华蓥市典型林分下土壤团聚体稳定性变化特征及其影响因素,为阐明该地区团聚体组成及其稳定性机制提供理论依据。  方法  选取华蓥市山区5种典型林分(柏木Cupressus funebris纯林、杉木Cunninghamia lanceolata纯林、马尾松Pinus massoniana-檵木Loropetalum chinense混交林、马尾松-杉木混交林、近自然经营杉木纯林)为研究对象,通过测定林分表层(0~15 cm)和亚表层(15~30 cm)土壤理化性质,分析土壤理化性质对团聚体变化特征和土壤抗蚀性的影响。  结果  ①5种典型林分土壤大团聚体质量百分比为77%~93%,且不同林分间平均质量直径(MWD)和土壤可蚀性存在显著差异(P<0.05),其平均质量直径柏木林最大(2.33 mm),马尾松-檵木混交林最小(1.53 mm)。土壤可蚀性从大到小依次为近自然经营杉木纯林、柏木林、杉木纯林、马尾松-杉木混交林、马尾松-檵木混交林。②冗余分析表明:速效钾、土壤总孔隙度和土壤有机碳与平均质量直径呈显著正相关(P<0.05),与土壤可蚀性呈显著负相关(P<0.05);土壤容重与平均质量直径呈显著负相关性(P<0.05),与土壤可蚀性呈显著正相关(P<0.05)。  结论  5种典型林分中,柏木林和近自然经营杉木纯林土壤水稳性团聚体最稳定、抗侵蚀性强,马尾松-檵木混交林土壤水稳性团聚体稳定性最低。传统经营模式下柏木林地土壤团聚体更稳定,土壤抗蚀性更强;近自然经营模式有利于土壤团聚体稳定性和土壤抗蚀性的提高。图3表3参32

English Abstract

陈涛, 周利军, 齐实, 孙保平, 聂泽旭. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210142
引用本文: 陈涛, 周利军, 齐实, 孙保平, 聂泽旭. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210142
CHEN Tao, ZHOU Lijun, QI Shi, SUN Baoping, NIE Zexu. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210142
Citation: CHEN Tao, ZHOU Lijun, QI Shi, SUN Baoping, NIE Zexu. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210142

返回顶部

目录

    /

    返回文章
    返回