留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力

陈涛 周利军 齐实 孙保平 聂泽旭

陈涛, 周利军, 齐实, 等. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报, 2021, 38(6): 1161-1169. DOI: 10.11833/j.issn.2095-0756.20210142
引用本文: 陈涛, 周利军, 齐实, 等. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报, 2021, 38(6): 1161-1169. DOI: 10.11833/j.issn.2095-0756.20210142
LI Wanyuan, TIAN Jia, MA Qin, et al. Dynamic monitoring of loess terraces based on Google Earth Engine and machine learning[J]. Journal of Zhejiang A&F University, 2021, 38(4): 730-736. DOI: 10.11833/j.issn.2095-0756.20200673
Citation: CHEN Tao, ZHOU Lijun, QI Shi, et al. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1161-1169. DOI: 10.11833/j.issn.2095-0756.20210142

华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力

DOI: 10.11833/j.issn.2095-0756.20210142
基金项目: 国家重点研发计划项目(2017YFC0505602)
详细信息
    作者简介: 陈涛(ORCID: 0000-0002-0180-134X),从事水土保持研究。E-mail: ahbbct723@163.com
    通信作者: 孙保平(ORCID: 0000-0002-5809-7517),教授,从事流域治理和水土保持研究。E-mail: sunbp@bjfu.edu.cn
  • 中图分类号: S718.5

Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area

  • 摘要:   目的  探究四川省华蓥市典型林分下土壤团聚体稳定性变化特征及其影响因素,为阐明该地区团聚体组成及其稳定性机制提供理论依据。  方法  选取华蓥市山区5种典型林分(柏木Cupressus funebris纯林、杉木Cunninghamia lanceolata纯林、马尾松Pinus massoniana-檵木Loropetalum chinense混交林、马尾松-杉木混交林、近自然经营杉木纯林)为研究对象,通过测定林分表层(0~15 cm)和亚表层(15~30 cm)土壤理化性质,分析土壤理化性质对团聚体变化特征和土壤抗蚀性的影响。  结果  ①5种典型林分土壤大团聚体质量百分比为77%~93%,且不同林分间平均质量直径(MWD)和土壤可蚀性存在显著差异(P<0.05),其平均质量直径柏木林最大(2.33 mm),马尾松-檵木混交林最小(1.53 mm)。土壤可蚀性从大到小依次为近自然经营杉木纯林、柏木林、杉木纯林、马尾松-杉木混交林、马尾松-檵木混交林。②冗余分析表明:速效钾、土壤总孔隙度和土壤有机碳与平均质量直径呈显著正相关(P<0.05),与土壤可蚀性呈显著负相关(P<0.05);土壤容重与平均质量直径呈显著负相关性(P<0.05),与土壤可蚀性呈显著正相关(P<0.05)。  结论  5种典型林分中,柏木林和近自然经营杉木纯林土壤水稳性团聚体最稳定、抗侵蚀性强,马尾松-檵木混交林土壤水稳性团聚体稳定性最低。传统经营模式下柏木林地土壤团聚体更稳定,土壤抗蚀性更强;近自然经营模式有利于土壤团聚体稳定性和土壤抗蚀性的提高。图3表3参32
  • 重瓣榆叶梅Prunus triloba ‘Multiplex’属蔷薇科Rosaceae李属Prunus灌木或小乔木,早春开花,是中国特有园林植物[12]。重瓣榆叶梅具有较强的抗盐碱能力,广泛栽培于中国东北、华北和西北地区[3];重瓣榆叶梅花和花粉富含蛋白质、生物酶、多糖、脂肪、氨基酸和维生素等物质,可以用作保健品、药品、食品和营养性化妆品的原材料[45]。种仁含油量较高,可代郁李仁入药[6]。重瓣榆叶梅于1855年被引入欧洲、美洲、大洋洲[7],广泛用于园林绿化。研究发现:榆叶梅P. triloba与近缘种桃P. persica的核不对称性较接近,榆叶梅为八倍体(2n=64),核型分类为2B或2A,核不对称系数高达63.08%[2]。但榆叶梅的物种发生还尚不清楚,关于重瓣榆叶梅和榆叶梅系统发育关系仍是空白。

    叶绿体基因组是植物叶绿体的独立遗传系统,重组率低且保守,一般为四分体结构,由大单拷贝区(LSC)、双向重复区(IR)和小单拷贝区(SSC)组成,在植物物种鉴定、物种分化、DNA条形码开发和系统分类研究中具备可信度[8-11]。已有研究通过对46个类群的叶绿体atpB-rbcL构建进化树,明确了小麦族猬草属Hystrix和赖草属Leymus的系统发育关系[12];基于rbcL + matK + trnH-psbA组合序列和叶绿体全基因组研究白头翁属Pulsatilla物种的系统发育关系,发现变异热点在物种识别和系统发育分析中建树结果相似[13];基于叶绿体psbD 基因构建的进化树表明:花叶矢竹Pseudosasa japonica f. akebonosuji与毛竹Phyllostachys edulis的亲缘关系较近[14]。目前,已获得野生榆叶梅叶绿体基因组序列[3],但未见关于重瓣榆叶梅的叶绿体基因组序列报道。本研究通过 Illumina NovaSeq高通量测序平台,成功组装了重瓣榆叶梅叶绿体全基因组序列结构并分析其遗传多样性,以期为重瓣榆叶梅系统发育、物种鉴定、资源开发研究提供理论依据。

    2020和2021年3—4月,对河南省洛阳市洛龙区(34°38′09.94″N,112°26′36.61″E)重瓣榆叶梅种质资源进行调查,采集重瓣榆叶梅植株的幼嫩新鲜叶片,用纯净水和纸巾依次清洁叶片表面,装入有变色硅胶颗粒的密封袋,带回实验室保存以备用。

    采用 2×CTAB法提取重瓣榆叶梅总DNA[15]。叶片于液氮中研磨后用CTAB法提取植物总DNA。以琼脂糖凝胶电泳(琼脂质量分数为1%,电压为120 V,电泳时间为25 min)和微量核酸测定仪(NanoDrop 2000)检测样本DNA的完整性、质量和质量分数。样本DNA质量浓度为56.16 mg·L−1,体积为40 μL,总量为2.25 μg,D(260/280)为1.89,D(260/230)为1.02,检测结果为A类。样品质量满足建库测序要求,且总量满足2次或2次以上建库需要。

    已检测为A类的DNA样品用超声波机械打断,经片段纯化、末端修复、3′加 A、连接测序接头后,进行PCR 扩增构建文库,在Illumina NovaSeq平台进行测序得到原始序列(raw reads),对原始序列进行过滤:去除带接头的序列,过滤N含量超过10%的序列,通过BLAST 软件比对核酸序列数据库(NT)等质控得到过滤序列(clean reads)。原始序列上传于数据库GeneBank。

    使用软件SPAdes[16]、aragorn v1.2.38、DOGMA[17]和CPGview-RSG[18]进行测序数据组装和预测注释重瓣榆叶梅叶绿体的基因,通过手工纠正,成功获得其全叶绿体基因组序列并完成重瓣榆叶梅叶绿体基因组的基因注释。用在线软件(https://chlorobox.mpimp-golm.mpg.de/OGDraw.html)绘制其叶绿体全基因组物理可视化图谱。

    用CodonW 1.4.2对重瓣榆叶梅叶绿体基因组密码子数量和相对同义密码子使用度(relative synonymous codon usage,RSCU)进行分析。

    利用MISA-web[19]检测重瓣榆叶梅的cpSSR位点,参数设置为单核苷酸-8、双核苷酸-5、三核苷酸-3、四核苷酸-3、五核苷酸-3和其他核苷酸-3。

    于美国国家生物技术信息中心(NCBI)数据库中下载MK764428、HQ336405、MK798146、KF990036、KY101152、MK790138、MG602257、MK434918和MN661138等多个物种的叶绿体基因组序列,构建包括重瓣榆叶梅在内的蔷薇科李属植物的系统发育进化树,观察并分析重瓣榆叶梅和其他物种间的亲缘关系和系统发育地位。系统发育进化树采用全叶绿体基因组数据进行分析:用MAFFT[20](v7.427,auto模式)进行多序列比对,将比对好的数据用trimAl v1.4.rev15修剪,使用RAxML v8.2.10,选用GTRGAMMA模型,bootstrap=1 000,构建最大似然进化树。

    重瓣榆叶梅全叶绿体基因组总长度为157 827 bp,数据已上传至 GeneBank,登录号为MT937181。基于Illumina NovaSeq 6000测序平台表明,重瓣榆叶梅(MT937181)的读取总和(ReadSum)、基本总和(BaseSum)分别为15 307 141、4 592 142 300 bp,Q20和Q30分别为97.91%和93.90%。重瓣榆叶梅全叶绿体基因组为经典的四分体结构,由1个大单拷贝区域(LSC),1个小单拷贝区域(SSC)及反向重复区域(IRa/IRb)构成(表1~2图1),其序列长度分别为86 032、19 023、26 386 bp。重瓣榆叶梅全叶绿体基因组中GC和AT的总占比分别为 36.80%和63.20%,GC占比在 IR、LSC 和SSC区域存在较大的差异,IR区域GC占比最高可达42.58%;LSC 次之,GC占比34.64%;SSC中GC占比最低仅30.48%(表1)。

    表 1  重瓣榆叶梅叶绿体基因组结构组成
    Table 1  Structure and composition of P. triloba ‘Multiplex’ chloroplast genome
    区域全叶绿体基因组大单拷贝区(LSC)小单拷贝区(SSC)反向重复区(IRa)反向重复区(IRb)
    数量占比/%数量占比/%数量占比/%数量占比/%数量占比/%
    A49 09131.1027 33431.776 60634.737 58828.767 56328.66
    C29 66318.7915 38117.883 04716.025 41620.535 81922.05
    G28 41018.0014 42316.762 75214.475 81922.055 41620.53
    T50 66332.1028 89433.596 61834.797 56328.667 58828.76
    GC58 07336.8029 80434.645 79930.4811 23542.5811 23542.58
    总计157 827100.0086 032100.0019 023100.0026 386100.0026 386100.00
    下载: 导出CSV 
    | 显示表格
    图 1  重瓣榆叶梅叶绿体基因组图谱
    Figure 1  Gene map in P. triloba ‘Multiplex’ chloroplast genome

    重瓣榆叶梅全叶绿体基因组中注释了132个基因(图1表2),LSC区、IR区和SSC区的基因数量分别为82个(62.12%)、19个(14.39%)和12个(9.09%),蛋白编码基因有87个,占比65.91%,核糖体RNA(rRNA)数量为8个,占比6.06%,转运RNA(tRNA)数量为37个,占比28.03%。重瓣榆叶梅全叶绿体基因组序列的基因中, ycf2长度为6 834 bp,ycf1为5 589 bp,rpoC2为4 107 bp,是排名在前3位的最大基因。rRNA 基因rrn4.5、rrn16、rrn5、rrn23在IRs区,均有2个拷贝,其基因长度分别为103、1 491、121和2 809 bp。

    重瓣榆叶梅全叶绿体基因组与其他植物的叶绿体基因类似,大多数基因均不存在内含子且基因数量为1。重瓣榆叶梅全叶绿体基因组有19个双拷贝类型基因,占比为14.39%,包括:5个自我复制类型基因,即ndhB(NADH脱氢酶亚基基因)、rpl2、rpl23、rps12、rps7;4个rRNA基因,即rrn16、rrn23、rrn4.5、rrn5;7个tRNA基因,即trnA-UGCtrnI-CAUtrnI-GAUtrnL-CAAtrnN-GUUtrnR-ACGtrnV-GAC;3个未知功能蛋白基因,即ycf1、ycf2和ycf15。除atpFndhAndhB、petB、petD、rpl16、rpl2、rpoC1、rps12、rps16、trnA-UGC、trnG-GCC、trnI-GAU、trnK-UUU、trnL-UAA、trnV-UAC等16个基因各含1个内含子,clpPycf3基因含2个内含子,其余大部分基因不含内含子(表2)。

    表 2  重瓣榆叶梅叶绿体全基因组所编码基因
    Table 2  List of genes present in P. triloba ‘Multiplex’ chloroplast genome
    基因分类基因分组基因名称
    光合作用相关基因光合系统Ⅰ基因psaApsaBpsaCpsaIpsaJ
    光合系统Ⅱ基因psbApsbBpsbCpsbDpsbEpsbFpsbHpsbIpsbJpsbKpsbLpsbMpsbNpsbTpsbZ
    NADH脱氢酶基因ndhA*ndhB*(2)、ndhCndhDndhEndhFndhGndhHndhIndhJndhK
    细胞色素复合物基因petApetB*petD*petGpetLpetN
    ATP合酶基因atpAatpBatpEatpF*atpHatpI
    二磷酸核酮糖羧化酶大亚基基因rbcL
    自我复制相关基因核糖体大亚基基因rpl14、rpl16*、rpl2*(2)、rpl20、rpl22、rpl23(2)、rpl32、rpl33、rpl36
    核糖体小亚基基因rps11、rps12**(2)、rps14、rps15、rps16*、rps18、rps19、rps2、rps3、rps4、rps7(2)、rps8
    RNA聚合酶亚基基因rpoArpoBrpoC1*、rpoC2
    核糖体RNA基因rrn16(2)、rrn23(2)、rrn4.5(2)、rrn5(2)
    转运RNA基因trnA-UGC*(2)、trnC-GCAtrnD-GUCtrnE-UUCtrnF-GAAtrnG-GCC*、trnG-UCCtrnH-GUGtrnI-CAU(2)、trnI-GAU*(2)、trnK-UUU*、trnL-CAA(2)、trnL-UAA*、trnL-UAGtrnM-CAUtrnN-GUU(2)、trnP-UGGtrnQ-UUGtrnR-ACG(2)、trnR-UCUtrnS-GCUtrnS-GGAtrnS-UGAtrnT-GGUtrnT-UGUtrnV-GAC(2)、trnV-UAC*、trnW-CCAtrnY-GUAtrnfM-CAU
    其他基因
    成熟酶基因matK
    依赖ATP的蛋白酶单元p基因clpP**
    包裹膜蛋白基因cemA
    乙酰辅酶A羧化酶亚基基因accD
    c型细胞色素合成基因ccsA
    未知功能基因保守开放阅读框ycf1(2)、ycf15(2)、ycf2(2)、ycf3**、ycf4
    说明:* 代表基因有1个内含子;**代表基因有2个内含子;(2)代表基因的拷贝数为2。
    下载: 导出CSV 
    | 显示表格

    MT937181中发现共有26 678个编码密码子(表3)。其中,亮氨酸(Leu)的编码密码子数量最多,达2 792个;蛋氨酸(Met)的编码密码子有AUG、AUU、CUG、GUG和UUG等,其中AUU和UUG数量最少,均只有1个。重瓣榆叶梅全叶绿体基因组的编码异亮氨酸(Ile)的AUU数量最多,达1 108个。编码Leu的密码子最多,占总量的10.47%;而最少的色氨酸(Trp)仅占1.70%。此外,31种密码子的相对同义密码子使用度(RSCU)>1,表明它们在重瓣榆叶梅全叶绿体基因组中是偏好密码子。在偏好密码子中有29种都是以A或者U结尾,占RSCU>1的密码子总量93.55%,只有编码Leu的UUG和编码Met的AUG这2种偏好密码子是以G结尾,偏好密码子多选择密码子第3位是 A或者T,体现出密码子A/T偏好性。RSCU<1的密码子有36个,其中以G/C碱基结尾的有33个,说明RSCU<1的重瓣榆叶梅全叶绿体基因组的密码子更倾向以G/C碱基结尾;Trp的RSCU=1,无密码子偏好性。

    表 3  重瓣榆叶梅叶绿体基因组中的编码密码子
    Table 3  Codon usage of P. triloba ‘Multiplex’
    符号氨基酸密码子数量/个RSCU符号氨基酸密码子数量/个RSCU
    * Ter UAA 52 1.793 1 M Met GUG 2 0.016 0
    * Ter UAG 21 0.724 2 M Met UUG 1 0.008 0
    * Ter UGA 14 0.482 7 M Met AUG 620 0.495 2
    A Ala GCA 385 1.096 8 N Asn AAC 308 0.470 2
    A Ala GCC 226 0.644 0 N Asn AAU 1002 1.529 8
    A Ala GCG 155 0.441 6 P Pro CCA 313 1.137 2
    A Ala GCU 638 1.817 6 P Pro CCC 208 0.755 6
    C Cys UGC 78 0.500 0 P Pro CCG 151 0.548 4
    C Cys UGU 234 1.500 0 P Pro CCU 429 1.558 4
    D Asp GAC 213 0.393 4 Q Gln CAA 725 1.547 4
    D Asp GAU 870 1.606 6 Q Gln CAG 212 0.452 6
    E Glu GAA 1 041 1.476 6 R Arg AGA 503 1.880 4
    E Glu GAG 369 0.523 4 R Arg AGG 176 0.658 2
    F Phe UUC 524 0.688 2 R Arg CGA 358 1.338 6
    F Phe UUU 999 1.311 8 R Arg CGC 111 0.415 2
    G Gly GGA 728 1.621 2 R Arg CGG 118 0.441 0
    G Gly GGC 174 0.387 6 R Arg CGU 339 1.267 2
    G Gly GGG 303 0.674 8 S Ser AGC 140 0.412 8
    G Gly GGU 591 1.316 4 S Ser AGU 398 1.174 2
    H His CAC 152 0.471 4 S Ser UCA 414 1.221 0
    H His CAU 493 1.528 6 S Ser UCC 327 0.964 8
    I Ile AUA 732 0.959 1 S Ser UCG 187 0.551 4
    I Ile AUC 450 0.589 5 S Ser UCU 568 1.675 8
    I Ile AUU 1 108 1.451 4 T Thr ACA 422 1.241 2
    K Lys AAA 1 080 1.505 2 T Thr ACC 250 0.735 2
    K Lys AAG 355 0.494 8 T Thr ACG 151 0.444 0
    L Leu CUA 367 0.788 4 T Thr ACU 537 1.5796
    L Leu CUC 186 0.399 6 V Val GUA 557 1.537 6
    L Leu CUG 188 0.403 8 V Val GUC 161 0.444 4
    L Leu CUU 580 1.246 2 V Val GUG 206 0.568 8
    L Leu UUA 909 1.953 6 V Val GUU 525 1.449 2
    L Leu UUG 562 1.207 8 W Trp UGG 454 1.000 0
    M Met AUU 1 0.008 0 Y Tyr UAC 205 0.400 0
    M Met CUG 2 0.016 0 Y Tyr UAU 820 1.600 0
    下载: 导出CSV 
    | 显示表格

    采用MISA软件对重瓣榆叶梅叶绿体基因组进行了SSR分析(图2表4)。在重瓣榆叶梅叶绿体基因组中共查找到 236个符合条件的SSR位点。单核苷酸重复单元有146个,双核苷酸重复单元有12 个,三核苷酸重复单元有62个,四核苷酸重复单元有8个,五核苷酸重复单元有1个,其他核苷酸重复单元有7个。叶绿体不同区域的SSR分布情况有差异,大部分SSR位于LSC,一部分在 IRs 区域内,少数位于 SSC区域。分布在IR、LSC、SSC区域的SSR位点分别为38、158、40个,占比分别为16.10%、66.95%、16.95%。SSR位点在不同功能的基因间分布也不均:114个位于基因间隔区(IGS), 82个SSR位于外显子,40个SSR位于内含子。从分布情况发现,SSR多位于 LSC和基因间隔区。从碱基的组成上看,SSR 中重 复 占 比最 大 的 是 单核苷 酸 , 约 61.86%。重瓣榆叶梅叶绿体基因组中的SSR主要是由A和 T组成的,占所有重复序列的 72.46%,其中 A/T 碱基构成的单核苷酸重复序列137条,AT/TA组成的二核苷酸重复序列 11条,A与T组成的三核苷酸重复序列18 条,A与T 组成的四核苷酸重复序列5条。

    图 2  重瓣榆叶梅叶绿体基因组中 SSR 位点类型及数量
    Figure 2  Type and number of SSR loci of P. triloba ‘Multiplex’ chloroplast genome
    表 4  重瓣榆叶梅叶绿体基因组中SSR位点所在区域情况
    Table 4  Region of SSR loci of P. triloba ‘Multiplex’ chloroplast genome     
    区域数量/个占比/%外显子/个内含子/个基因间区/个
    IR3816.1021413
    LSC15866.90353390
    SSC4016.9026311
    总计236100.008240114
    下载: 导出CSV 
    | 显示表格

    重瓣榆叶梅SSR位点在叶绿体基因组中多态性较高,具有A/T碱基偏好性。SSR主要是A或T、ATA、ATTA/TAAT/AT复合重复、TTA /TAT或AT/TA,为SSR分子标记的开发打下基础。

    选择重瓣榆叶梅与东京樱花P. yedoensis、扁桃P. dulcis、麦李P. glandulosa 和中国李P. salicina的叶绿体基因组进行Mauve比对(图3),结果表明:重瓣榆叶梅全叶绿体基因组与其余4个物种序列有良好的共线性关系,叶绿体基因组未检测到大片段的基因重排。5个物种的基因组序列横向均分为3个部分(各物种序列长度与图中序列长度不同),从左到右为LSC/IR/SSC,纵向有一直竖线,说明5个物种叶绿体基因组的基因组成和排列十分相似。LSC和SSC中粉色局块斑纹较多,白色多为IR区,几乎为空白,说明IR区域十分保守。76 915~81 087 bp局块区间,5个物种的对比差异性最大。

    图 3  重瓣榆叶梅的叶绿体全基因组共线性分析
    Figure 3  Genomic collinearity of P. triloba ‘Multiplex’ chloroplast genome

    重瓣榆叶梅全叶绿体基因组与已经公布的其他植物的叶绿体序列构建系统进化树(图4)。结果发现:进化树上各节点和分支聚类的支持率较高,检验分值可达 100% ,说明聚类结果的可靠性较高。由聚类图可知重瓣榆叶梅与榆叶梅聚合在一个分支,和长柄扁桃P. pedunculata亲缘关系最近。基于单拷贝核基因 RPB2、Leafy内含子序列对榆叶梅及其近缘种系统发育学分析,发现桃P. persica、普通扁桃P. dulcis、蒙古扁桃P. mongolica 聚为一个类群;榆叶梅、长柄扁桃、矮扁桃P. tenella聚为一个类群。矮扁桃的系统发育地位有争议,可能与矮扁桃的取样和命名有极大关系,需要进一步探讨。核基因和叶绿体基因组共同认为榆叶梅和长柄扁桃具有同源最近亲缘关系,在进行榆叶梅品种选育和育苗育种时,可充分考虑榆叶梅与长柄扁桃的系统发育关系。

    图 4  重瓣榆叶梅及其近缘种系统发育树
    Figure 4  Phylogenetic tree of P. triloba‘Multiplex’ and its related species     

    被子植物的叶绿体基因组长度约1.60×105 bp,编码基因数约130个[2122]。本研究获得的重瓣榆叶梅全叶绿体基因组序列MT937181全长为 157 827 bp,编码基因数为132个,与一般被子植物相符合。重瓣榆叶梅为园林栽培植物,分布广泛;其他种为野生种,分布和自然生境不同,其中蒙古扁桃十分耐寒且仅分布于蒙古高原。将4个不同叶绿体基因组序列进行比较,发现重瓣榆叶梅总序列、LSC和SSC长度最小,蒙古扁桃SSC和IR长度最大。推测可能在人工栽培和植物品种选育中,重瓣榆叶梅由于外在表现性状和生长环境的优越,其叶绿体基因组中基因种类增加,但总序列长度减小;而在野生环境分布狭窄或需要极端耐寒时,蒙古扁桃为适应不良环境,其SSC区和IR长度增大,基因种类和数量发生较大变化,ycf15基因缺失,且增加了1个rps19基因。ycf15属于未知功能基因,在龙葵属Amborella和蔷薇类等原始被子植物中无功能,在毛茛属Ranunculus植物已经完全丢失[23]rps4以及rps19为核糖体小亚基类基因,核糖体在细胞中负责完成“中心法则”里“翻译”:由RNA到蛋白质这一过程。核糖体小亚基通过与信使RNA结合,转运RNA运送的氨基酸分子来合成多肽。ycf15、rps4以及rps19等3类基因的变化情况可能与植物对栽培选育、不同环境适应有直接关系。

    自然界遗传密码子在mRNA翻译成蛋白质时具有重要决定作用。同义密码子指编码同一种氨基酸的不同密码子,有时具有使用偏好性[10, 24]。重瓣榆叶梅编码基因RSCU>1密码子的第 3个核苷酸具有明显的A/U偏好。简单重复序列(SSR)广泛分布于真核生物基因组中,重瓣榆叶梅与榆叶梅(MK790138)、长柄扁桃(MG602257)和蒙古扁桃(MG602256)叶绿体基因组的SSR位点均具有富集多聚A或多聚T情况。本研究系统进化分析表明:重瓣榆叶梅与榆叶梅、长柄扁桃亲缘关系最近,进化结果与传统分类学相符[23, 2426]

    本研究成功获得了重瓣榆叶梅全叶绿体基因组序列,其总长度为157 827 bp,具备经典的四分体结构,GeneBank登录号为MT937181,编码基因数为132个。LSC、SSC和IRa/IRb序列长度分别为86 032、19 023和26 386 bp,GC占比在 IR、LSC 和SSC区域存在较大的差异。重瓣榆叶梅叶绿体基因组与其他3种近缘种植物比较中,ycf15、rps4以及rps19等3类基因有较大变化,可能是栽培环境的选择影响。重瓣榆叶梅叶绿体基因组的SSR位点具有富集A/T情况。基于叶绿体基因组数据确定了重瓣榆叶梅和榆叶梅系统发育关系,系统进化分析结果与传统植物分类学与形态学相符,即重瓣榆叶梅与榆叶梅、长柄扁桃亲缘关系最近。

  • 图  1  不同林分类型不同土层各粒径团聚体质量百分比

    Figure  1  Mass percentage of aggregates in different soil layers of different forest types

    图  2  不同林分不同土层土壤可蚀性变化

    Figure  2  Changes in K values of different forest types and different soil layers

    图  3  土壤理化性质与团聚体稳定性的RDA排序    

    Figure  3  RDA ranking of soil physical and chemical properties and aggregate stability

    表  1  样地基本情况

    Table  1.   Basic situation of the sample plot

    林分类型纬度(N)经度(E)海拔/m坡度/(°)坡向/(°)树高/m胸径/cm郁闭度
    柏木纯林(BM)     30°25′17″106°49′59″51825西偏北101.801.98未郁闭
    马尾松-杉木混交林(MS)30°26′15″106°50′43″1 10031东偏南1015.6031.380.76
     近自然经营杉木纯林(SCZ)30°18′06″106°47′45″1 40933北偏西1014.3020.510.85
    马尾松-檵木混交林(MJ)30°26′12″106°50′47″57533东偏南1016.4019.210.83
    杉木纯林(SC)     30°18′28″106°47′47″1 13333东偏南7015.8032.370.72
    下载: 导出CSV

    表  2  不同林分类型土壤水稳性团聚体稳定性

    Table  2.   Stability of soil water-stable aggregates of different forest types

    土层深
    度/cm
    林分类型平均质量
    直径/mm
    大团聚体
    质量百分比/%
    土层深
    度/cm
    林分类型平均质量
    直径/mm
    大团聚体
    质量百分比/%
    0~15 柏木纯林     2.60±0.41 a 89.43±3.63 b 15~30 柏木纯林     2.06±0.12 a 88.14±4.65 a
    马尾松-杉木混交林 1.43±0.56 b 80.75±7.98 a 马尾松-杉木混交林 2.37±0.13 b 85.19±3.78 a
    马尾松-檵木混交林 1.29±0.09 b 77.09±4.28 a 马尾松-檵木混交林 1.77±0.11 a 81.24±1.40 ab
    杉木纯林      1.70±0.32 b 82.93±7.27 ab 杉木纯林     2.49±0.19 b 93.72±1.44 a
    近自然经营杉木纯林 2.51±0.68 a 90.12±3.51 b 近自然经营杉木纯林 1.81±0.12 a 87.54±5.34 a
      说明:不同小写字母表示同一土层不同林分间差异显著(P<0.05)
    下载: 导出CSV

    表  3  土壤基本理化性质

    Table  3.   Basic physical and chemical properties of soil

    土层/
    cm
    林分容重/
    (g·cm−3)
    非毛管孔
    隙度/%
    毛管孔
    隙度/%
    总孔
    隙度/%
    毛管持水量/
    (g·kg−1)
    土壤有机碳/
    (g·kg−1)
    速效磷/
    (mg·kg−1)
    速效钾/
    (mg·kg−1)
    0~15柏木纯林     1.30 a3.00 b44.89 a47.89 a345.98 b32.38 b31.30 a97.56 ac
    马尾松-杉木混交林 1.44 ab3.76 b34.48 a38.23 a255.31 b29.76 b35.01 a70.94 b
    马尾松-檵木混交林 1.46 a4.96 b33.42 a38.38 a230.80 b30.17 b29.88 a76.84 ab
    杉木纯林     1.20 a4.37 b38.93 a43.31 a313.08 b40.74 ab37.56 a91.55 abc
    近自然经营杉木纯林0.93 b7.61 a47.25 a54.85 a505.79 a52.74 a25.37 a117.65 a
    15~30柏木纯林     1.44 a2.60 b42.87 b45.47 b302.63 a37.16 ab29.00 a92.92 a
    马尾松-杉木混交林 1.45 a3.69 b38.30 ab42.01 b282.42 a31.39 b30.13 a77.81 b
    马尾松-檵木混交林 1.40 a4.05 b40.63 ab44.68 b290.84 a33.20 b28.51 a89.58 a
    杉木纯林     1.26 a6.31 a40.93 ab47.24 b331.51 a43.13 ab36.22 a94.89 a
    近自然经营杉木纯林0.99 b7.59 a57.78 a55.38 a601.41 b54.18 a41.41 a109.81 a
      说明:不同小写字母表示同一土层不同林分间差异显著(P<0.05)
    下载: 导出CSV
  • [1] 谢贤健, 张彬. 基于耦合关联分析的护岸植被恢复土壤抗蚀性综合评价[J]. 土壤, 2019, 51(3): 609 − 616.

    XIE Xianjian, ZHANG Bin. Comprehensive evaluation on recovery of soil anti-erodibility by revetment vegetation based on coupling relationship analysis [J]. Soil, 2019, 51(3): 609 − 616.
    [2] 雷贤斌, 蒋钵, 黄卫东, 等. 浅析华蓥市人工林近自然森林经营[J]. 四川林勘设计, 2015(2): 104 − 105.

    LEI Xianbin, JIANG Bo, HUANG Weidong, et al. Analysis of near natural forest management of plantation in Huaying City [J]. Sichuan For Explor Des, 2015(2): 104 − 105.
    [3] WANG Qing, WANG Dan, WEN Xuefa, et al. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands[J]. PLoS One, 2015, 10(2). doi: 10.1371/journal.pone.0117033.
    [4] 黄晓强, 信忠保, 赵云杰, 等. 北京山区典型人工林土壤团聚体组成及其有机碳分布特征[J]. 水土保持学报, 2016, 30 (1): 236 − 243.

    HUANG Xiaoqiang, XIN Zhongbao, ZHAO Yunjie, et al. Soil aggregate composition and distribution characteristics of soil organic carbon of typical plantations in mountainous area of Beijing [J]. J Soil Water Conserv, 2016, 30 (1): 236 − 243.
    [5] DAS B, CHAKRABORTY D, SINGH V K, et al. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system [J]. Soil Till Res, 2014, 136(C): 9 − 18.
    [6] 李嘉, 刘楠, 韩进斌, 等. 冻融对五台山典型林线植被土壤水稳性大团聚体的影响[J]. 干旱区资源与环境, 2020, 34(5): 140 − 146.

    LI Jia, LIU Nan, HAN Jinbin, et al. Effects of freeze-thaw cycles on soil water-stable macroaggregates in typical timberline vegetation of Wutai Mountain [J]. J Arid Land Resour Environ, 2020, 34(5): 140 − 146.
    [7] ZUO Fenglin, LI Xiaoyan, YANG Xiaofan, et al. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow [J]. J Soil Sediment, 2020, 20(5): 272 − 283.
    [8] KRAUSE L, KLUMPP E, NOFZ I, et al. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols[J]. Geoderma, 2020, 374. doi: 10.1016/j.geoderma.2020.114421.
    [9] OKOLO C C, GEBRESAMUEL G, AMANUEL A Z, et al. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semi-arid environment[J]. Agric Ecosyst Environ, 2020, 297. doi: 10.1016/j. agee. 2020.106924.
    [10] 谢钧宇, 曹寒冰, 孟会生, 等. 不同施肥措施及施肥年限下土壤团聚体的大小分布及其稳定性[J]. 水土保持学报, 2020, 34(3): 274 − 281, 290.

    XIE Junyu, CAO Hanbing, MENG Huisheng, et al. Effects of different fertilization regimes and fertilization ages on size distribution and stability of soil aggregates [J]. J Soil Water Conserv, 2020, 34(3): 274 − 281, 290.
    [11] 赵友朋, 孟苗婧, 张金池, 等. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5): 84 − 90.

    ZHAO Youpeng, MENG Miaojing, ZHANG Jinchi, et al. Study on the composition and stability of soil aggregates of the main forest stands in Fengyang Mountain, Zhejiang Province [J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(5): 84 − 90.
    [12] 程欢, 宫渊波, 付雨欣, 等. 四川盆地西南缘不同林分类型土壤团聚体稳定性及有机碳组分特征[J]. 水土保持学报, 2018, 32 (5): 109 − 115.

    CHENG Huan, GONG Yuanbo, FU Yuxin, et al. Soil aggregate stability and characteristics of organic carbon components in three forests of the southwest edge of Sichuan Basin [J]. J Soil Water Conserv, 2018, 32 (5): 109 − 115.
    [13] 张万儒, 杨光滢, 屠星南. 森林土壤分析方法[M]. 北京: 中国标准出版社, 2000.
    [14] BISSONNAIS Y, PRIETO I, ROUMET C, et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics [J]. Plant Soil, 424(1/2). doi: 10.1007/s11104-017-3423-6.
    [15] 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算[J]. 土壤学报, 2007, 44(1): 7 − 13.

    ZHANG Keli, PENG Wenying, YANG Hongli. Soil erodibility and its estimation for agricultural soil in China [J]. Acta Pedol Sin, 2007, 44(1): 7 − 13.
    [16] LE BISSONNAIS Y. Aggregate stability and assessment of soil crustability and erodibility (Ⅰ) Theory and methodology [J]. Eur J Soil Sci, 1996, 47(1): 425 − 437.
    [17] 卢金伟. 土壤团聚体水稳定性及其与土壤可蚀性之间关系研究[D]. 杨凌: 西北农林科技大学, 2002.

    LU Jinwei. Water Stability of Soil Aggregates and Its Relationship with Soil Erodibility[D]. Yangling: Northwest A&F University, 2002.
    [18] CHAPLOT V, COOPER M. Soil aggregate stability to predict organic carbon outputs from soils [J]. Geoderma, 2015, 243: 205 − 213.
    [19] 谈正鑫. 盱眙月亮山典型人工林水土保持功能研究[D]. 南京: 南京林业大学, 2015.

    TAN Zhengxin. Research on Soil and Water Conservation Function of Artificial Forest in Xuyi Moon Mountains[D]. Nanjing: Nanjing Forestry University, 2015.
    [20] 张文旭, 李建红, 郭灵辉, 等. 太行山油松人工林土壤微团聚体变化特征及其影响因素[J]. 山地学报, 2019, 37(6): 797 − 807.

    ZHANG Wenxu, LI Jianhong, GUO Linghui, et al. Change features of soil micro-aggregates of Pinus tabulaeformis plantation at different developmental stages in the southern taihang mountain and its relationship with soil nutrients [J]. J Mt Sci, 2019, 37(6): 797 − 807.
    [21] 黄瑞灵, 周华坤, 刘泽华, 等. 坡向与海拔对青海省拉鸡山不同植被土壤种子库的影响[J]. 生态学杂志, 2013, 32(10): 2679 − 2686.

    HUANG Ruiling, ZHOU Huakun, LIU Zehua, et al. Effects of slope aspect and altitude on the soil seed bank under different vegetations in Laji Mountains of Qinghai [J]. Chin J Ecol, 2013, 32(10): 2679 − 2686.
    [22] 吕宸, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸土壤抗蚀性研究[J]. 水土保持学报, 2020, 34(2): 9 − 17.

    LÜ Chen, GONG Yuanbo, CHE Mingxuan, et al. Study on the soil erosion resistance of alpine shrub meadow in western Sichuan [J]. J Soil Water Conserv, 2020, 34(2): 9 − 17.
    [23] 郑子成, 李延轩, 张锡洲, 等. 不同土地利用方式下土壤团聚体的组成及稳定性研究[J]. 水土保持学报, 2009, 23(5): 228 − 231.

    ZHENG Zicheng, LI Yanxuan, ZHANG Xizhou, et al. Study on the composition and stability of soil aggregates under different land use [J]. J Soil Water Conserv, 2009, 23(5): 228 − 231.
    [24] 冯嘉仪, 储双双, 王婧, 等. 华南地区几种典型人工林土壤有机碳密度及其与土壤物理性质的关系[J]. 华南农业大学学报, 2018, 39(1): 83 − 90.

    FENG Jiayi, CHU Shuangshuang, WANG Jing, et al. Soil organic carbon density and its relationship with soil physical properties of typical plantations in South China [J]. J South China Agric Univ, 2018, 39(1): 83 − 90.
    [25] 龙健, 赵畅, 张明江, 等. 不同坡向凋落物分解对土壤微生物群落的影响[J]. 生态学报, 2019, 39(8): 2696 − 2704.

    LONG Jian, ZHAO Chang, ZHANG Mingjiang, et al. Effect of litter decomposition on soil microbes on different slopes [J]. Acta Ecol Sin, 2019, 39(8): 2696 − 2704.
    [26] 王进, 刘子琦, 鲍恩俣, 等. 喀斯特石漠化区林草恢复对土壤团聚体及其有机碳含量的影响[J]. 水土保持学报, 2019, 33(6): 249 − 256.

    WANG Jin, LIU Ziqi, BAO Enyu, et al. Effects of forest and grass restoration on soil aggregates and its organic carbon in Karst Rocky Desertification Areas [J]. J Soil Water Conserv, 2019, 33(6): 249 − 256.
    [27] OADES J M. Soil organic matter and structural stability mechanisms and implications for management [J]. Plant Soil., 1984, 76(1/3): 319 − 337.
    [28] 宋日, 刘利, 马丽艳, 等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响[J]. 南京农业大学学报, 2009, 32(3): 93 − 97.

    SONG Ri, LIU Li, MA Liyan, et al. Effects of crop root exudates on the size and stability of soil aggregate [J]. J Nanjing Agric Univ, 2009, 32(3): 93 − 97.
    [29] 王小云. 土壤团聚体与土壤侵蚀关系研究进展[J]. 安徽农业科学, 2016, 44(23): 106 − 108.

    WANG Xiaoyun. Research progress of the relationship between soil aggregates and soil erosion [J]. Anhui Agric Sci, 2016, 44(23): 106 − 108.
    [30] 聂富育. 四川盆地西缘4种人工林土壤团聚体及氮动态特征[D]. 成都: 四川农业大学, 2017.

    NIE Fuyu. Soil Aggregates and Labile Nitrogen Dynamics in 4 Plantations in the Western Edge of Sichuan Basin [D]. Chengdu: Sichuan Agricultural University, 2017.
    [31] 张琪, 方海兰, 史志华, 等. 侵蚀条件下土壤性质对团聚体稳定性影响的研究进展[J]. 林业科学, 2007, 43(增刊 1): 77 − 82.

    ZHANG Qi, FANG Hailan, SHI Zhihua, et al. Advances in influence factors of aggregate stability under erosion [J]. Sci Silv Sin, 2007, 43(suppl 1): 77 − 82.
    [32] 王清奎, 汪思龙, 高洪, 等. 土地利用方式对土壤有机质的影响[J]. 生态学杂志, 2005, 24(4): 360 − 363.

    WANG Qingkui, WANG Silong, GAO Hong, et al. Influence of land use on soil organic matter [J]. Chin J Ecol, 2005, 24(4): 360 − 363.
  • [1] 黄海燕, 唐慧敏, 金鹭, 施宇, 宋晓倩, 陈嘉琦, 贺海升, 张衷华, 唐中华.  树种重要值、树种多样性和土壤理化性质对土壤氨基糖的影响 . 浙江农林大学学报, 2024, 41(4): 778-786. doi: 10.11833/j.issn.2095-0756.20230527
    [2] 贾亚倢, 杨建英, 张建军, 胡亚伟, 张犇, 赵炯昌, 李阳, 唐鹏.  晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响 . 浙江农林大学学报, 2024, 41(6): 1211-1221. doi: 10.11833/j.issn.2095-0756.20240571
    [3] 左启林, 于洋, 查同刚, 张恒硕, 梁一鹏, 欧阳佳焕.  晋西清水河流域不同土地利用类型土壤质量评价 . 浙江农林大学学报, 2023, 40(4): 801-810. doi: 10.11833/j.issn.2095-0756.20220498
    [4] 朱锦迪, 韦新良, 汤孟平, 杨晶晶, 张继艳.  林分树种组成多样性指数的构建 . 浙江农林大学学报, 2022, 39(2): 262-271. doi: 10.11833/j.issn.2095-0756.20210171
    [5] 马瑞婷, 董晓明, 靳珊珊, 胡林坡, 闫东锋.  间伐对栓皮栎人工林林下荆条根茎叶主要功能性状的影响 . 浙江农林大学学报, 2021, 38(3): 567-576. doi: 10.11833/j.issn.2095-0756.20200551
    [6] 张荣, 李婷婷, 金锁, 鱼舜尧, 王宇, 李禹江, 齐锦秋, 郝建锋.  人为干扰对蒙顶山木荷次生林物种多样性及土壤理化性质的影响 . 浙江农林大学学报, 2020, 37(5): 867-875. doi: 10.11833/j.issn.2095-0756.20190554
    [7] 黄庆阳, 曹宏杰, 王立民, 谢立红, 倪红伟.  五大连池火山熔岩台地植物多样性与土壤养分的关系 . 浙江农林大学学报, 2019, 36(1): 80-87. doi: 10.11833/j.issn.2095-0756.2019.01.011
    [8] 刘肖肖, 戴伟, 戴奥娜.  北京山地4种阔叶林土壤酶活性及动力学特征 . 浙江农林大学学报, 2018, 35(5): 794-801. doi: 10.11833/j.issn.2095-0756.2018.05.002
    [9] 郭建曜, 王渌, 杨静, 马风云, 马雪松, 王文波, 董玉峰.  鲁中南山地黑松人工林土壤和林下植被的动态格局 . 浙江农林大学学报, 2018, 35(2): 209-218. doi: 10.11833/j.issn.2095-0756.2018.02.003
    [10] 郭茜, 陆扣萍, 胡国涛, 杨兴, 袁国栋, 沈磊磊, 王海龙.  死猪炭和竹炭对菜地土壤理化性质和蔬菜产量的影响 . 浙江农林大学学报, 2017, 34(2): 244-252. doi: 10.11833/j.issn.2095-0756.2017.02.007
    [11] 张俊叶, 司志国, 俞元春, 李旭冉, 郭伟红.  徐州市樟树黄化病与土壤理化性质的关系 . 浙江农林大学学报, 2017, 34(2): 233-238. doi: 10.11833/j.issn.2095-0756.2017.02.005
    [12] 王敬, 韦新良, 徐建, 范佩佩.  天目山针阔混交林林木空间分布格局特征 . 浙江农林大学学报, 2014, 31(5): 668-675. doi: 10.11833/j.issn.2095-0756.2014.05.002
    [13] 王玉娟, 陈永忠, 王瑞, 王湘南, 彭邵锋, 杨小胡, 杨杨.  稻草覆盖对油茶幼林土壤理化性质及油茶生长的影响 . 浙江农林大学学报, 2012, 29(6): 811-816. doi: 10.11833/j.issn.2095-0756.2012.06.002
    [14] 周斌, 余树全, 张超, 伊力塔.  不同树种林分对空气负离子浓度的影响 . 浙江农林大学学报, 2011, 28(2): 200-206. doi: 10.11833/j.issn.2095-0756.2011.02.005
    [15] 周单红, 马世锋, 王少登, 姜丽丽, 张汝民, 侯平.  4种景观林对空气微生物的抑制作用 . 浙江农林大学学报, 2010, 27(1): 93-98. doi: 10.11833/j.issn.2095-0756.2010.01.015
    [16] 张履勤, 章明奎.  林地与农地转换过程中红壤有机碳、氮和磷库的演变 . 浙江农林大学学报, 2006, 23(1): 75-79.
    [17] 徐秋芳, 姜培坤, 俞益武, 孙建敏.  不同林用地土壤抗蚀性能研究 . 浙江农林大学学报, 2001, 18(4): 362-365.
    [18] 项小强, 王金治, 查印水, 李月清.  变时相生长模型技术及其在小班数据更新中的应用 . 浙江农林大学学报, 1999, 16(3): 279-282.
    [19] 俞元春, 赵永艳, 曾曙才.  苏南丘陵不同林分类型土壤养分的动态特性 . 浙江农林大学学报, 1998, 15(1): 32-36.
    [20] 宋漳.  不同林分土壤放线菌的分布及其与土壤因子的关系 . 浙江农林大学学报, 1997, 14(1): 41-44.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210142

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/6/1161

图(3) / 表(3)
计量
  • 文章访问数:  1117
  • HTML全文浏览量:  240
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-23
  • 修回日期:  2021-06-24
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2021-12-08

华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力

doi: 10.11833/j.issn.2095-0756.20210142
    基金项目:  国家重点研发计划项目(2017YFC0505602)
    作者简介:

    陈涛(ORCID: 0000-0002-0180-134X),从事水土保持研究。E-mail: ahbbct723@163.com

    通信作者: 孙保平(ORCID: 0000-0002-5809-7517),教授,从事流域治理和水土保持研究。E-mail: sunbp@bjfu.edu.cn
  • 中图分类号: S718.5

摘要:   目的  探究四川省华蓥市典型林分下土壤团聚体稳定性变化特征及其影响因素,为阐明该地区团聚体组成及其稳定性机制提供理论依据。  方法  选取华蓥市山区5种典型林分(柏木Cupressus funebris纯林、杉木Cunninghamia lanceolata纯林、马尾松Pinus massoniana-檵木Loropetalum chinense混交林、马尾松-杉木混交林、近自然经营杉木纯林)为研究对象,通过测定林分表层(0~15 cm)和亚表层(15~30 cm)土壤理化性质,分析土壤理化性质对团聚体变化特征和土壤抗蚀性的影响。  结果  ①5种典型林分土壤大团聚体质量百分比为77%~93%,且不同林分间平均质量直径(MWD)和土壤可蚀性存在显著差异(P<0.05),其平均质量直径柏木林最大(2.33 mm),马尾松-檵木混交林最小(1.53 mm)。土壤可蚀性从大到小依次为近自然经营杉木纯林、柏木林、杉木纯林、马尾松-杉木混交林、马尾松-檵木混交林。②冗余分析表明:速效钾、土壤总孔隙度和土壤有机碳与平均质量直径呈显著正相关(P<0.05),与土壤可蚀性呈显著负相关(P<0.05);土壤容重与平均质量直径呈显著负相关性(P<0.05),与土壤可蚀性呈显著正相关(P<0.05)。  结论  5种典型林分中,柏木林和近自然经营杉木纯林土壤水稳性团聚体最稳定、抗侵蚀性强,马尾松-檵木混交林土壤水稳性团聚体稳定性最低。传统经营模式下柏木林地土壤团聚体更稳定,土壤抗蚀性更强;近自然经营模式有利于土壤团聚体稳定性和土壤抗蚀性的提高。图3表3参32

English Abstract

陈涛, 周利军, 齐实, 等. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报, 2021, 38(6): 1161-1169. DOI: 10.11833/j.issn.2095-0756.20210142
引用本文: 陈涛, 周利军, 齐实, 等. 华蓥市山区典型林分土壤团聚体稳定性及抗蚀能力[J]. 浙江农林大学学报, 2021, 38(6): 1161-1169. DOI: 10.11833/j.issn.2095-0756.20210142
LI Wanyuan, TIAN Jia, MA Qin, et al. Dynamic monitoring of loess terraces based on Google Earth Engine and machine learning[J]. Journal of Zhejiang A&F University, 2021, 38(4): 730-736. DOI: 10.11833/j.issn.2095-0756.20200673
Citation: CHEN Tao, ZHOU Lijun, QI Shi, et al. Soil aggregate stability and anti-erodibility of typical forest stands in Huaying mountain area[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1161-1169. DOI: 10.11833/j.issn.2095-0756.20210142
  • 经过长期植树造林,近年来四川省东部地区植被得以恢复,不同林分构成的植被和土壤生态系统功能受到广泛关注[1]。华蓥市的人工林多为同龄纯林,结构和功能单一,易退化成脆弱和不稳定的生态系统。同时,因土层薄,肥力差,水土资源空间不匹配,当地土地退化,生态防护效果不够显著[2]。土壤团聚体作为土壤颗粒的聚合体和土壤肥力的物质基础,对提高林地土壤抗蚀能力具有重要作用[3]。良好的团聚体能充分协调土壤水、气、热和养分的循环,为植被生长创造良好的条件[4]。土壤团聚体的组成和稳定性是衡量土壤结构和品质的主要指标[5],水稳定性团聚体的数量则是判定土壤品质好坏的重要指标之一[6]。通过测定土壤团聚体的稳定性及粒径组成可以间接量化土壤的可蚀性能力[7]。目前,关于不同林分团聚体稳定性的影响因素方面已经有大量研究,LARS等[8]和CHUKWUEBUKA等[9]指出:土壤有机碳能够将直径较小的土壤颗粒粘结成较大的土壤颗粒。有研究[10-12]表明:土壤总孔隙度、毛管孔隙度、非毛管孔隙度的减少会显著增加土壤团聚体的稳定性,土壤有机碳含量能够促进土壤团聚过程及其稳定性。而谢贤健等[1]研究发现:土壤容重增加会恶化土壤团聚体稳定性,减弱土壤抗蚀能力,土壤中的速效钾含量对团聚体水稳性的保持、供应和转化能力具有重要作用。总体来说,土壤理化性质与团聚体稳定性密切相关,不同土壤类型决定其成土母质和土壤质地有所差异,使得这些研究结果不尽相同。此外,有关于渠江东岸川东平行岭谷区传统的人工经济林与近自然经营模式林分下土壤理化性质差异、土壤团聚体稳定性和土壤抗蚀性的关系的研究相对较少,无法满足提升该地区植被恢复和土壤保持服务功能的需要。研究林地水稳性团聚体稳定性及其影响因素对于调节林地土壤抗蚀能力,提升土壤服务功能具有重要价值。本研究选取该地区5种典型林分(柏木Cupressus funebris纯林、杉木Cunninghamia lanceolata纯林、马尾松Pinus massoniana -檵木Loropetalum chinense混交林、马尾松-杉木混交林、近自然经营杉木纯林),探究不同林分下土壤理化性质对团聚体稳定性和抗蚀能力的影响,有助于了解该地区土壤理化性质和土壤团聚体稳定性规律,为当地植被合理利用和水土流失治理提供参考依据。

    • 研究区处于四川省华蓥市(30°25′21″N,106°50′02″E),地处四川盆地东缘,属于亚热带湿润性季风气候,四季分明,夏长雨多,年降水量1 200.0 mm,热量充足,年平均气温15.0~23.0 ℃,市内海拔为206.7~1 704.0 m。华蓥市西部地势偏低,多为丘陵,又以低丘为主,深丘较少,其间散布着一些平坝、台地。土壤肥沃,灌溉便利,是主要的农耕区。土壤类型以紫色土为主,土壤层发育完整,人为干扰较少。植被资源丰富,主要植被类型有亚热带常绿阔叶林、常绿落叶阔叶混交林、针阔叶混交林、常绿针叶林、针叶混交林、竹林、灌丛及人工植被。以马尾松、杉木、柏木、湿地松Pinus elliottii、柳杉Cryptomeria fortunei等树种组成的针叶林占华蓥市森林面积的96.9%,成为华蓥市典型的人工林。

    • 2019年7−9月,在华蓥市天池国有林场狮子垴管护区,选取具有代表性的5种典型林分:柏木纯林(BM)、马尾松-杉木混交林(MS)、马尾松-檵木混交林(MJ)、杉木纯林(SC)、近自然经营杉木纯林(SCZ)。近自然经营是以森林的整个生命周期为时间设计单元,以目标树的标记和择伐,以及天然更新为主要技术特征,以永久性森林覆盖、多功能经营和多种产品生产为目标的森林经营体系。近自然经营的具体经营措施包括①间伐:至少2次间伐,第1次间伐年龄为10 a,强度为10~15 m3·hm−2;第2次间伐强度为25~40 m3·hm−2。②择伐:选择大约 400~600株,平均间距4~5 m,包括潜在的阔叶树。③皆伐和补植:皆伐 20 m×20 m 区域,补植枫香Liquidambar formosana、樟树Cinnamomum camphora、盐肤木Rhus chinensis等阔叶树,保留下层和中间层,促进阔叶树生长。本研究中除近自然经营杉木纯林外,其他4种林分均为以人工更新为主中国传统的森林抚育经营模式。样地调查和土壤样品采集时,每种林分设置3个重复样地(20 m×20 m),每个样地内按“S”形选择5个土壤采集样点,除去土壤表层覆盖的枯枝落叶层,挖取0~15、15~30 cm层土壤,装入塑料饭盒中,带回实验室,挑除其中的杂草、石块,风干后用于测量土壤团聚体和化学性质。使用环刀采取原状土壤,每层沿土壤剖面均匀采集3份,取其平均值作为该土壤层指标测定值,共选取90份土样,带回实验室称量烘干,测定土壤孔隙度、含水量等物理指标。环刀的容积为100 cm3,高为5.0 cm,直径为5.5 cm。样地基本情况见表1

      表 1  样地基本情况

      Table 1.  Basic situation of the sample plot

      林分类型纬度(N)经度(E)海拔/m坡度/(°)坡向/(°)树高/m胸径/cm郁闭度
      柏木纯林(BM)     30°25′17″106°49′59″51825西偏北101.801.98未郁闭
      马尾松-杉木混交林(MS)30°26′15″106°50′43″1 10031东偏南1015.6031.380.76
       近自然经营杉木纯林(SCZ)30°18′06″106°47′45″1 40933北偏西1014.3020.510.85
      马尾松-檵木混交林(MJ)30°26′12″106°50′47″57533东偏南1016.4019.210.83
      杉木纯林(SC)     30°18′28″106°47′47″1 13333东偏南7015.8032.370.72
    • 土壤有机碳采用重铬酸钾外加热氧化法测定,土壤速效磷采用0.5 mol·L−1碳酸氢钠浸提、钼锑抗比色法测定,土壤速效钾采用四苯硼钠比浊法测定;土壤容重、毛管孔隙度、非毛管孔隙度等采用环刀法测定[13]。土壤大团聚体质量百分比(WSA,粒径>0.25 mm)、平均质量直径(MWD,单位为mm,用湿筛团聚体粒级计算)和土壤可蚀性因子K值参照文献[14-15]计算。

      不同的平均质量直径对应不同的团聚体稳定性等级。平均质量直径大于2.00 mm代表团聚体非常稳定,为1.30~2.00 mm代表团聚体稳定,为0.80~1.30 mm代表团聚体中度稳定,为0.40~0.80 m代表不稳定,为0~0.40 mm代表团聚体非常不稳定[16]

    • 利用Excel 2010和SPSS 24.0进行数据统计分析,采用Origin 9.0软件作图。冗余分析(RDA)采用的是Canoco 5.0软件。采用单因素方差分析(one-way ANOVA)及多重比较LSD(least-significant difference)进行差异性分析。显著性水平均为0.05。

    • 图1A表明:在0~15 cm土层,柏木纯林和近自然经营杉木纯林中粒径大于5.00 mm的团聚体质量百分比最大,分别为23.56%和22.80%,马尾松-檵木混交林中最低,为8.49%。马尾松-杉木混交林和杉木纯林粒径大于5.00 mm团聚体质量百分比分别为14.94%和13.67%。粒径大于5.00、2.00~1.00、1.00~0.50 mm的团聚体质量百分比,不同林分之间无显著差异。柏木纯林、马尾松-杉木混交林和近自然经营杉木纯林的团聚体质量百分比,随粒径减小总体变化趋势为先增加后减少再增加,马尾松-檵木混交林变化趋势为先增加后减少。在15~30 cm土层中(图1B),5种林分团聚体质量百分比随粒径减小总体变化趋势与0~15 cm土层基本相同。柏木纯林和近自然经营杉木纯林水稳性团聚体质量百分比显著高于其他3种林分(P<0.05)。2个土层中,柏木纯林、杉木纯林和近自然经营杉木纯林团聚体质量百分比最大值均在2.00~5.00 mm粒级内,最小值出现在0.25~0.50 mm。马尾松-檵木混交林最大值则出现在0.25~0.50 mm粒级内,最小值出现在大于5.00 mm。相关研究表明:直径小于0.25 mm的微团聚体是构成大团聚体的基础,在很大程度上决定了土壤团聚体的数量,土壤微团聚体的质量百分比和分布对土壤物理性质具有重要影响。由图1可知:在0~15 cm土层中,马尾松-檵木混交林小于0.25 mm团聚体粒级的质量百分比大于其他4种林分,为22.93%,近自然经营杉木纯林的质量百分比最低,为9.88%。15~30 cm土层中,小于0.25 mm的团聚体质量百分比马尾松-檵木混交林最高,为22.70%,柏木纯林最低,为9.77%。说明相比于柏木纯林、杉木纯林和马尾松-杉木混交林,马尾松-檵木混交林不利于土壤水稳性大团聚体的形成。

      图  1  不同林分类型不同土层各粒径团聚体质量百分比

      Figure 1.  Mass percentage of aggregates in different soil layers of different forest types

    • 表2可知:2个土层中,大团聚体质量百分比基本在77%以上,在0~15 cm土层的平均质量直径(MWD)分布状况表现为柏木纯林最大,马尾松-檵木混交林最小。根据团聚体稳定性分级,柏木纯林和近自然经营杉木纯林为非常稳定,马尾松-檵木混交林为稳定,马尾松-杉木混交林、马尾松-檵木混交林和杉木纯林三者之间差异不显著。15~30 cm土层内平均质量直径表现为杉木纯林最大,表明杉木纯林土壤团聚体非常稳定,马尾松-檵木混交林土壤团聚体最小,表明马尾松-檵木混交林团聚体稳定。综合2个土层,马尾松-檵木混交林土壤水稳性团聚体稳定性最差,柏木纯林土壤水稳性团聚体最稳定,各林分表层和亚表层土壤水稳性团聚体平均质量直径变化规律不明显。

      表 2  不同林分类型土壤水稳性团聚体稳定性

      Table 2.  Stability of soil water-stable aggregates of different forest types

      土层深
      度/cm
      林分类型平均质量
      直径/mm
      大团聚体
      质量百分比/%
      土层深
      度/cm
      林分类型平均质量
      直径/mm
      大团聚体
      质量百分比/%
      0~15 柏木纯林     2.60±0.41 a 89.43±3.63 b 15~30 柏木纯林     2.06±0.12 a 88.14±4.65 a
      马尾松-杉木混交林 1.43±0.56 b 80.75±7.98 a 马尾松-杉木混交林 2.37±0.13 b 85.19±3.78 a
      马尾松-檵木混交林 1.29±0.09 b 77.09±4.28 a 马尾松-檵木混交林 1.77±0.11 a 81.24±1.40 ab
      杉木纯林      1.70±0.32 b 82.93±7.27 ab 杉木纯林     2.49±0.19 b 93.72±1.44 a
      近自然经营杉木纯林 2.51±0.68 a 90.12±3.51 b 近自然经营杉木纯林 1.81±0.12 a 87.54±5.34 a
        说明:不同小写字母表示同一土层不同林分间差异显著(P<0.05)
    • 土壤可蚀性(K值)是土壤抗蚀能力大小的一个相对综合的指标。土壤可蚀性越大,土壤抗蚀能力越弱;土壤可蚀性越小,抗蚀能力越强。由图2可知:表层土壤的抗蚀能力均比亚表层强,且不同林分上下层土壤的变化趋势基本相同。2个土层中近自然经营杉木纯林和马尾松-杉木混交林的土壤可蚀性显著高于其他林分(P<0.05)。0~15 cm土层中,近自然经营杉木纯林土壤抗蚀能力最强,土壤可蚀性为0.023,马尾松-檵木混交林土壤抗蚀能力最弱,为0.048;15~30 cm土层中,近自然经营杉木纯林土壤可蚀性最小,为0.026,近自然经营杉木纯林土壤可蚀性最大,为0.050。综合2个土层可知:土壤抗蚀能力从大到小依次为近自然经营杉木纯林、柏木纯林、杉木纯林、马尾松-杉木混交林、马尾松-檵木混交林,这说明近自然经营模式能够提高林地土壤抗蚀性能。调查发现,柏木纯林林下灌草和苔藓植物丰富,密集的植被根系产生的胶结物质能够把小颗粒的土壤粘结成较大的土壤颗粒,从而使得柏木纯林比其他林分更有利于提高土壤抗蚀能力。

      图  2  不同林分不同土层土壤可蚀性变化

      Figure 2.  Changes in K values of different forest types and different soil layers

    • 表3可见:在0~15 cm土层不同林分土壤容重表现为近自然经营杉木纯林显著小于其他4种林分(P<0.05),而近自然经营杉木纯林的非毛管孔隙度显著大于另外4种林分,土壤有机碳质量分数在不同林分间表现为近自然经营杉木纯林显著大于柏木纯林、马尾松-杉木混交林和马尾松-檵木混交林(P<0.05),而近自然经营杉木纯林和杉木纯林之间无明显差异;不同林分速效钾质量分数从大到小依次为近自然经营杉木纯林、柏木纯林、杉木纯林、马尾松-檵木混交林、马尾松-杉木混交林,其中近自然经营杉木纯林和马尾松-杉木混交林差异显著(P<0.05)。15~30 cm土层内,近自然经营杉木纯林和杉木纯林的非毛管孔隙度显著大于其他3种林分(P<0.05),毛管孔隙度和总孔隙度表现为近自然经营杉木纯林显著大于柏木纯林(P<0.05),土壤有机碳质量分数表现为近自然经营杉木纯林显著大于马尾松-杉木混交林和马尾松-檵木混交林(P<0.05)。马尾松-杉木混交林的速效钾质量分数显著小于其他林分类型。毛管持水量在2个土层中表现为近自然经营杉木纯林显著大于其他4种林分类型,而速效磷质量分数在不同林分间差异不显著。

      表 3  土壤基本理化性质

      Table 3.  Basic physical and chemical properties of soil

      土层/
      cm
      林分容重/
      (g·cm−3)
      非毛管孔
      隙度/%
      毛管孔
      隙度/%
      总孔
      隙度/%
      毛管持水量/
      (g·kg−1)
      土壤有机碳/
      (g·kg−1)
      速效磷/
      (mg·kg−1)
      速效钾/
      (mg·kg−1)
      0~15柏木纯林     1.30 a3.00 b44.89 a47.89 a345.98 b32.38 b31.30 a97.56 ac
      马尾松-杉木混交林 1.44 ab3.76 b34.48 a38.23 a255.31 b29.76 b35.01 a70.94 b
      马尾松-檵木混交林 1.46 a4.96 b33.42 a38.38 a230.80 b30.17 b29.88 a76.84 ab
      杉木纯林     1.20 a4.37 b38.93 a43.31 a313.08 b40.74 ab37.56 a91.55 abc
      近自然经营杉木纯林0.93 b7.61 a47.25 a54.85 a505.79 a52.74 a25.37 a117.65 a
      15~30柏木纯林     1.44 a2.60 b42.87 b45.47 b302.63 a37.16 ab29.00 a92.92 a
      马尾松-杉木混交林 1.45 a3.69 b38.30 ab42.01 b282.42 a31.39 b30.13 a77.81 b
      马尾松-檵木混交林 1.40 a4.05 b40.63 ab44.68 b290.84 a33.20 b28.51 a89.58 a
      杉木纯林     1.26 a6.31 a40.93 ab47.24 b331.51 a43.13 ab36.22 a94.89 a
      近自然经营杉木纯林0.99 b7.59 a57.78 a55.38 a601.41 b54.18 a41.41 a109.81 a
        说明:不同小写字母表示同一土层不同林分间差异显著(P<0.05)
    • 图3冗余分析(RDA)结果表明:研究区土壤理化性质对团聚体稳定性的累积解释量达95.64%。轴1土壤理化性质对团聚体稳定性的累积解释量为52.97%,前2个轴(轴1和轴2)土壤理化性质对团聚体稳定性的累积解释量为83.85%。土壤理化性质与团聚体稳定性的相关度累积解释量为99.89%。土壤有机碳、毛管孔隙度、总孔隙度、毛管持水量和速效钾与团聚体平均质量直径(MWD)之间呈显著正相关(P<0.05)。土壤容重与平均质量直径之间呈显著负相关(P<0.05)。土壤可蚀性因子与土壤容重呈显著正相关(P<0.05),与毛管孔隙度、总孔隙度、毛管持水量和速效钾显著负相关(P<0.05)。土壤有机碳、总孔隙度和速效磷相比其他土壤理化性质对土壤团聚体的影响更重要。水稳性团聚体稳定性指标平均质量直径与土壤可蚀性因子显著负相关(P<0.05)。土壤有机碳、总孔隙度和速效钾越大,土壤容重越小,土壤水稳性团聚体越稳定,土壤抗蚀能力越强。

      图  3  土壤理化性质与团聚体稳定性的RDA排序    

      Figure 3.  RDA ranking of soil physical and chemical properties and aggregate stability

    • 土壤团聚体的水稳定性与土壤侵蚀关系密切[17],水稳定性团聚体含量越大,表明土壤结构稳定性越好[18]。本研究表明:柏木纯林和近自然经营杉木纯林水稳性大团聚体质量百分比最高,马尾松-檵木混交林最低,说明马尾松-檵木混交不利于水稳性大团聚体的形成。土壤水稳性团聚体含量,特别是≥0.25 mm 团聚体含量是反映土壤抗蚀性的最佳指标之一[19]。本研究发现:5种林分的≥0.25 mm水稳性团聚体质量百分比均在77%以上,说明5种林分土壤结构较好,抗蚀能力强。直径<0.25 mm的微团聚体是构成团聚体的基础,土壤微团聚体质量百分比和分布对土壤物理性质具有重要影响。张文旭等[20]研究表明:近熟林转变为成熟林后,土壤团聚体中土壤大粒径微团聚体含量先增加后减少,小粒径微团聚体含量先减少后增加。本研究中,柏木纯林多为未郁闭的幼龄林,这可能是造成柏木纯林土壤团聚体粒级分布及其稳定性显著区别于其他林分的原因。此外,坡向与海拔通过分配降水和太阳辐射,影响植被分布和土壤理化性质,从而导致土壤抗蚀性的异质性[21]。本研究2个土层中马尾松-檵木混交林土壤微团聚体的质量百分比最大,这与吕宸等[22]对川西高寒草甸土壤团聚状况随海拔增加而降低的研究结论有所不同。这可能与植被类型和马尾松-檵木混交林在低海拔、半阳坡处分配降水和太阳辐射的差异,从而造成了植被分布和土壤理化性质的差异,进而导致土壤团聚状况的异质性有关。

    • 土壤团聚体平均质量直径越大,表明土壤团聚体的团聚度高,稳定性强,土壤结构与质量越好[23]。团聚体的平均质量直径分级结果表明:柏木纯林和近自然经营杉木纯林土壤团聚体结构最稳定。本研究发现:土壤团聚体平均质量直径呈现近自然经营杉木纯林显著大于马尾松-檵木混交林,表明近自然经营杉木纯林土壤水稳性团聚体较其他4种人工林稳定,土壤抗侵蚀能力也较强。这是由于近自然经营杉木纯林与其他林分相比,郁闭度较高,凋落物较多。凋落物是产生有机质的重要来源,有机质能促进水稳定性团聚体含量和稳定性的增加[24]。而凋落物分解为微生物生存和繁殖提供了养分,这些微生物本身或生理活动的分泌物对土壤有胶结作用,可将较小的土壤颗粒粘聚成较大的团聚体,从而提高团聚体的稳定性[25]。此外,不同林地海拔高度和坡向的差异也会造成土壤团聚体稳定性和抗蚀性的差异,且阳坡由于强烈的冷热交替作用,土壤结构特征相较于阴坡随海拔高度的变化具有更加明显的分异特征[21]。本研究中,土壤团聚体稳定性和抗蚀性较强的近自然经营杉木纯林海拔高度最高,柏木纯林海拔最低,这说明海拔对土壤团聚体稳定性和抗蚀性的影响可能存在阈值。王进等[26]研究表明:原生灌木林地大团聚体(>0.25 mm)含量显著高于荒草地。这解释了柏木纯林郁闭度虽然不高,但是由于与其他林地相比柏木林地内原生灌木和苔藓丰富,植被覆盖度高,林地土壤水分较为充足,使得微生物群落大量繁殖。微生物通过分解作用形成多糖等胶结物质,从而促进了微小团聚体形成较大的团聚体[27]。丰富的林下灌草植被等会在土壤中产生大量的根系,根系所产生的分泌物可作为土粒团聚的胶结剂,配合须根的穿插和缠绕,提高了水稳性大团聚体(>1.00 mm)比例,从而增加水稳性团聚体稳定性[28]

    • 土壤团聚体平均质量直径和土壤可蚀性是表明团聚体稳定性的2个指标。土壤团聚体稳定性的大小除与土壤有机质、土壤含水量和土壤孔隙度有关外,还受到立地条件、植被类型和人类活动等环境的影响[29]。土壤有机碳质量分数与土壤团聚体平均质量直径呈显著正相关。该结果与聂富育等[30]的研究结论一致。土壤中的有机碳主要来源于凋落物和动植物残体的分解,分解产生的大量腐殖质对土壤颗粒具有粘结作用,而亚表层的土壤有机碳主要来源于表层有机碳的淋溶和迁移[31]。凋落物的数量与分解速率是不同林分间土壤有机碳存在差异的主要原因。王清奎等[32]研究表明:土壤容重及非毛管孔隙度相比其他土壤理化性质对土壤团聚体的影响更为重要。这与本研究的土壤容重、速效钾和总孔隙度更重要且土壤团聚体平均质量直径与土壤容重呈显著负相关关系,与速效钾和总孔隙度呈显著正相关的结论有所差异。原因可能是土壤理化性质对粒径较小的微团聚体影响更大,改变了团聚体的稳定性。土壤团粒和团粒之间孔隙较大有利于空气流通,团粒内部以持水毛管孔隙占绝对优势,这种孔隙状况为土壤水、肥、气、热的协调创造了良好的条件。土壤总孔隙度越大,容纳水分和空气的能力就会越强,有利于根系发育。速效钾是包括土壤中水溶态钾和交换性钾的总和,它的特点是能够直接被作物吸收利用,是作物获得高产的保证。此外,植被自身生长过程也会提高土壤中速效钾质量分数。速效钾质量分数的增加与促进团聚体的形成有很大的关系。总的来说,速效钾、土壤有机碳和土壤总孔隙度越大,土壤容重越小,水稳性团聚体稳定性越高,土壤抗蚀性能越好。

      本研究通过分析传统经营模式林分与近自然经营模式林分下土壤理化性质变化对土壤水稳性团聚体和土壤抗蚀能力的影响,结合土壤可蚀性指标K值和土壤团聚体平均质量直径对不同林分土壤结构稳定性和抗蚀性进行整体评价,但忽略了地形和气候等立地条件因子的影响。此外,林下微生境和林分密度等也会对研究结果产生一定的影响。因此,后续研究可以结合生境类型和植被状况分析土壤理化性质对土壤团聚体稳定性和抗蚀性的影响,以期更全面地探究在近自然经营与传统经营模式下该地区森林土壤理化性质对团聚体稳定性和抗蚀性的作用机制。

    • 5种林分间土壤水稳性团聚体稳定性差异显著。柏木纯林和近自然经营杉木纯林土壤团聚体的平均质量直径显著高于其他林分,且5种林分2个土层的土壤大团聚体质量百分比均为77%~93%,总体表明近自然经营杉木纯林和柏木纯林团聚体最稳定,而马尾松-檵木混交林团聚体稳定性最差。说明相对于杉木纯林和马尾松-杉木混交林,近自然经营林分比传统经营模式的林分土壤团聚体更稳定,而传统经营模式林地中柏木纯林土壤团聚体最稳定。

      土壤理化性质对团聚体稳定性的累积解释量达95.64%。速效钾、土壤有机碳和土壤总孔隙度与土壤团聚体平均质量直径显著正相关,与土壤可蚀性呈负相关,土壤容重与可蚀性呈正相关,与土壤团聚体平均质量直径呈显著负相关。2个土层中,近自然经营杉木纯林的速效钾、土壤有机碳和土壤总孔隙度均高于其他林分,土壤容重均小于其他林分。说明近自然经营杉木纯林土壤结构较其他林分更好,土壤水稳性团聚体更加稳定,土壤抗蚀能力较强。

参考文献 (32)

目录

/

返回文章
返回