留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响

高宇 王佰慧 邹瑜 王书丽 向蒗 付艳秋 胡冬南 郭晓敏 张令

高宇, 王佰慧, 邹瑜, 王书丽, 向蒗, 付艳秋, 胡冬南, 郭晓敏, 张令. 氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210411
引用本文: 高宇, 王佰慧, 邹瑜, 王书丽, 向蒗, 付艳秋, 胡冬南, 郭晓敏, 张令. 氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210411
GAO Yu, WANG Baihui, ZOU Yu, WANG Shuli, XIANG Lang, FU Yanqiu, HU Dongnan, GUO Xiaomin, ZHANG Ling. Effects of water-retaining agent on soil nitrous oxide emission in Camellia oleifera forest under nitrogen and phosphorus addition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210411
Citation: GAO Yu, WANG Baihui, ZOU Yu, WANG Shuli, XIANG Lang, FU Yanqiu, HU Dongnan, GUO Xiaomin, ZHANG Ling. Effects of water-retaining agent on soil nitrous oxide emission in Camellia oleifera forest under nitrogen and phosphorus addition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210411

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响

doi: 10.11833/j.issn.2095-0756.20210411
基金项目: 国家自然科学基金资助项目(41967017,41501317)
详细信息
    作者简介: 高宇(ORCID: 0000-0003-2023-0367),从事土壤碳氮循环和全球变化研究。E-mail: yugao0608@126.com
    通信作者: 张令(ORCID: 0000-0001-8030-4378),副研究员,从事土壤碳氮循环和全球变化研究。E-mail: lingzhang09@126.com
  • 中图分类号: S718

Effects of water-retaining agent on soil nitrous oxide emission in Camellia oleifera forest under nitrogen and phosphorus addition

  • 摘要:   目的  化肥施用导致土壤氧化亚氮(N2O)排放增加,加剧了全球气候变化。在干旱和降水分配不均地区,土壤含水量是影响土壤N2O排放的关键因子,施用保水剂(如聚丙烯酰胺)可能影响土壤N2O排放。本研究目的是探究氮(N)与磷(P)肥添加下施用聚丙烯酰胺对土壤N2O排放的影响,  方法  以油茶Camellia oleifera林土壤为研究对象,设置不同处理,包括不同肥料添加[N、P、N+P、不施肥(ck)],不同聚丙烯酰胺用量(C0:0 g·kg−1,C1:1.0 g·kg−1,C2:2.0 g·kg−1)以及两者交互处理,利用静态箱-气相色谱法测定油茶苗生长期内土壤N2O排放。  结果  ①施用聚丙烯酰胺显著提高了油茶林土壤含水量(P<0.05),且土壤含水量随保水剂施用量的增加而增加。与C0相比,C1和C2土壤的含水量分别增加47.1%和57.4%,但施用聚丙烯酰胺不会促进土壤N2O排放(F=2.75,P>0.05)。②施P肥显著提高土壤N2O累积排放量(P<0.05),相较于ck增加13.3%。③与只添加聚丙烯酰胺的土壤相比,1.0 g·kg−1聚丙烯酰胺分别与N、P、N+P肥混施处理的土壤N2O排放通量分别显著增加56.0%、61.7%、40.7% (P<0.05);2.0 g·kg−1聚丙烯酰胺与P、N+P肥混施处理的土壤N2O排放通量分别显著增加38.7%、58.1% (P<0.05)。  结论  施用聚丙烯酰胺不仅能有效提高油茶土壤保水能力,而且还不会促进油茶土壤N2O排放,有利于发展高效节水林业和缓解全球气候变化。图5表1参35
  • 图  1  南昌市平均降水量、平均气温图和试验土壤含水量、温度动态图

    Figure  1  Dynamic diagram of mean rainfall and medial temperature in Nanchang, and dynamic diagram of soil water content and soil temperature

    图  2  土壤N2O排放通量动态图

    Figure  2  Dynamic diagram of soil N2O emission flux

    图  3  不同聚丙烯酰胺添加和施肥对土壤含水量的影响

    Figure  3  Effects of different polyacrylamide addition and fertilization on soil moisture content

    图  4  不同聚丙烯酰胺添加和施肥对土壤N2O排放通量的影响

    Figure  4  Effects of different polyacrylamide addition and fertilization on soil N2O emission flux

    图  5  施P肥对N2O累积排放量的影响

    Figure  5  Influence of phosphate fertilizer on N2O cumulative emission

    表  1  不同处理对土壤N2O排放通量、土壤含水量和N2O累积排放量的影响

    Table  1.   Effects of different treatments on soil N2O emission flux, soil moisture content and cumulative N2O emission

    处理dfF
    N2O排放通量土壤含水量N2O累积排放量
    N15.41*13.72**1.35
    P16.27*5.049*5.41*
    N+P12.234.190.49
    C20.66200.89**2.75
    N+C20.131.340.18
    P+C22.453.78*2.24
    N+P+C23.13*4.17*1.71
      说明:N表示施氮处理,P表示施磷处理,C表示施加聚丙烯     酰胺处理;*P<0.05,**P<0.01
    下载: 导出CSV
  • [1] AGLIARDI E, ALEXOPOULOS T, CECH C. On the relationship between GHGS and global temperature anomalies: multi-level rolling analysis and copula calibration [J]. Environ Resour Econ, 2019, 72(1): 109 − 133. doi:  10.1007/s10640-018-0259-3
    [2] 金银雪. 全球变暖下的水资源危机[J]. 生态经济, 2020, 36(6): 5 − 8.

    JIN Yinxue. Water crisis under global warming [J]. Ecol Econ, 2020, 36(6): 5 − 8.
    [3] HUANG Jianping, YU Haipeng, GUAN Xiaodan, et al. Accelerated dryland expansion under climate change [J]. Nat Climate Change, 2016, 6(2): 166 − 171. doi:  10.1038/nclimate2837
    [4] JEFFERSON M. IPCC fifth assessment synthesis report? “Climate change 2014: Longer report”? Critical analysis [J]. Technol Forecasting Soc Change, 2015, 92: 362 − 363. doi:  10.1016/j.techfore.2014.12.002
    [5] 张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4): 966 − 975. doi:  10.3724/SP.J.1011.2011.00966

    ZHANG Yuming, HU Chunsheng, ZHANG Jiabao, et al. Research advances on source/sink intensities and greenhouse effect of CO2, CH4 and N2O in agricultural soils [J]. Chin J Eco-Agric, 2011, 19(4): 966 − 975. doi:  10.3724/SP.J.1011.2011.00966
    [6] FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century [J]. Philosophical Transac Royal Soc B Biol Sci, 2013, 368(1621): 20130164. doi: 10.1098/rstb.2013.0165.
    [7] LIU Shuwei, LIN Feng, WU Shuang, et al. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions [J]. Glob Change Biol, 2017, 23(6): 2520 − 2532. doi:  10.1111/gcb.13485
    [8] 王颖. 长期施肥对旱地农田温室气体N2O排放的影响[D]. 杨凌: 西北农林科技大学, 2017.

    WANG Ying. Effect of Long-term Fertilization on Greenhouse Gas N2O Emission in Rain-fed Farmland[D]. Yangling: Northwest A&F University, 2017.
    [9] 曹登超, 高霄鹏, 李磊, 等. 氮磷添加对昆仑山北坡高山草地N2O排放的影响[J]. 植物生态学报, 2019, 43(2): 165 − 173. doi:  10.17521/cjpe.2018.0267

    CAO Dengchao, GAO Xiaopeng, LI Lei, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains [J]. Chin J Plant Ecol, 2019, 43(2): 165 − 173. doi:  10.17521/cjpe.2018.0267
    [10] 赵苗苗, 邵蕊, 杨吉林, 等. 基于DNDC模型的稻田温室气体排放通量模拟[J]. 生态学杂志, 2019, 38(4): 1057 − 1066.

    ZHAO Miaomiao, SHAO Rui, YANG Jilin, et al. Simulation of greenhouse gas fluxes in rice fields based on DNDC model [J]. Chin J Ecol, 2019, 38(4): 1057 − 1066.
    [11] 程功, 刘廷玺, 王冠丽, 等. 科尔沁沙丘-草甸梯级生态系统CO2, CH4和N2O通量特征[J]. 水土保持研究, 2019, 26(4): 96 − 104.

    CHENG Gong, LIU Tanxi, WANG Guanli, et al. Characteristics of CO2, CH4 and N2O fluxes in Horqin dune-meadow cascade ecosystem [J]. Res Soil Water Conserv, 2019, 26(4): 96 − 104.
    [12] 武岩. 施肥措施对河套灌区农田氮素损失及平衡的影响[D]. 呼和浩特: 内蒙古农业大学, 2018.

    WU Yan. Effects of Fertilization on Farmland Nitrogen Loss and Balance in Hetao Irrigated Area[D]. Huhhot: Inner Mongolia Agricultural University, 2018.
    [13] 朱文煜. 艾比湖湿地季节性冻融土壤温室气体排放规律研究[J]. 北京师范大学学报(自然科学版), 2020, 56(1): 1 − 8.

    ZHU Wenyu. Greenhouse gas emission from seasonal frozen-thawed soil in Ebinur Lake wetland [J]. J Beijing Norm Univ Nat Sci, 2020, 56(1): 1 − 8.
    [14] 缪平贵, 于显枫, 张绪成, 等. 立式深旋耕作对马铃薯农田土壤温室气体排放的影响[J]. 作物杂志, 2020(3): 109 − 116.

    MIAO Pinggui, YU Xianfeng, ZHANG Xucheng, et al. Effects of vertical deep rotary tillage on soil greenhouse gas emissions from potato farmland [J]. Crops, 2020(3): 109 − 116.
    [15] 李水秀. 模拟降雨量改变对松嫩草地N2O通量的影响[D]. 长春: 东北师范大学, 2019.

    LI Shuixiu. Effects of Simulated Precipitation Changes on N2O Flux in Songnen Meadow Steppe[D]. Changchun: Northeast Normal University, 2019.
    [16] OMIDIAN H, ROCCA J G, PARK K. Advances in superporous hydrogels [J]. J Controlled Release, 2005, 102(1): 3 − 12. doi:  10.1016/j.jconrel.2004.09.028
    [17] 邹新禧. 超强吸水剂[M]. 北京: 化学工业出版社, 2002: 473 − 635.
    [18] 闫永利, 于健, 魏占民, 等. 土壤特性对保水剂吸水性能的影响[J]. 农业工程学报, 2007, 23(7): 76 − 79. doi:  10.3321/j.issn:1002-6819.2007.07.014

    YAN Yongli, YU Jian, WEI Zhanmin, et al. Effects of soil properties on water absorption of super absorbent polymers [J]. Transac CSAE, 2007, 23(7): 76 − 79. doi:  10.3321/j.issn:1002-6819.2007.07.014
    [19] LIU Caixia, CHEN Longsheng, TANG Wei, et al. Predicting potential distribution and evaluating suitable soil condition of oil tea Camellia in China [J]. Forests, 2018, 9(8): 487. doi: 10.3390/f9080487.
    [20] 王书丽, 郭晓敏, 黄立君, 等. 不同施肥和保水措施对油茶土壤N2O排放的影响[J]. 农业环境科学学报, 2020, 39(9): 1 − 12.

    WANG Shuli, GUO Xiaomin, HUANG Lijun, et al. Effects of different fertilization and water retention measures on N2O emission from Camellia oleifera soil [J]. JAgro-Environ Sci, 2020, 39(9): 1 − 12.
    [21] 陈渠昌, 雷廷武, 李瑞平. PAM对坡地降雨径流入渗和水力侵蚀的影响研究[J]. 水利学报, 2006, 37(11): 1290 − 1296.

    CHEN Quchang, LEI Tingwu, LI Ruiping. The impacts of PAM on runoff infiltration and water erosion from slope lands [J]. J Hydraulic Eng, 2006, 37(11): 1290 − 1296.
    [22] 李娜, 耿玉清, 赵新宇, 等. 生物炭和PAM混施影响煤矸石基质水分的入渗和蒸发[J]. 水土保持学报, 2020, 34(2): 290 − 295.

    LI Na, GENG Yuqin, ZHAO Xinyu, et al. Mixed application of biochar and PAM influences water infiltration and evaporation of coal gangue matrix [J]. J Soil Water Conserv, 2020, 34(2): 290 − 295.
    [23] 魏达, 旭日, 王迎红, 等. 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究[J]. 草地学报, 2011, 19(3): 412 − 419.

    WEI Da, XU Ri, WANG Yinghong, et al. CH4, N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co Region of Tibetan Plateau [J]. Acta Agrestia Sin, 2011, 19(3): 412 − 419.
    [24] 王冠钦, 李飞, 彭云峰, 等. 土壤含水量调控高寒草原生态系统N2O排放对增温的响应[J]. 植物生态学报, 2018, 42(1): 105 − 115. doi:  10.17521/cjpe.2017.0164

    WANG Guanqin, LI Fei, PENG Yunfeng, et al. Response of soil N2O emission to experimental warming regulated by soil moisture in an alpine steppe [J]. Chin J Plant Ecol, 2018, 42(1): 105 − 115. doi:  10.17521/cjpe.2017.0164
    [25] DAVIDSON E A, KELLER M, ERICKSON H E, et al. Testing a conceptual model of soil emissions of nitrous and nitric oxides [J]. BioScience, 2000, 50(8): 667 − 680. doi:  10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2
    [26] 董艳芳, 黄景, 李伏生, 等. 不同灌溉模式和施氮处理下稻田CH4和N2O排放[J]. 植物营养与肥料学报, 2017, 23(3): 578 − 588. doi:  10.11674/zwyf.16437

    DONG Yanfang, HUANG Jing, LI Fusheng, et al. Emissions of CH4 and N2O under different irrigation methods and nitrogen treatments [J]. J Plant Nutr Fert, 2017, 23(3): 578 − 588. doi:  10.11674/zwyf.16437
    [27] MORI T, OHTA S, ISHIZUKA S, et al. Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring [J]. Biol Fert Soils, 2014, 50(1): 45 − 51. doi:  10.1007/s00374-013-0824-4
    [28] MEHNAZ K R, DIJKSTRA F A. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil [J]. Geoderma, 2016, 284: 34 − 41. doi:  10.1016/j.geoderma.2016.08.011
    [29] MORI T, WACHRINRAT C, STAPORN D, et al. Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand [J]. Agric Nat Resour, 2017, 51(2): 91 − 95.
    [30] MORI T, OHTA S, ISHIZUKA S, et al. Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100 % of the water-filled pore space [J]. Biol Fert Soils, 2013, 49(1): 13 − 21. doi:  10.1007/s00374-012-0690-5
    [31] CAMENZIND T, HÄTTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests [J]. Ecol Monographs, 2018, 88(1): 4 − 21. doi:  10.1002/ecm.1279
    [32] CLEVELAND C C, TOWNSEND A R, SCHMIDT S K. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies [J]. Ecosystems, 2002, 5(7): 680 − 691. doi:  10.1007/s10021-002-0202-9
    [33] VITOUSEK P M, WALKER L R, WHITEAKER L D, et al. Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park [J]. Biogeochemistry, 1993, 23(3): 197 − 215. doi:  10.1007/BF00023752
    [34] KLEMEDTSSON L, SVENSSON B H, ROSSWALL T. Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification [J]. Biol Fert Soils, 1988, 6(2): 106 − 111.
    [35] BAKKEN L R, BERGAUST L, LIU B, et al. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils [J]. Philosophical Transac Royal Soc B Biol Sci, 2012, 367(1593): 1226 − 1234. doi:  10.1098/rstb.2011.0321
  • [1] 黄瑾, 余龙飞, 李文娟, 黄平.  基于稳定同位素自然丰度技术的土壤氧化亚氮产生与排放过程研究进展 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20210458
    [2] 郭益昌, 庄舜尧, 胡昱彦, 桂仁意.  埋管通气对雷竹林土壤氧气体积分数的影响 . 浙江农林大学学报, 2020, 37(1): 69-75. doi: 10.11833/j.issn.2095-0756.2020.01.009
    [3] 黄俊威, 孙永磊, 周金星, 刘玉国, 万龙.  白枪杆生长特性及光合特性对不同土壤水分的响应 . 浙江农林大学学报, 2019, 36(6): 1254-1260. doi: 10.11833/j.issn.2095-0756.2019.06.025
    [4] 王增, 蒋仲龙, 刘海英, 叶柳欣, 汪舍平, 张勇, 金锦, 吴家森.  油茶不同器官氮、磷、钾化学计量特征随年龄的变化 . 浙江农林大学学报, 2019, 36(2): 264-270. doi: 10.11833/j.issn.2095-0756.2019.02.007
    [5] 朱国华, 吴黎明, 颜福花, 倪荣新.  良种油茶栽培经济效益分析 . 浙江农林大学学报, 2014, 31(4): 632-638. doi: 10.11833/j.issn.2095-0756.2014.04.021
    [6] 汪春林, 张金池, 庄义琳, 周姣, 韩诚, 刘鑫, 庄家尧.  南京城郊不同植被类型土壤含水量变异规律 . 浙江农林大学学报, 2014, 31(6): 911-918. doi: 10.11833/j.issn.2095-0756.2014.06.013
    [7] 李波成, 邬奇峰, 张金林, 钱马, 秦华, 徐秋芳.  真菌及细菌对毛竹及阔叶林土壤氧化亚氮排放的贡献 . 浙江农林大学学报, 2014, 31(6): 919-925. doi: 10.11833/j.issn.2095-0756.2014.06.014
    [8] 洪燕真, 洪流浩, 戴永务.  农户油茶成本收益分析 . 浙江农林大学学报, 2013, 30(1): 107-113. doi: 10.11833/j.issn.2095-0756.2013.01.016
    [9] 华正媛, 王井田, 刘剑, 王浩杰, 舒金平, 徐天森.  衢州市油茶害虫及天敌种类调查 . 浙江农林大学学报, 2012, 29(2): 232-243. doi: 10.11833/j.issn.2095-0756.2012.02.013
    [10] 王玉娟, 陈永忠, 王瑞, 王湘南, 彭邵锋, 杨小胡, 杨杨.  稻草覆盖对油茶幼林土壤理化性质及油茶生长的影响 . 浙江农林大学学报, 2012, 29(6): 811-816. doi: 10.11833/j.issn.2095-0756.2012.06.002
    [11] 彭永红, 陈永根, 宋照亮, 单胜道, 宋哲岳.  沼液施用对潮土氧化亚氮排放通量的影响 . 浙江农林大学学报, 2012, 29(6): 954-959. doi: 10.11833/j.issn.2095-0756.2012.06.022
    [12] 黎章矩, 华家其, 曾燕如.  油茶果实含油率影响因子研究 . 浙江农林大学学报, 2010, 27(6): 935-940. doi: 10.11833/j.issn.2095-0756.2010.06.022
    [13] 曾燕如, 黎章矩.  油茶花期气候对花后坐果的影响 . 浙江农林大学学报, 2010, 27(3): 323-328. doi: 10.11833/j.issn.2095-0756.2010.03.001
    [14] 曾燕如, 黎章矩, 戴文圣.  油茶开花习性的观察研究 . 浙江农林大学学报, 2009, 26(6): 802-809.
    [15] 左继林, 龚春, 汪建平, 周文才, 温强, 徐林初.  赣油茶25个优良无性系品质评价 . 浙江农林大学学报, 2008, 25(5): 624-629.
    [16] 邓恒芳, 王克勤.  土壤水分对石榴光合速率的影响 . 浙江农林大学学报, 2005, 22(3): 277-281.
    [17] 刘兴泉, 闵凡国, 杨靖民, 李洁, 陈晓佳.  聚丙烯酰胺缓释肥料的玉米肥效试验 . 浙江农林大学学报, 2003, 20(2): 124-127.
    [18] 徐凤兰, 魏坦, 刘爱琴.  杉木泡桐混交幼林地土壤的物理性质 . 浙江农林大学学报, 2000, 17(3): 285-288.
    [19] 胡春水, 王金元, 熊芳芳.  提高采后油茶果出油率的研究 . 浙江农林大学学报, 1999, 16(4): 392-396.
    [20] 孙鸿有, 袁文海, 金爱武, 任孝蓉.  檫树过氧化物酶同工酶的初步研究 . 浙江农林大学学报, 1993, 10(1): 93-96.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210411

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/5/1

计量
  • 文章访问数:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-07-26

氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响

doi: 10.11833/j.issn.2095-0756.20210411
    基金项目:  国家自然科学基金资助项目(41967017,41501317)
    作者简介:

    高宇(ORCID: 0000-0003-2023-0367),从事土壤碳氮循环和全球变化研究。E-mail: yugao0608@126.com

    通信作者: 张令(ORCID: 0000-0001-8030-4378),副研究员,从事土壤碳氮循环和全球变化研究。E-mail: lingzhang09@126.com
  • 中图分类号: S718

摘要:   目的  化肥施用导致土壤氧化亚氮(N2O)排放增加,加剧了全球气候变化。在干旱和降水分配不均地区,土壤含水量是影响土壤N2O排放的关键因子,施用保水剂(如聚丙烯酰胺)可能影响土壤N2O排放。本研究目的是探究氮(N)与磷(P)肥添加下施用聚丙烯酰胺对土壤N2O排放的影响,  方法  以油茶Camellia oleifera林土壤为研究对象,设置不同处理,包括不同肥料添加[N、P、N+P、不施肥(ck)],不同聚丙烯酰胺用量(C0:0 g·kg−1,C1:1.0 g·kg−1,C2:2.0 g·kg−1)以及两者交互处理,利用静态箱-气相色谱法测定油茶苗生长期内土壤N2O排放。  结果  ①施用聚丙烯酰胺显著提高了油茶林土壤含水量(P<0.05),且土壤含水量随保水剂施用量的增加而增加。与C0相比,C1和C2土壤的含水量分别增加47.1%和57.4%,但施用聚丙烯酰胺不会促进土壤N2O排放(F=2.75,P>0.05)。②施P肥显著提高土壤N2O累积排放量(P<0.05),相较于ck增加13.3%。③与只添加聚丙烯酰胺的土壤相比,1.0 g·kg−1聚丙烯酰胺分别与N、P、N+P肥混施处理的土壤N2O排放通量分别显著增加56.0%、61.7%、40.7% (P<0.05);2.0 g·kg−1聚丙烯酰胺与P、N+P肥混施处理的土壤N2O排放通量分别显著增加38.7%、58.1% (P<0.05)。  结论  施用聚丙烯酰胺不仅能有效提高油茶土壤保水能力,而且还不会促进油茶土壤N2O排放,有利于发展高效节水林业和缓解全球气候变化。图5表1参35

English Abstract

高宇, 王佰慧, 邹瑜, 王书丽, 向蒗, 付艳秋, 胡冬南, 郭晓敏, 张令. 氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210411
引用本文: 高宇, 王佰慧, 邹瑜, 王书丽, 向蒗, 付艳秋, 胡冬南, 郭晓敏, 张令. 氮磷添加下施用保水剂对油茶林土壤氧化亚氮排放的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20210411
GAO Yu, WANG Baihui, ZOU Yu, WANG Shuli, XIANG Lang, FU Yanqiu, HU Dongnan, GUO Xiaomin, ZHANG Ling. Effects of water-retaining agent on soil nitrous oxide emission in Camellia oleifera forest under nitrogen and phosphorus addition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210411
Citation: GAO Yu, WANG Baihui, ZOU Yu, WANG Shuli, XIANG Lang, FU Yanqiu, HU Dongnan, GUO Xiaomin, ZHANG Ling. Effects of water-retaining agent on soil nitrous oxide emission in Camellia oleifera forest under nitrogen and phosphorus addition[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20210411

返回顶部

目录

    /

    返回文章
    返回