-
近年来,人类对土地和矿物资源的过度开发利用以及对农药和化肥的不合理使用,破坏了原生态土壤[1-2],引起了土壤质量严重下降,甚至导致了土壤污染,其中重金属是土壤污染的主要来源之一[3]。农田中土壤重金属具有潜伏性强、难去除、毒害性高等特点,不仅可以通过积累影响土壤和农产品质量,阻碍植物生长,还可以通过食物链被人体吸收,威胁人体健康[1, 4]。果园土壤作为生产果品的载体,其中有毒有害重金属不仅会对树体生长和果实产量产生影响,而且会影响果品质量安全并带来生态风险。
麦尔哈巴·图尔贡等[5]研究发现:镉是吐鲁番盆地葡萄Vitis vinifera种植园土壤中污染水平及生态风险级别最高的重金属,而且受不合理施肥影响最大。王敏等[6]研究认为:早期铜矿开采以及长期过度施肥,特别是磷肥和有机肥的过度施用是香榧Torreya grandis‘Merrillii’多种重金属超标的重要原因。潜在生态风险评价表明:浙江省会稽山脉附近的香榧集中种植区土壤整体处于轻度危害状态,其中以镉的潜在风险最大[6]。ZINICOVSCAIA等[7]研究摩尔多瓦苹果Malus pumila种植园土壤中37种元素的富集情况,并通过计算富集因子、污染因子、地累积指数和污染负荷指数等评价重金属元素对土壤污染的生态风险,发现矿区土壤中的砷等处于严重超标状态,而且具有较高的潜在生态风险等级。DONG等[8]对白水县苹果种植园土壤中8种重金属元素进行测定,并采用单因素污染指数、内梅罗综合指数和潜在生态风险指数等方法评价土壤重金属存在的潜在风险,发现随着经营年限的增加,苹果园土壤中镍、铜、砷和汞的含量逐渐升高,表明人工干预促进了土壤重金属的积累,存在严重的生态风险性。YAN等[9]以重庆市黔江地区5个猕猴桃Actinidia chinensis品种为研究对象,测定了土壤和果实中8中重金属元素的含量,结果发现:猕猴桃种植园重金属从岩石向土壤,从土壤向果实迁移显著,其中锌和铬是果实中超标较严重的元素,存在中等潜在生态风险。由此可知:果园土壤重金属污染来源多样,危害极大,不仅是人类目前面临的重要环境问题之一,而且对食品安全具有极大威胁[10]。
柿Diospyros kaki适应性强,分布范围广,为中国重要的传统木本粮食树种,也是国家目前重点支持的特色经济林树种之一[11]。河南省柿栽培历史悠久,是中国柿主产区之一,柿产量长期位居中国前3位。位于太行山区的济源市、安阳市和三门峡市是河南省柿的主产区,占据该省总产量的72.0%,已成为当地农村经济发展和农民增收的支柱之一。但果农在生产中,为了追求产量,过度使用化肥和农药,引起土壤质量明显退化。另外,济源市、安阳市和三门峡市均为重要的矿产区,农业生产和矿产开采提高了土壤重金属污染风险,对柿产品带来潜在安全隐患和生态安全风险[12]。为探讨河南省柿主产区土壤重金属污染情况及生态风险,本研究调查了河南省柿主产区代表性果园土壤样品,测定其中砷、镉、铬、铜、铅和汞等6种重金属元素的质量分数;采用污染负荷指数、潜在生态风险指数和生态风险预警指数法,对柿园土壤重金属来源及潜在生态风险进行评估,以期为河南省柿主产区土壤环境安全评价和重金属污染防治提供科学依据,为其他柿产区土壤重金属研究提供参考。
-
研究区域属于豫西北的太行低山丘陵地区(33°31′~36°21′N,110°21′~114°59′E),平均海拔为705.0 m。该区气候属暖温带季风性大陆气候,光热资源较丰富,年平均气温为14.1 ℃,年平均日照时数为2 370.0 h,年平均降水量为600 mm,年平均蒸发量为1700 mm,无霜期为200 d,年辐射总量为518 kJ·cm−2。山体以沉积岩为主,土壤以褐土为主,pH 7.0~8.5。
-
2020年11月柿果采收后,在济源、安阳和三门峡等3个河南省柿主产区,选取正常经营、果树病虫害较轻、果品质量上乘的果园90个(每个产区30个)。在每个果园中间位置设置1个25 m×25 m的样地,并在样地内按照“对角线五点采样法”采集200 g土样,采样深度为0~20 cm。将采集的样品装入清洁自封袋,记录采样点的立地条件、土壤情况、农户施药和施肥管理情况等[13]。
土样在室内常温下风干,拣出杂物,磨碎并充分混合,过100目尼龙筛后用于检测土壤样品中的砷、汞、镉、铬、铜与铅的质量分数及土壤pH[14]。测试过程中加入国家标准土壤参比物质(GSS-12)进行质量控制,各重金属的回收率均在国家标准参比物质的允许范围内[1]。各个参数以每个果园5个点的平均值代表该果园的表征值。
-
以河南省太行山果树种植园土壤重金属的背景值(重金属砷、汞、铅、镉、铬、铜的背景值分别为7.79、0.049、19.60、0.374、63.80、19.70 mg·kg−1,以下简称“背景值”)为评价依据[15],采用单因子污染指数(contamination factor,CF)和污染负荷指数(pollution load index,IPL)对柿园土壤重金属进行污染评价[16]。以GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》中的国家农用地土壤污染风险筛选值[重金属砷、汞、铅、镉、铬、铜污染风险筛选值(pH>7.5)分别为25.00、3.400、170.00、0.600、250.00、100.00 mg·kg−1,简称“筛选值”]为评价依据[14],采用综合潜在生态风险指数(potential ecological risk index,IR)评价土壤重金属污染的潜在生态风险,并采用生态风险预警指数(ecological risk warning index,IER)对土壤生态风险进行预警评估[1, 3, 13],其中砷、汞、铅、镉、铬、铜的毒性系数分别为10.0、40.0、5.0、30.0、2.0和5.0,潜在生态风险指数分级标准[17]见表1。
表 1 土壤重金属污染评价指标及其分级标准
Table 1. Evaluation indexes and grading standards of soil heavy metal pollution
CF IPL 污染等级 E IR 风险等级 IER 预警等级 (0, 1] (0, 1] 无 (0, 40] (0, 150] 轻微 (−∞, 0] 无需 (1, 2] (1, 2] 轻度 (40, 80] (150, 300] 中等 (0, 1] 预警 (2, 3] (2, 3] 中度 (80, 160] (300, 600] 较强 (1, 3] 轻度 (3, +∞) (3, +∞) 重度 (160, 320] (600, 1200] 很强 (3, 5] 中度 (320, +∞) (1200, +∞) 极强 (5, +∞) 重度 说明:CF为单因子污染指数;IPL为污染负荷指数;E为各重金属单项潜在生态风险指数;IR综合潜在生态风险指数;IER为生态风险 预警指数 -
采用Excel 2019对数据进行初步整理和计算,采用SPSS 20.0进行数据统计分析和K-S正态分布检验,属于正态分布的数据用Pearson相关性分析,非正态分布的用Spearman进行相关性分析。
-
由表2可知:砷和汞质量分数在安阳产区土壤中最高,分别为13.84和0.105 mg·kg−1,三门峡产区土壤中砷质量分数仅为2.34 mg·kg−1;铅和镉质量分数在济源产区土壤中最高,分别为54.80和0.492 mg·kg−1;铬和铜质量分数在三门峡产区土壤中最高,分别为53.10和38.01 mg·kg−1,分别是济源产区的1.36和1.30倍。这说明6种重金属在河南省3个柿主产区土壤中的积累特征不同。与背景值相比,砷仅在三门峡产区低于背景值,汞在3个主产区均高于背景值,且汞在整个主产区高达背景值的2.00倍;铅在三门峡和济源产区是背景值的2.00~3.00倍;镉仅在济源产区超过背景值,而铜在3个主产区均高于背景值,其中在三门峡产区最高,为背景值的2.00倍。6种重金属质量分数平均值在3个主产区均低于筛选值,但砷在安阳产区,铅和镉在济源和三门峡产区以及铬和铜在安阳和三门峡产区均存在某些柿园大于筛选值,处于污染状态,其中镉在济源产区甚至高达筛选值的3.07倍。这说明不同重金属在3个产区的积累程度不同。方差分析表明:砷、铅、镉和铬在3个主产区的F值分别为59.70、6.60、8.50、5.85,说明它们的积累程度均达极显著差异(P<0.01)。
表 2 河南柿主产区土壤重金属质量分数统计
Table 2. Statistics of the heavy metals in soils from the main D. kaki producing area in Henan Province
产区 参数 质量分数/(mg·kg−1) 产区 参数 质量分数/(mg·kg−1) 砷 汞 铅 镉 铬 铜 砷 汞 铅 镉 铬 铜 安阳产区 均值 13.84 0.105 16.87 0.167 46.34 29.79 济源产区 均值 13.33 0.092 54.80 0.492 39.15 29.24 标准差 6.70 0.072 5.57 0.076 24.33 19.70 标准差 3.67 0.087 55.75 0.516 8.25 10.64 极小值 1.55 0.020 5.34 0.000 17.09 2.56 极小值 2.97 0.015 7.04 0.048 14.82 6.10 极大值 25.12 0.373 25.45 0.335 93.87 111.04 极大值 21.36 0.399 276.45 1.839 51.07 53.14 三门峡产区 均值 2.34 0.099 37.74 0.277 53.10 38.01 整个主产区 均值 9.84 0.099 36.47 0.312 46.20 32.35 标准差 2.30 0.097 42.18 0.131 9.38 19.72 标准差 7.01 0.085 42.97 0.336 16.63 17.50 极小值 1.22 0.032 9.64 0.081 35.29 18.71 极小值 1.22 0.015 5.34 0.000 14.82 2.56 极大值 14.12 0.543 204.00 0.847 87.12 128.90 极大值 25.12 0.543 276.45 1.839 93.87 128.90 -
土壤重金属质量分数变异分为小(0~0.15)、中(0.16~0.35)和高(>0.36)等3类[18-19]。由表3可知:6种重金属在河南省杮主产区的变异均达到高度等级,仅砷在济源、铅在安阳、铬在济源和三门峡产区为中等变异。这说明6种重金属元素在河南省柿主产区的空间变异程度较高,分布存在一定的随机性。依据Grubbs准则剔除90个果园土壤重金属数据异常值[3],然后绘制河南省柿主产区土壤6种重金属质量分数的频次分布图(图1)。砷和铬的偏度和峰度均在[−1, 1]附近,且中位数都较接近均值(表3),铬总体符合的近正态分布,砷存在一定的偏正态分布。汞、铅、镉和铜的中位值都小于均值,且偏度分别为2.72、3.32、2.60和2.95,说明样本的铅、镉质量分数左偏,为右尾分布,表明多数柿园土壤的铅、镉质量分数较低,也印证了河南省柿主产区重金属空间分布变异较大的特征。
图 1 河南省柿主产区土壤重金属质量分数分布频次
Figure 1. Frequency distribution of the heavy metals in soils from the main producing area of D. kaki of Henan Province
表 3 河南省柿主产区土壤重金属变异系数和分布频次
Table 3. Coefficients of variation and frequency distribution of the heavy metals in soils from the main producing area of D. kaki of Henan Province
参数 产区 砷 汞 铅 镉 铬 铜 变异系数 安阳产区 0.48 0.69 0.33 0.45 0.53 0.66 济源产区 0.28 0.94 1.02 1.05 0.21 0.36 三门峡产区 0.98 0.98 1.12 0.47 0.18 0.52 整个主产区 0.71 0.86 1.18 1.08 0.36 0.54 中位数 整个主产区 11.41 0.08 22.42 0.21 44.72 29.47 偏度 整个主产区 0.25 2.72 3.32 2.60 0.77 2.95 峰度 整个主产区 −0.98 9.79 12.94 6.74 1.23 13.60 -
相关性分析法可以用来解析土壤中重金属来源[3]。对河南省柿主产区土壤重金属质量分数的Pearson相关分析(表4)表明:铅与汞、镉、铜,以及汞与镉表现为极显著相关(P<0.01)。铜与砷、镉、铬,以及砷与铬达显著相关(P<0.05)。推断铅和汞、镉、铜可能来自相同的途径,铜与砷、镉、铬的来源也有很大的相似性。整体而言,铅和铜可能是这6种重金属积累的主导元素,或是诱导其他元素在土壤中积累的主要元素,而6种元素间也呈现出相互伴随的复杂积累效应。
表 4 河南省柿主产区土壤重金属之间相关系数矩阵
Table 4. Correlations matrix of the heavy metals in soils from the main producing area of D. kaki of Henan Province
重金属 pH 砷 汞 铅 镉 铬 铜 pH 1.000 砷 0.177 1.000 汞 −0.119 0.105 1.000 铅 −0.116 0.123 0.410** 1.000 镉 −0.184 0.170 0.397** 0.784** 1.000 铬 −0.191 −0.237* 0.176 0.006 −0.042 1.000 铜 −0.085 −0.209* 0.085 0.299** 0.218* 0.264* 1.000 说明:* 表示显著相关(P<0.05),** 表示极显著相关(P<0.05) 土壤重金属质量分数数据经KMO和巴特力(Bartlett)检验及因子分析和主成分分析表明:第1主成分可解释总方差的37.1%,主要包括铅、镉和汞,其中铅的载荷更是高达0.900;第2主成分可解释34.4%的总方差,其中铬和铜是主要变量,两者载荷分别为0.730和0.608 (表5)。主成分散点图表明(图2):汞、铅和镉以及铬和铜分别具有高度相似的同源性。这与相关性分析的结果一致。
表 5 河南省柿主产区土壤重金属主成分分析
Table 5. Principal component analysis of the heavy metals in soils from the main producing area of D. kaki of Henan Province
项目 因子 砷 汞 铅 镉 铬 铜 方差贡献率/% 累计贡献率/% 因子载荷 第1主成分 0.173 0.648 0.900 0.880 0.124 0.418 37.1 37.1 第2主成分 −0.726 0.006 −0.078 −0.173 0.730 0.608 34.4 71.5 -
根据分级标准对河南省柿主产区土壤重金属进行污染评价。结果(表6)可知:3个产区土壤单因子污染指数(CF)最大的重金属分别为:安阳汞(2.13)、济源铅(2.80)和三门峡汞(2.02)。另外,安阳产区所有柿园均处于无镉污染状态,76.67%的柿园也处于无铬污染状态,而砷和汞的污染比例均高达83.33%,其中重度污染的比例达到13.33%。济源产区柿园砷、铅和汞的污染比例较高,其中铅的重度污染比例高达30%。三门峡产区大部分柿园表现为无污染或仅轻度污染,但也分别有16.67%、13.33%和6.67%的柿园处在汞、铅和铜的重度污染状态。从整个主产区来看,汞和铜是最主要的重金属污染元素,镉和铬最低。
表 6 不同区域单因子污染指数值及污染等级样点百分比
Table 6. Percentages of sites at different pollution levels in the total sample sites
各重金属污染指数 安阳产区 济源产区 平均值 标准差 无/% 轻度/% 中度/% 重度/% 平均值 标准差 无/% 轻度/% 中度/% 重度/% CF,砷 1.78 0.86 16.67 50.00 20.00 13.33 1.71 0.47 6.67 63.33 30.00 0 CF,汞 2.13 1.46 16.67 36.67 33.33 13.33 1.87 1.76 43.33 26.67 13.33 16.67 CF,铅 0.86 0.28 63.33 36.67 0 0 2.80 2.84 10.00 53.33 6.67 30.00 CF,镉 0.45 0.20 100 0 0 0 1.32 1.38 66.67 3.33 13.33 16.67 CF,铬 0.73 0.38 76.67 23.33 0 0 0.61 0.13 100 0 0 0 CF,铜 1.51 1.00 30.00 53.33 10.00 6.67 1.48 0.54 20.00 63.33 16.67 0 IPL 0.95 0.34 76.67 20.00 3.33 0 1.32 0.70 50.00 36.67 10.00 3.33 各重金属污染指数 三门峡产区 整个主产区 平均值 标准差 无/% 轻度/% 中度/% 重度/% 平均值 标准差 无/% 轻度/% 中度/% 重度/% CF,砷 0.30 0.29 96.67 3.33 0 0 1.26 0.90 40.00 38.89 16.67 4.44 CF,汞 2.02 1.97 26.67 46.67 10.00 16.67 2.01 1.73 28.88 36.67 18.89 15.56 CF,铅 1.93 2.15 30.00 53.33 3.33 13.33 1.86 2.19 34.45 47.78 3.33 14.44 CF,镉 0.74 0.35 96.67 3.33 0 0 0.83 0.90 87.78 2.22 4.44 5.56 CF,铬 0.83 0.15 96.67 3.33 0 0 0.72 0.26 91.11 8.89 0 0 CF,铜 1.93 1.00 3.33 73.33 16.67 6.67 1.64 0.89 17.78 63.34 14.44 4.44 IPL 0.96 0.35 50.00 50.00 0 0 1.08 0.52 58.89 35.56 4.44 1.11 土壤重金属污染负荷指数(IPL)表明(表6):河南省柿主产区IPL为1.08,说明河南省柿主产区土壤整体处于重金属轻度污染状态,其中济源产区IPL值最大(1.32),安阳和三门峡表现为无污染。从污染等级的比例来看,安阳产区无污染柿园最多,达到76.67%,济源产区土壤重金属污染程度最高。
-
以筛选值作参比标准,计算河南省柿主产区各柿园土壤重金属潜在生态风险指数(E)及综合潜在生态风险指数(IR) [3]。结果发现:在3个产区,汞的生态风险指数最高,达80.31,铬最低(仅1.45),说明汞处于较强风险的等级。3个产区的IR最大值为济源产区的581.24,最小值为三门峡产区126.99。这说明:3个产区均为轻微生态风险等级,其中济源产区风险最高,三门峡产区最低,但各产区均出现了处于中等及较强生态风险等级的柿园(表7)。
表 7 不同区域潜在生态风险指数及污染等级样点百分比
Table 7. Percentages of sites at different risk levels in the total sample sites
各重金属
风险指数安阳产区 济源产区 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% E砷 17.76 8.60 100 0 0 0 0 17.11 4.71 100 0 0 0 0 E汞 85.25 58.44 20.00 33.33 36.67 10.00 0 74.86 70.39 43.33 26.67 23.33 3.33 3.33 E铅 4.30 1.42 100 0 0 0 0 13.98 14.22 96.67 3.33 0 0 0 E镉 13.44 6.07 100 0 0 0 0 39.50 41.40 66.67 10 23.33 0 0 E铬 1.45 0.76 100 0 0 0 0 1.23 0.26 100 0 0 0 0 E铜 7.56 5.00 100 0 0 0 0 7.42 2.70 100 0 0 0 0 IR 129.77 63.51 73.33 23.33 3.33 0 0 154.10 121.43 66.67 23.33 10 0 0 各重金属
风险指数三门峡产区 整个主产区 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% E砷 3.00 2.95 100 0 0 0 0 12.63 9.00 100 0 0 0 0 E汞 80.83 78.84 26.67 46.67 16.67 6.67 3.33 80.31 69.07 30.00 35.56 25.56 6.67 2.22 E铅 9.63 10.76 96.67 3.33 0 0 0 9.30 10.96 97.78 2.22 0 0 0 E镉 22.22 10.48 96.67 3.33 0 0 0 25.05 26.92 87.78 4.44 7.78 0 0 E铬 1.66 0.29 100 0 0 0 0 1.45 0.52 100 0 0 0 0 E铜 9.65 5.00 100 0 0 0 0 8.21 4.44 100 0 0 0 0 IR 126.99 85.31 76.67 20.00 3.33 0 0 136.95 92.95 72.22 22.22 5.56 0 0 -
土壤生态风险预警分析是基于环境生态风险评估中而发展来的,它更侧重于对土壤系统、农林植物及其产品可能存在的生态风险研究,具有精准、定量和定性评价的优点[3]。以筛选值作参比标准,计算河南省柿主产区土壤重金属污染生态风险预警等级(IER),结果如表8。整个主产区IER平均值为2.33,为轻度预警,其中济源产区IER最大(3.79),为中度预警,三门峡和安阳产区均为轻度预警等级。6种重金属中,仅汞在安阳和三门峡产区以及铅在济源产区表现为轻度预警等级,且这2种重金属均存在处于重度预警的柿园,其中济源产区处于汞和铅重度预警的柿园高达20%。这也与各元素在整个主产区的CF、IPL、E以及IR等的格局基本一致。
表 8 不同区域生态风险预警指数及预警级别样点百分比
Table 8. Percentages of sites at different warning levels in the total sample sites
各重金属
预警指数安阳产区 济源产区 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% IER,砷 0.78 0.86 16.67 50.00 33.33 0 0 0.71 0.47 6.67 63.33 30.00 0 0 IER,汞 1.13 1.46 16.67 36.67 36.67 6.67 3.33 0.87 1.76 43.33 26.67 23.33 0 6.67 IER,铅 −0.14 0.28 63.33 36.67 0 0 0 1.80 2.84 10.00 53.33 16.67 6.67 13.33 IER,镉 −0.55 0.20 100 0 0 0 0 0.32 1.38 66.67 3.33 26.67 3.33 0 IER,铬 −0.27 0.38 76.67 23.33 0 0 0 −0.39 0.13 100 0 0 0 0 IER,铜 0.51 1.00 30.00 53.33 13.33 3.33 0 0.48 0.54 20.00 63.33 16.67 0 0 IER 1.45 2.36 33.33 13.33 33.33 10.00 10.00 3.79 6.14 33.33 23.33 6.67 10.00 26.67 各重金属
预警指数三门峡产区 整个主产区 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% IER,砷 −0.70 0.29 96.67 3.33 0 0 0 0.26 0.90 40.00 38.89 21.11 0 0 IER,汞 1.02 1.97 26.67 46.67 16.67 6.67 3.33 1.01 1.73 28.89 36.67 25.56 4.44 4.44 IER,铅 0.93 2.15 30.00 53.33 6.67 0 10 0.86 2.19 34.44 47.78 7.78 2.22 7.78 IER,镉 −0.26 0.35 96.67 0 3.33 0 0 −0.17 0.90 87.78 1.11 10.00 1.11 0 IER,铬 −0.17 0.15 96.67 3.33 0 0 0 −0.28 0.26 91.11 8.89 0 0 0 IER,铜 0.93 1.00 3.33 73.33 20.00 3.33 0 0.64 0.89 17.78 63.33 16.67 2.22 0 IER 1.75 3.98 43.33 23.33 13.33 6.67 13.33 2.33 4.51 36.67 20.00 17.78 8.89 16.67 -
土壤重金属来源主要有成土母质和人类活动[20],其中人类活动引起的土壤污染主要包括工业废弃物、肥料和农药以及采用重金属超标的水灌溉农田等[21-22]。河南省柿整个主产区土壤中铅、铜、汞和砷质量分数约为背景值的1.26~2.01倍,铬和镉均低于背景值,说明铅、铜、汞和砷受人为因素影响更大,也有可能是土壤本身理化性质不同[20]。在一定区域内,相关性强的重金属可能具有相同来源途径[23-25]。从相关分析与主成分分析结果来看,铅、镉和汞之间分别呈现为极显著性相关,铬和铜呈现为显著性相关,说明铅、镉、汞三者以及铜与铬两者可能具有相同的来源,这与河南省典型工业区周边农田[13]、新疆地区辣椒Capsicum annuum种植基地[3]以及吉林省果树基地[21]等研究结果一致。
汞和铅是燃煤排放的标志物,空气中的汞和铅以大气沉降的方式进入土壤[13]。铅和铜是农药、化肥以及农家有机肥等的标志性元素之一[2],也是电池等工业生产的废气原料[13]。河南省3个柿主产区土壤6种重金属质量分数及其主要特征差异较大,这说明各产区重金属来源存在较大差异,这种差异可能是人类活动的差异引起的[25]。砷受人类活动,特别是农药和水肥影响较大[7, 26]。安阳是河南省重工业基地之一,冶金建材、煤炭化工以及化肥农药生产等是安阳市的主产业,也是导致安阳产区土壤重金属砷和汞质量分数较高的主要原因。济源市有铅都之称,铅和铜分别是济源和三门峡的支柱产业,导致了济源产区土壤铅等重金属质量分数升高,而铅、锌、砷和镉等也是近10 a来国内金属冶炼引起的土壤污染的高浓度重金属[27]。安阳和济源农药和农家肥的施用量约为三门峡的1.8倍,灌溉水中砷和汞含量严重超标,当地政府把治理水中重金属砷作为重中之重的民生项目。安阳是全国重要的化肥生产基地,域内有多个国家重点化肥、化工生产企业,安阳产区的果园施肥以复合肥为主。济源产区的果园在生产中施用了较多的腐熟不彻底的牲畜粪便等农家肥,而且使用了含有较多无机砷的杀菌剂和除草剂。以上这些人类活动都对土壤中砷和铜等重金属的富集具有重要的促进作用[7, 25-26],也与3个产区土壤重金属含量特征相一致。
-
虽然60%的柿园土壤处于铜、汞、铅和砷污染状态,但从土壤重金属污染负荷指数来看,河南省柿主产区目前处于轻度污染(1.0<IPL<2.0)状态,其中济源产区污染较为严重,砷是该产区重金属污染贡献最大的元素之一。这与砷是河南省典型工业城市土壤重金属污染最重要的元素的结论一致[13]。总体来看,6种重金属在各个产区的污染程度不同,但汞是安阳和三门峡产区重金属污染最主要的来源,铅是济源产区污染最严重的重金属元素。不同重金属元素在吐鲁番盆地葡萄园土壤[5]以及新疆焉耆盆地辣椒地土壤[3]的污染特征也不同,这可能是各产区土壤背景值及人类活动特征不同有关[6]。
汞是6种重金属中生态风险等级最高的元素,表现为较强的风险等级(E>80),70%的柿园处于汞污染的中等风险及以上等级,镉次之。但济源产区23.33%的柿园均处于镉较强污染风险等级之上,在3个主产区中最高。各元素对IR和IER的贡献率与各元素的污染程度并不完全一致,如镉污染程度相对较低,但济源产区重金属污染风险等级最高,这不仅与不同产区的人为干扰活动存在差异相关[28],还可能与不同重金属元素毒性系数相差较大有关。一般来说,元素毒性系数越高,其潜在生态风险指数越大[17];各元素的背景值及国家标准值也是重要影响因素[29]。另外,有些重金属虽然在土壤中的污染程度较高,但其容易伴随其他颗粒物迁移进入土壤中矿化埋藏[30],使其对生物的毒性降低,从而降低了潜在生态风险[5, 28]。
-
河南省柿主产区土壤砷主要受农业生产活动的影响,汞、铅和铜则受工业活动影响较大。河南省整个柿主产区土壤重金属污染为轻微风险等级,生态风险预警属于轻度预警等级,但济源产区土壤重金属污染水平、潜在生态风险程度与生态风险预警等级均达到中等水平。汞是河南省柿主产区土壤污染程度最严重的重金属,也是生态风险等级和预警级别最高的重金属元素。
Soil heavy metal pollution and its ecological risk analysis in the main Diospyros kaki producing areas of Henan Province
-
摘要:
目的 探讨河南省柿Diospyros kaki主产区土壤重金属污染及其生态风险,为评价土壤环境安全状况以及防治重金属污染提供科学依据。 方法 从安阳、济源和三门峡等3个柿主产区的90个柿园采集了450个土壤样品,测定砷、汞、铅、镉、铬和铜等6种重金属元素的质量分数。采用污染负荷指数(IPL)、综合潜在生态风险指数(IR)和生态风险预警指数(IER)对柿园土壤重金属污染及生态风险进行评价。 结果 在河南省柿主产区,土壤砷、汞、铅和铜质量分数的平均值分别为背景值的1.26、2.01、1.86和1.64倍。柿园土壤汞表现为中度污染,砷、铅和铜轻度污染,镉和铬无污染。在河南省柿主产区,土壤砷、汞、铅和铜受到人类活动影响较大,其中砷主要是受农业生产活动的影响,汞、铅和铜则受工业活动影响较大。在河南省柿主产区,IPL、IR和IER平均值分别为1.08、136.95和2.33,呈现轻度污染、轻微风险和轻度预警等级。济源产区污染最为严重,生态风险等级和预警等级均为最高,IPL、IR和IER分别达1.32、154.10和3.79;13.33%的果园处于中度或重度污染状态,33.33%的果园处于中等或较强潜在生态风险等级,66.67%和26.67%的果园分别呈现中度和重度预警。在河南省柿主产区,6种重金属中汞的单因子污染指数(CF)、潜在生态风险指数(IR)和污染生态风险预警等级(IER)均最高,分别为2.01、80.31和1.01。 结论 汞是河南省柿主产区土壤重金属生态风险等级和预警级别最高的重金属元素。济源产区柿园污染水平、潜在生态风险程度与生态风险预警等级在3个产区中最高,均达到中等水平。图2表8参30 Abstract:Objective The objective is to investigate the soil heavy metal pollution and its ecological risk in Diospyros kaki main producing areas in Henan Province, so as to provide scientific basis for evaluation of soil environmental safety and heavy metal prevention in the main producing areas. Method 450 soil samples were collected from 90 D. kaki plantations in 3 major producing areas, including Anyang, Jiyuan and Sanmenxia, and the contents of 6 heavy metal elements such as As, Hg, Pb, Cd, Cr, and Cu were determined. Pollution load index (IPL), potential ecological risk index (IR) and ecological risk warning index (IER) were used to evaluate the heavy metal pollution and ecological risk in D. kaki orchard. Result The average contents of As, Hg, Pb and Cu in soil were 1.26, 2.01, 1.86, and 1.64 times of the background values, respectively. The soil in D. kaki orchard was moderately polluted by Hg, slightly polluted by As, Pb and Cu. Cd and Cr were pollution-free. Soil As, Hg, Pb and Cu in the main producing areas were greatly affected by human activities, among which As was mainly affected by agricultural activities, while Hg, Pb and Cu were greatly affected by industrial activities. The average values of IPL, IR and IER were 1.08, 136.95 and 2.33, respectively, showing mild pollution, slight risk and mild warning grade. Jiyuan producing area had the most serious pollution, and the highest IR and IER level, with IPL, IR and IER reaching 1.32, 154.10 and 3.79, respectively. 13.33% of the orchards were moderately or severely polluted, and 33.33% were in moderate or strong IR level. 66.67% and 26.67% of orchards showed moderate and severe warnings respectively. Among the 6 heavy metals, Hg had the highest single factor pollution index (CF), IR and IER, which were 2.01, 80.31 and 1.01, respectively. Conclusion Hg is the heavy metal element with the highest IR and IER level in the soil of the main D. kaki producing areas. Jiyuan has the highest IPL, IR and IER among the 3 producing areas, all reaching the medium level. [Ch, 2 fig. 8 tab. 30 ref.] -
Key words:
- Diospyros kaki /
- Henan Province /
- heavy metals in soil /
- pollution /
- ecological risk
-
山麦冬Liriope spicata为百合科Liliaceae多年生草本植物,在园林绿化中多栽培于林下或林缘半阴处,掩饰裸露土壤,起到补充绿地改善不良景观的作用。山麦冬属Liriope植物只有8种,中国栽培6种,其中包含3个特有种,但山麦冬属植物分布广泛,除极寒地区及高海拔地区外,中国各省均有分布,其地理分布受人为栽培引种因素影响很大,没有特定的地理分布规律[1]。山麦冬成熟时果实表皮由绿转黑,9月结果后观果时期可长达整个冬季,且其花葶较长多矗立于叶子的上方,易于观察,具有很高的园林应用价值。目前,针对山麦冬成熟过程中呈色物质及调控基因尚未报道,但花青素合成途径在植物中是保守的,合成途径中上游合成基因是决定植物组织能否积累花青素的关键[2],而下游修饰基因的表达常与花青素的积累一致,是加深果色花色的关键基因[3-5]。此外,花青素的积累还受转录因子的调控,其中以MYB转录因子与bHLH转录因子最为常见[6]。
用于基因表达定量分析的方法比较多,其中实时荧光定量PCR(RT-qPCR)由于定量准确、成本低且高通量,被广泛应用于基因表达水平研究。但其结果常受RNA质量、反转录效率、引物特异性、初始样品量及扩增效率等因素的影响[7-8],需要引入1个或多个表达稳定的内参基因(reference genes, RGs)来评估目的基因的相对表达[9]。在植物学研究中,曾以肌动蛋白(actin,ACT)[10-12]、组蛋白(histone)[11]、蛋白磷酸酶(protein phosphatase,PP2A)[13]、甘油醛-3-磷酸-脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)[12]、泛素结合酶(ubiquitin conjugating enzyme, UBC)[14-15]以及18S核糖体RNA(18S ribosomal RNA,18S)[16]等基因作为内参基因。但是常见的内参基因也并非适用于任何研究,且目前还未见山麦冬内参基因的报道。鉴于此,本研究基于山麦冬转录组数据,对山麦冬果实发育中稳定表达的内参基因进行研究,为提高果色转变关键基因RT-qPCR分析的准确性提供科学依据。
1. 材料与方法
1.1 材料
在浙江农林大学资源圃,选取生长环境相同,且植株生长状况良好、长势整齐的山麦冬,随机均匀采集15~20株山麦冬植株的各一簇花葶的上、中、下部分果实,基于山麦冬果实生长特性,采集山麦冬幼果期(2020年9月)及成熟期(2020年11月) 2个时期样品,果实从花葶中取下后立即存于−80 ℃冰箱备用。设置3次生物学重复。
1.2 总RNA提取及cDNA合成
使用天根离心柱型RNA试剂盒(天根生物科技有限公司)从每个时期样本中提取总RNA。采用质量分数为1%的琼脂糖凝胶电泳检测RNA的完整性。总RNA的纯度和质量浓度采用NanoDrop ONE微量核酸蛋白浓度测定仪(Therm,美国)测定。总RNA样本质量浓度均高于4×10−5 ng·L−1以上,总RNA纯度[D(260)/D(280)]为1.9~2.1。cDNA的合成使用PrimerScript™ RT Master Mix cDNA (Perfect Real Time)反转录试剂盒,所有样本总RNA加入量按照3×10−5 ng·L−1稀释至同一质量浓度,cDNA置于−20 ℃冰箱保存。
1.3 候选内参基因的筛选及RT-qRCR
基于已获得的山麦冬转录组数据及京都基因与基因组百科全书(KEGG)注释,筛选了多条通路的基因作为内参基因参考库,包括参与山麦冬果实运输和分解代谢的基因(SLC36等),参与代谢过程的基因(PP2C、MGL、PDP、G6PD等),参与信号传导与转运的基因(AUX、GPR107、CNNM等),参与细胞过程的基因(CFL等),参与植物免疫的基因(Trx等),参与遗传信息处理的基因(UGT、PP2A、EF1-α等)共1 648个,参考前人对内参基因的筛选阈值稍作修改后[11-13],以每千个碱基转录每百万映射读取的片段(FPKM)高于5的基因(低表达的难以检测)、变异系数<0.1、变化倍数<0.2为筛选条件,得到前15个候选内参基因(表1)。
表 1 山麦冬15个候选的内参基因Table 1 15 candidate reference genes of L. spicata基因名 基因注释 变异
系数变化
倍数基因名 基因注释 变异
系数变化
倍数SLC36 solute carrier family 36 0.003 0.001 CFL cofilin 0.061 0.178 PP2C protein phosphatase 2C 0.007 0.019 UGT UDP-glucose: glycoprotein glucosyltransferase 0.064 0.184 Trx-1 thioredoxin 0.037 0.107 PP2A protein phosphatase 2A 0.064 0.185 MGL monoacylglycerol Lipase 0.043 0.123 EF1-α elongation factor 1-alpha 0.067 0.193 AUX auxin influx carrier 0.050 0.144 G6PD-1 glucose-6-phosphate dehydrogenase 0.068 0.197 GPR107 G protein-coupled receptor 107 0.056 0.161 G6PD-2 glucose-6-phosphate dehydrogenase 0.045 0.130 PDP pyruvate dehydrogenase phosphatase 0.058 0.169 Trx-2 thioredoxin 1 0.065 0.186 CNNM cation transport mediators 0.061 0.177 根据转录组获得的核酸序列信息,利用primer 5软件设计引物,并交由杭州有康生物技术有限公司合成(表2)。利用TB Green染料(Takara)预反应,体积20 μL,并使用LightCycler® 480 Ⅱ型荧光定量PCR仪(罗氏,瑞士)进行RT-qPCR。反应程序:95 ℃预变性5 min;95 ℃变性10 s;60 ℃退火延伸30 s,40个循环。实验设置3次生物学重复。扩增效率(cDNA稀释浓度梯度为5−1、5−2、5−3、5−4、5−5)计算公式为E=[10(−1/K)–1]×100%,其中:E为扩增效率,K为斜率。15个候选内参基因的扩增效率为91.7%~108.0%(表2)。
表 2 15个候选内参基因的引物序列和扩增子特征Table 2 Primer sequences and amplicon characteristics of 15 candidate reference genes基因名 正向引物序列(5′→3′) 反向引物序列(5′→3′) 产物长度/bp 扩增效率/% 相关系数 SLC36 GTAAGTTTCGCCGAGTGCTT ACTGCAGTAGCAGACCAGTT 148 91.7 0.982 PP2C TGGGCCATGATGTTCCAGAT AGTACACGCAGTCTTCACCT 77 94.8 0.999 Trx-1 TTGTTGGCACCCACAAGTTT CATTCGTGCCACTCCAACAT 72 102.0 0.999 MGL AATGCCTTCACTGGAACAGC GCCGCCAAGTGAGTAAACAA 138 101.0 0.994 AUX TGCAGAGAAACCACCCTTCT CCGAATCCAAATCCGACCAC 99 91.7 0.949 GPR107 ACAGGTGATTGCGAACATCG CTTCGACGTCTCCTTCAACG 166 105.0 0.906 PDP GACGGAGGTCGGTTGGATTT CTGCACATGCATCATCACGA 124 96.2 0.976 CNNM GCTGCACTAACTCCAGCTTC GGCACAACTGTGGTCAACAT 86 96.8 0.999 CFL CGAGGAGAACTGCCAGAAGA GTTGGATCGGTCGCTTGTAG 153 107.0 0.992 UGT TGGAAGCATCCTCACTTGACT TGTCTTCAAATTAGGGTTAGCGA 83 93.5 0.994 PP2A GAGTCGGAGAGGTCGAAGAG GCGGAGCAATTCCTACCATC 121 99.2 0.975 EF1-α CAAGCGTCCCACTGACAAG CCAGGCTTGAGGATACCAGT 111 101.0 0.998 G6PD-1 GATGCAACAGGCCAGAAGAG AGTGCAAACAGTGCAGGAAA 104 97.9 0.996 G6PD-2 ATAACGTTGCCCTCTCCACA ATCCAACTGCAATCCAAGCC 107 108.0 0.999 Trx-2 GTGGTGCACCGTCAGTAAAC CGCTGTGGTTGATGTCTCTG 113 96.0 0.992 1.4 内参基因的稳定性分析及验证
通过4种方法分析内参基因的稳定性:ΔCt值法[17]、geNorm[18]、NormFinder[19]和BestKeeper[20]。利用Excel 2010计算4种方法对候选内参基因几何平均数的排名,综合筛选最适的内参基因。同时根据前期转录组数据筛选了10种目的基因,涵盖花青素合成通路上下游基因以及调控基因。这10种基因在转录组数据加权共表达分析中属于中枢基因,表达量高、与花青素相关性强,且在果实成熟过程中显著上调。目的基因包括C4H、CHS、MT、UFGT、MYB、bHLH,上述基因引物序列及扩增子特征见表3,最后利用SPSS 19.0与Graphpad Prism 8.0分析及作图。
表 3 10个目的基因的引物序列和扩增子特征Table 3 Primer sequences and amplicon characteristics of 10 target genes基因名 正向引物序列(5′→3′) 反向引物序列(5′→3′) 产物长度/bp 扩增效率/% 相关系数 C4H TCTTTGATCACGGCTTGCAG ATGAGATCGACACCGTCCTC 88 109.0 0.992 CHS-1 TGCATTGCACCAGTAGTAGC GCCCTCCTGATCTCCTCAAC 122 104.0 0.995 CHS-2 TTGTTGGCACCCACAAGTTT CATTCGTGCCACTCCAACAT 82 91.7 0.997 MT CCACCGAGAGCAAGAACAAC GGGTACACACTGGTCTCCAA 112 96.2 0.999 UFGT-1 AGCAAGGTGTTGAAGGAGGA AAATTCCGAACCGAGCTTCC 110 91.7 0.935 UFGT-2 CGACGGATCCCATTCGACTA CGCCGCTCCTCCTATTAAC 57 92.9 0.996 MYB-1 GCAAGATCAGGTCCTCCTCA CAAAGTACGTGGCGAAGGAG 162 107.0 0.975 MYB-2 ATGGGAAGATGGTGGCCTTT GAAGGGTGCACAGCTTCAG 70 91.7 0.986 MYB-3 CGAGGAGAACTGCCAGAAGA GGTGCTTGTTGAGAGAGCTG 172 105.0 0.996 bHLH TGCTTAGCAATGGCAACAGG GGCTGCTGACCAGAAGATTG 123 101.0 0.998 2. 结果与分析
2.1 山麦冬候选内参基因的表达量分析
15个候选内参基因的溶解曲线均为单一峰(图1),琼脂糖凝胶电泳检测后出现与预期大小一致的单一条带(图2)。该结果表明引物具有良好的特异性。
根据原始循环阈值(Ct)分布发现:所有候选内参基因的Ct为15.53~28.81,Ct越高,基因的表达量越低,反之表达量越高。本研究中,EF1-α基因表达量最高,PP2C基因表达量最低,其余基因表达量介于两者之间。此外,由箱线图(图3)跨度可初步判定内参基因的稳定性。PP2C、Trx-1、AUX、PP2A、PDP基因的Ct跨度广,不稳定,而GPR107、CNNM、EF1-α、G6PD-2、Trx-2基因最为稳定,其中GPR107、CNNM、G6PD-2基因的Ct中位数与平均数接近,即上述基因相对表达量离散程度低,表达更稳定。然而对原始Ct分析内参基因稳定性的不足,还需引入其他的方法。
2.2 内参基因的稳定性分析
利用ΔCt法、geNorm、NormFider和BestKeeper对15个候选内参基因的稳定性进行分析(表4)。
表 4 4种方法评价15个候选内参基因表达的稳定性Table 4 Expression stability of 15 candidate reference genes evaluated by 4 methods内参基因 ΔCt geNrom NormFinder Beatkeeper 标准差 基因平均表达值 基因稳定值 标准差 变异系数 相关系数 SLC36 2.632 0.854 0.173 0.569 2.523 0.671 PP2C 2.321 0.927 0.416 0.828 3.070 0.824 Trx-1 2.663 1.130 0.510 0.852 3.964 0.832 MGL 2.673 1.007 0.493 0.885 3.918 0.918 AUX 2.652 1.094 0.598 1.063 4.430 0.882 GPR107 2.617 0.817 0.167 0.489 2.253 0.728 PDP 2.737 1.390 0.831 0.642 2.571 0.462 CNNM 2.615 0.847 0.157 0.468 2.015 0.721 CFL 2.274 1.094 0.346 0.532 3.038 0.781 UGT 2.613 0.923 0.237 0.517 2.418 0.651 PP2A 2.693 1.054 0.568 1.057 4.671 0.511 EF1-α 2.127 0.895 0.286 0.393 2.347 0.687 G6PD-1 2.763 1.204 0.692 0.469 2.065 0.009 G6PD-2 2.636 0.880 0.334 0.290 1.323 0.750 Trx-2 2.663 0.989 0.465 0.417 1.790 0.487 ΔCt法是在原始Ct值的基础上,计算每个基因所有样本与其他基因的Ct值之差,并计算其标准差。一般平均标准差越低,基因稳定性越高。该方法中,EF1-α、PP2C、CFL、CNNM是山麦冬果实发育阶段最稳定的内参基因;PDP、G6PD-1、PP2A是最不稳定的内参基因。
geNorm软件通过平均表达值来描述候选内参基因的稳定性,同时还能计算归一化因子之间的两两变异(Vn/n+1,其中n为可使RT-qPCR结果准确的最少基因数目)。该方法中,所有基因的平均表达值都在1.5以下(稳定内参基因的临界值),即该方法判定下的所有基因都可作为内参基因,其中GPR107(0.817)与CNNM(0.847)基因的平均表达值最低,说明最稳定。同时PDP、G6PD-1基因的平均表达值最高,分别为1.390、1.204,最不稳定,这与ΔCt法判定结果一致。此外,利用geNorm计算2个归一化基因的Vn/n+1,确定适合量化果实生长过程的最优内参基因数目。geNorm首先计算2个最稳定的候选内参基因的归一化因子值,然后将剩余候选内参基因按其表达稳定性下降的顺序依次相加。如果基因之间的Vn/n+1大于或等于0.15,则进行RT-qPCR分析时应该再添加1个基因才能达到可靠的结果,一旦Vn/n+1低于0.15,就不需要添加额外的基因[21]。由图4可见:从V4/5开始Vn/n+1小于0.15,即需要使用4个内参基因才能得到可靠的RT-qPCR结果。
NormFinder软件可分析候选内参基因的两两变异性,其中稳定值越小,候选内参基因越稳定。CNNM与GPR107基因的稳定值最小,分别为0.157、0.167,即CNNM与GPR107基因最稳定,这与geNorm分析结果一致;此外,对最差的内参基因评价也与上述2种方法一致:PDP、G6PD-1、AUX是量化果实发育阶段最不适合的内参基因。
Bestkeeper与geNorm、NormFinder软件不同,需导入原始Ct值平均数,计算候选内参基因在所有样品中的标准差、变异系数、相关系数。一般地,稳定的内参基因拥有低的标准差、变异系数及高的相关系数。在Bestkeeper评价中,与geNorm、NormFinder分析结果一致,CNNM与PDP基因分别还是最稳定与最不稳定的内参基因。除此之外,还发现G6PD-2为该方法中最稳定的内参基因,其标准差与变异系数最低,分别为0.290、1.323,相关系数为0.750。
最后通过几何平均数对这4种方法的分析结果进行综合性排序(表5)。根据表5的排名与geNorm推荐的内参基因数目,筛选CNNM、GPR107、EF1-α、G6PD-2作为标准化山麦冬果实RT-qPCR的最优内参组合,PDP为最差内参基因,通过4种算法得出的结果也与最初候选内参基因原始Ct值分布箱线图分析结果一致。
表 5 15个候选内参基因的综合排名Table 5 Comprehensive ranking of reference genes for normalization基因名 几何平均数 排名 基因名 几何平均数 排名 CNNM 2.340 1 PP2C 6.557 9 GPR107 2.913 2 MGL 8.572 10 EF1-α 3.162 3 AUX 10.602 11 G6PD-2 3.722 4 Trx-1 11.199 12 SLC36 5.350 5 G6PD-1 11.977 13 UGT 5.826 6 PP2A 12.368 14 CFL 5.925 7 PDP 14.491 15 Trx-2 6.160 8 2.3 内参基因稳定性的验证
为验证内参基因的有效性,选择10种花青素合成结构基因与调控基因作为目的基因。用单一内参基因:最优内参(CNNM)、最差内参(PDP),及2种内参组合:排名前2位的内参基因(CNNM、GPR107)和排名前4位的内参基因(CNNM、GPR107、EF1-α、G6PD-2)进行归一化。从图5可见:在山麦冬果实花青素合成过程中,使用4种内参方式归一化时,所有的目的基因都上调表达,但变化倍数稍有不同。在山麦冬果实成熟期,使用PDP基因作为内参时,所有目的基因相对表达量均显著高于其他3类,特别是对转录因子bHLH基因的量化时产生严重偏差,使用PDP基因与CNNM+GPR107+EF1-α+G6PD-2基因组合作为内参,bHLH基因的相对表达量分别为6.28与15.70,两者差异高达2.5倍。然而,当使用最优内参基因CNNM进行标准化时,除UFGT基因外,CNNM、GPR107、EF1-α、G6PD-2内参组合无显著差异,使用CNNM基因标准化时,UFGT相较幼果期上调表达50.71倍,使用4种内参组合时,UFGT上调72.49倍。此外,本研究还分析了候选内参排名前2位的基因(CNNM、GPR107)作为目的基因的表达量,发现选用2种内参基因与geNorm软件推荐使用4种内参基因,在10个目的基因中均无显著差异。
从图6可见:利用最差内参PDP得到的目的基因表达量与4种内参基因组合得到的目的基因表达量相关系数为0.868 6 (P<0.01),当使用最优基因CNNM作为内参时,与4种内参组合相关系数可达0.991 6 (P<0.01)。对2种内参组合与geNorm推荐的4个数目内参组合比较发现:通过这2种方法标准化得到的目的基因相关性可达0.999 9 (P<0.01),即仅使用CNNM、GPR107基因作为双内参也可达到geNorm软件推荐的4个内参数目组合的效果。
3. 讨论
山麦冬作为一种优良的地被园林植物及药用植物,研究多集中于提高栽培技术及块茎产量,而针对园林观赏应用的研究较少。在本研究之前没有山麦冬内参的研究报道,作为沿阶草族植物,其近源种也仅有麦冬Ophiopogon japonicus抗逆性研究中曾以微管蛋白基因(tubulin)[22]及Actin [23]作为参考基因。但这2类基因在前期转录组筛选中由于变异系数及变化倍数在候选内参中就已经被排除。本研究根据几何平均数的综合排名,推荐使用内参基因CNNM、GPR107、EF1-α、G6PD-2作为研究山麦冬花青素合成的最优内参组合。EF1-α、G6PD-2属于常见的内参基因,在植物生长发育、抗逆反应、代谢合成中已被广泛应用[24-25]。基于前期转录组数据,新型内参基因CNNM、GPR107也可作为RT-qPCR分析的内参基因,CNNM编码过渡金属转运蛋白,可参与多种金属吸收、排除及区分化[26],GPR107编码G蛋白偶联受体107,广泛存在于细胞表面的膜蛋白,可参与植物体多种细胞信号转导及调控机制保守[27]。上述2种基因在山麦冬果实中表达稳定,其相对表达量平均值与中位数相近,离散程度低,且表达量适中,符合内参基因的标准。在观赏植物中,由于新型内参基因稳定性强于传统内参基因,常被选用标准化目的基因的表达。例如,在异型花柱连翘Forsythia suspensa中,转录组中变化微小的未知基因是研究花开放最适合的内参基因[28];太行花Taihangia rupestris花器官有复杂的性别决定机制,鉴定两性花与雄性花的内参基因是编码铁硫簇组装蛋白、3-巯基丙酮酸硫转移酶与跨膜蛋白50的新型内参基因[11]。SmDnaJ基因在旱柳Salix matsudana各种非生物胁迫下表达最为稳定[29]。bHLH在观赏百合Lilium oriental×Trumpet hybrid体胚诱导、体胚发育中表达最稳定[30],但bHLH是植物颜色育种中的重要靶基因,并不适合作为本研究的内参基因候选,这也证实了不同目标性状需采用不同的内参基因,没有一种内参基因是普适的。
花青素合成路径在植物中是保守的,其中MYB转录因子与bHLH转录因子可形成二元复合体,激活花青素合成酶基因[31-32]。大量研究表明:MYB、bHLH转录因子基因与花青素合成酶基因在紫色系植物组织发育过程中协同上调[3, 33-34]。为验证内参基因的结果,挑选了10个在山麦冬花青素合成调控网络的中枢基因(相关性强且表达量高)作为验证,其中包括转录因子与结构基因(C4H、CHS、MT、UFGT、MYB、bHLH),这10种基因在4种归一化方法下表达模式均显著上调,但趋势稍有不同,选用较差内参PDP标准化结果偏差最大,在山麦冬成熟黑果中所有基因都显著高于其他基因。尽管最优内参基因CNNM对目的基因的归一化可以达到与4种内参组合很高的相关系数,但对UFGT基因的量化存在显著差异,而UFGT基因作为花青素合成通路的下游修饰,对花青素积累至关重要,特别是在山麦冬这类组织颜色深即富含花青素的类型[2, 35],例如在葡萄Vitis vinifera果皮[36]、玫瑰Rosa rugosa [37]、紫皮石刁柏Asparagus officinalis[33]中UFGT都被验证为关键基因,因此仅选用单一基因作为研究山麦冬果皮花青素积累的内参是不合适的,继而在CNNM基因基础上又引入GPR107来规避单内参基因的误差,该内参组合与geNorm推荐的内参组合相关系数最高,在10种目的基因的验证结果中与4种内参组合均无显著差异,且选用双内参组合比4种内参组合可操作性强,因此判定使用CNNM、GPR107作为双内参即可得到可靠的RT-qPCR结果。双内参组合联合使用可以减少实验因素对基因表达的影响,且结果更为准确。暴露于UV-B辐射下的番茄Lycopersicon esculentum幼苗不同组织都应选用特定的内参组合,例如叶中选用肌动蛋白基因与微管蛋白基因,而根中选用微管蛋白与UV-B抗性位点基因更加适合[38];UBQ和EF1-α基因由于表达稳定,可作为内参基因用于鹅掌草Anemone flaccida各器官的不同发育阶段[39]。
4. 结论
本研究基于转录组数据筛选了15个候选内参基因,分析其在山麦冬果实不同时期的表达稳定性。经过10种目的基因验证后,表明以CNNM、GPR107基因作为组合是山麦冬果实花青素生物合成研究的最佳内参基因,而常用的内参基因却并不适用于本研究,这为筛选新型内参基因提供了新思路。
-
表 1 土壤重金属污染评价指标及其分级标准
Table 1. Evaluation indexes and grading standards of soil heavy metal pollution
CF IPL 污染等级 E IR 风险等级 IER 预警等级 (0, 1] (0, 1] 无 (0, 40] (0, 150] 轻微 (−∞, 0] 无需 (1, 2] (1, 2] 轻度 (40, 80] (150, 300] 中等 (0, 1] 预警 (2, 3] (2, 3] 中度 (80, 160] (300, 600] 较强 (1, 3] 轻度 (3, +∞) (3, +∞) 重度 (160, 320] (600, 1200] 很强 (3, 5] 中度 (320, +∞) (1200, +∞) 极强 (5, +∞) 重度 说明:CF为单因子污染指数;IPL为污染负荷指数;E为各重金属单项潜在生态风险指数;IR综合潜在生态风险指数;IER为生态风险 预警指数 表 2 河南柿主产区土壤重金属质量分数统计
Table 2. Statistics of the heavy metals in soils from the main D. kaki producing area in Henan Province
产区 参数 质量分数/(mg·kg−1) 产区 参数 质量分数/(mg·kg−1) 砷 汞 铅 镉 铬 铜 砷 汞 铅 镉 铬 铜 安阳产区 均值 13.84 0.105 16.87 0.167 46.34 29.79 济源产区 均值 13.33 0.092 54.80 0.492 39.15 29.24 标准差 6.70 0.072 5.57 0.076 24.33 19.70 标准差 3.67 0.087 55.75 0.516 8.25 10.64 极小值 1.55 0.020 5.34 0.000 17.09 2.56 极小值 2.97 0.015 7.04 0.048 14.82 6.10 极大值 25.12 0.373 25.45 0.335 93.87 111.04 极大值 21.36 0.399 276.45 1.839 51.07 53.14 三门峡产区 均值 2.34 0.099 37.74 0.277 53.10 38.01 整个主产区 均值 9.84 0.099 36.47 0.312 46.20 32.35 标准差 2.30 0.097 42.18 0.131 9.38 19.72 标准差 7.01 0.085 42.97 0.336 16.63 17.50 极小值 1.22 0.032 9.64 0.081 35.29 18.71 极小值 1.22 0.015 5.34 0.000 14.82 2.56 极大值 14.12 0.543 204.00 0.847 87.12 128.90 极大值 25.12 0.543 276.45 1.839 93.87 128.90 表 3 河南省柿主产区土壤重金属变异系数和分布频次
Table 3. Coefficients of variation and frequency distribution of the heavy metals in soils from the main producing area of D. kaki of Henan Province
参数 产区 砷 汞 铅 镉 铬 铜 变异系数 安阳产区 0.48 0.69 0.33 0.45 0.53 0.66 济源产区 0.28 0.94 1.02 1.05 0.21 0.36 三门峡产区 0.98 0.98 1.12 0.47 0.18 0.52 整个主产区 0.71 0.86 1.18 1.08 0.36 0.54 中位数 整个主产区 11.41 0.08 22.42 0.21 44.72 29.47 偏度 整个主产区 0.25 2.72 3.32 2.60 0.77 2.95 峰度 整个主产区 −0.98 9.79 12.94 6.74 1.23 13.60 表 4 河南省柿主产区土壤重金属之间相关系数矩阵
Table 4. Correlations matrix of the heavy metals in soils from the main producing area of D. kaki of Henan Province
重金属 pH 砷 汞 铅 镉 铬 铜 pH 1.000 砷 0.177 1.000 汞 −0.119 0.105 1.000 铅 −0.116 0.123 0.410** 1.000 镉 −0.184 0.170 0.397** 0.784** 1.000 铬 −0.191 −0.237* 0.176 0.006 −0.042 1.000 铜 −0.085 −0.209* 0.085 0.299** 0.218* 0.264* 1.000 说明:* 表示显著相关(P<0.05),** 表示极显著相关(P<0.05) 表 5 河南省柿主产区土壤重金属主成分分析
Table 5. Principal component analysis of the heavy metals in soils from the main producing area of D. kaki of Henan Province
项目 因子 砷 汞 铅 镉 铬 铜 方差贡献率/% 累计贡献率/% 因子载荷 第1主成分 0.173 0.648 0.900 0.880 0.124 0.418 37.1 37.1 第2主成分 −0.726 0.006 −0.078 −0.173 0.730 0.608 34.4 71.5 表 6 不同区域单因子污染指数值及污染等级样点百分比
Table 6. Percentages of sites at different pollution levels in the total sample sites
各重金属污染指数 安阳产区 济源产区 平均值 标准差 无/% 轻度/% 中度/% 重度/% 平均值 标准差 无/% 轻度/% 中度/% 重度/% CF,砷 1.78 0.86 16.67 50.00 20.00 13.33 1.71 0.47 6.67 63.33 30.00 0 CF,汞 2.13 1.46 16.67 36.67 33.33 13.33 1.87 1.76 43.33 26.67 13.33 16.67 CF,铅 0.86 0.28 63.33 36.67 0 0 2.80 2.84 10.00 53.33 6.67 30.00 CF,镉 0.45 0.20 100 0 0 0 1.32 1.38 66.67 3.33 13.33 16.67 CF,铬 0.73 0.38 76.67 23.33 0 0 0.61 0.13 100 0 0 0 CF,铜 1.51 1.00 30.00 53.33 10.00 6.67 1.48 0.54 20.00 63.33 16.67 0 IPL 0.95 0.34 76.67 20.00 3.33 0 1.32 0.70 50.00 36.67 10.00 3.33 各重金属污染指数 三门峡产区 整个主产区 平均值 标准差 无/% 轻度/% 中度/% 重度/% 平均值 标准差 无/% 轻度/% 中度/% 重度/% CF,砷 0.30 0.29 96.67 3.33 0 0 1.26 0.90 40.00 38.89 16.67 4.44 CF,汞 2.02 1.97 26.67 46.67 10.00 16.67 2.01 1.73 28.88 36.67 18.89 15.56 CF,铅 1.93 2.15 30.00 53.33 3.33 13.33 1.86 2.19 34.45 47.78 3.33 14.44 CF,镉 0.74 0.35 96.67 3.33 0 0 0.83 0.90 87.78 2.22 4.44 5.56 CF,铬 0.83 0.15 96.67 3.33 0 0 0.72 0.26 91.11 8.89 0 0 CF,铜 1.93 1.00 3.33 73.33 16.67 6.67 1.64 0.89 17.78 63.34 14.44 4.44 IPL 0.96 0.35 50.00 50.00 0 0 1.08 0.52 58.89 35.56 4.44 1.11 表 7 不同区域潜在生态风险指数及污染等级样点百分比
Table 7. Percentages of sites at different risk levels in the total sample sites
各重金属
风险指数安阳产区 济源产区 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% E砷 17.76 8.60 100 0 0 0 0 17.11 4.71 100 0 0 0 0 E汞 85.25 58.44 20.00 33.33 36.67 10.00 0 74.86 70.39 43.33 26.67 23.33 3.33 3.33 E铅 4.30 1.42 100 0 0 0 0 13.98 14.22 96.67 3.33 0 0 0 E镉 13.44 6.07 100 0 0 0 0 39.50 41.40 66.67 10 23.33 0 0 E铬 1.45 0.76 100 0 0 0 0 1.23 0.26 100 0 0 0 0 E铜 7.56 5.00 100 0 0 0 0 7.42 2.70 100 0 0 0 0 IR 129.77 63.51 73.33 23.33 3.33 0 0 154.10 121.43 66.67 23.33 10 0 0 各重金属
风险指数三门峡产区 整个主产区 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% E砷 3.00 2.95 100 0 0 0 0 12.63 9.00 100 0 0 0 0 E汞 80.83 78.84 26.67 46.67 16.67 6.67 3.33 80.31 69.07 30.00 35.56 25.56 6.67 2.22 E铅 9.63 10.76 96.67 3.33 0 0 0 9.30 10.96 97.78 2.22 0 0 0 E镉 22.22 10.48 96.67 3.33 0 0 0 25.05 26.92 87.78 4.44 7.78 0 0 E铬 1.66 0.29 100 0 0 0 0 1.45 0.52 100 0 0 0 0 E铜 9.65 5.00 100 0 0 0 0 8.21 4.44 100 0 0 0 0 IR 126.99 85.31 76.67 20.00 3.33 0 0 136.95 92.95 72.22 22.22 5.56 0 0 表 8 不同区域生态风险预警指数及预警级别样点百分比
Table 8. Percentages of sites at different warning levels in the total sample sites
各重金属
预警指数安阳产区 济源产区 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% IER,砷 0.78 0.86 16.67 50.00 33.33 0 0 0.71 0.47 6.67 63.33 30.00 0 0 IER,汞 1.13 1.46 16.67 36.67 36.67 6.67 3.33 0.87 1.76 43.33 26.67 23.33 0 6.67 IER,铅 −0.14 0.28 63.33 36.67 0 0 0 1.80 2.84 10.00 53.33 16.67 6.67 13.33 IER,镉 −0.55 0.20 100 0 0 0 0 0.32 1.38 66.67 3.33 26.67 3.33 0 IER,铬 −0.27 0.38 76.67 23.33 0 0 0 −0.39 0.13 100 0 0 0 0 IER,铜 0.51 1.00 30.00 53.33 13.33 3.33 0 0.48 0.54 20.00 63.33 16.67 0 0 IER 1.45 2.36 33.33 13.33 33.33 10.00 10.00 3.79 6.14 33.33 23.33 6.67 10.00 26.67 各重金属
预警指数三门峡产区 整个主产区 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% IER,砷 −0.70 0.29 96.67 3.33 0 0 0 0.26 0.90 40.00 38.89 21.11 0 0 IER,汞 1.02 1.97 26.67 46.67 16.67 6.67 3.33 1.01 1.73 28.89 36.67 25.56 4.44 4.44 IER,铅 0.93 2.15 30.00 53.33 6.67 0 10 0.86 2.19 34.44 47.78 7.78 2.22 7.78 IER,镉 −0.26 0.35 96.67 0 3.33 0 0 −0.17 0.90 87.78 1.11 10.00 1.11 0 IER,铬 −0.17 0.15 96.67 3.33 0 0 0 −0.28 0.26 91.11 8.89 0 0 0 IER,铜 0.93 1.00 3.33 73.33 20.00 3.33 0 0.64 0.89 17.78 63.33 16.67 2.22 0 IER 1.75 3.98 43.33 23.33 13.33 6.67 13.33 2.33 4.51 36.67 20.00 17.78 8.89 16.67 -
[1] 张红桔, 赵科理, 叶正钱, 等. 典型山核桃产区土壤重金属空间异质性及其风险评价[J]. 环境科学, 2018, 39(6): 2893 − 2903. ZHANG Hongju, ZHAO Keli, YE Zhengqian, et al. Spatial variation of heavy metals in soils and its ecological risk evaluation in a typical Carya cathayensis production area [J]. Environ Sci, 2018, 39(6): 2893 − 2903. [2] 杨子鹏, 肖荣波, 陈玉萍, 等. 华南地区典型燃煤电厂周边土壤重金属分布、风险评估及来源分析[J]. 生态学报, 2020, 40(14): 4823 − 4835. YANG Zipeng, XIAO Rongbo, CHEN Yuping, et al. Heavy metal distribution, risk assessment and source analysis of soil around a typical coal-fired power plant in South China [J]. Acta Ecol Sin, 2020, 40(14): 4823 − 4835. [3] 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提. 新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警[J]. 生态学报, 2018, 38(3): 1075 − 1086. Mamattursun Eziz, Ajigul Mamut, Anwar Mohammad. Soil heavy metal pollution and ecological risk warning assessment of pepper field in Yanqi Basin, Xinjiang [J]. Acta Ecol Sin, 2018, 38(3): 1075 − 1086. [4] ISLAM M S, AHMED M K, RAKNUZZAMAN M, et al. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country [J]. Ecol Indic, 2015, 48: 282 − 291. [5] 麦尔哈巴·图尔贡, 麦麦提吐尔逊·艾则孜, 王维维. 吐鲁番盆地葡萄园土壤重金属污染状况及其潜在生态风险[J]. 中国环境监测, 2021, 37(1): 112 − 119. Marhaba Turhun, Mamattursun Eziz, WANG Weiwei. Heavy metal contamination and potential ecological risk of vineyard soil in Turpan Basin [J]. Environ Monit China, 2021, 37(1): 112 − 119. [6] 王敏, 董佳琦, 白龙龙, 等. 浙江省香榧主产区土壤重金属空间异质性及其生态风险[J]. 环境科学, 2021, 42(12): 5949 − 5957. WANG Min, DONG Jiaqi, BAI Longlong, et al. Spatial variation and risk assessment of heavy metals in soils of main Torreya grandis plantation region in Zhejiang Province [J]. Environ Sci, 2021, 42(12): 5949 − 5957. [7] ZINICOVSCAIA I, STURZA R, DULIU O, et al. Major and trace elements in Moldavian orchard soil and fruits: assessment of anthropogenic contamination[J/OL]. Int J Environ Res Public Health, 2020, 17: 7112[2021-09-21]. doi: 10.3390/ijerph17197112. [8] DONG Hongmei, ZHAO Jingbo, XIE Mengping. Heavy metal concentrations in orchard soils with different cultivation durations and their potential ecological risks in Shaanxi Province, Northwest China [J]. Sustainability, 2021, 13(9): 1 − 9. [9] YAN Mingshu, DING Xianglun, LEI Jiali, et al. Potential ecological and health risk assessment of different kiwifruit orchards in Qianjiang district, Chongqing City, China [J]. Environ Sci Poll Res, 2021, 28(3): 3088 − 3105. [10] 马佳燕, 马嘉伟, 柳丹, 等. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报, 2021, 38(2): 336 − 345. MA Jiayan, MA Jiawei, LIU Dan, et al. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu Plain [J]. J Zhejiang A&F Univ, 2021, 38(2): 336 − 345. [11] 刁松锋, 孙晓薇, 韩卫娟, 等. 柿12个品种苗期抗旱性综合评价及指标筛选[J]. 分子植物育种, 2019, 17(18): 6213 − 6227. DIAO Songfeng, SUN Xiaowei, HAN Weijuan, et al. Comprehensive evaluation and screening indexes of the drought resistance of twelve cultivars of Diospyros kaki at seedling stage [J]. Mol Plant Breeding, 2019, 17(18): 6213 − 6227. [12] 李世亮, 倪张林, 莫润宏, 等. 云贵川主产区核桃中重金属污染水平及其风险评估[J]. 林业科学, 2017, 53(11): 52 − 59. LI Shiliang, NI Zhanglin, MO Runhong, et al. The contents and risk assessments of heavy metals in walnuts from the main producing areas of Yunnan, Guizhou, Sichuan Provinces [J]. Sci Silv Sin, 2017, 53(11): 52 − 59. [13] 崔丽娟, 张曼胤. 鄱阳湖与长江交汇区陆域重金属含量研究[J]. 林业科学研究, 2006, 19(3): 307 − 310. CUI Lijuan, ZHANG Manyin. The content of heavy metals in the terrestrial area at the intersection of Poyanghu Lake and Yangtse River [J]. For Res, 2006, 19(3): 307 − 310. [14] 生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment. Soil Environment Quality Risk Control Standard for Soil Contamination of Agriculture Land (Trial Implementation): GB 15618−2018[S]. Beijing: China Standards Press, 2018. [15] 郑国璋. 农业土壤重金属污染研究的理论与实践[M]. 北京: 中国环境科学出版社, 2007. ZHENG Guozhang. Theory and Practice of Research on Heavy Metal Pollution in Agricultural Soil[M]. Beijing: China Environmental Science Press, 2007. [16] TOMLINSON D L, WILSON J G, HARRIS C R, et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index [J]. Helgoländer Meeresuntersuchungen, 1980, 33(1/4): 566 − 575. [17] 张怀志, 冀宏杰, 徐爱国, 等. 潍坊市菜地重金属调查与环境风险评价研究[J]. 生态环境学报, 2017, 26(12): 2154 − 2160. ZHANG Huaizhi, JI Hongjie, XU Aiguo, et al. Investigation and environmental risk assessment of heavy metal elements in vegetable farmland of Weifang City [J]. Ecol Environ Sci, 2017, 26(12): 2154 − 2160. [18] 赵斌, 朱四喜, 杨秀琴, 等. 贵州草海菜地表层土壤重金属污染特征及生态风险评价[J]. 生态环境学报, 2018, 27(4): 776 − 784. ZHAO Bin, ZHU Sixi, YANG Xiuqin, et al. Characteristics of heavy metals pollution and ecological risk assessment of the surface soils in the vegetable fields around Caohai in Guizhou [J]. Ecol Environ Sci, 2018, 27(4): 776 − 784. [19] CAO Z H, ZHANG H C. Phosphorus losses to water from lowland rice fields under rice-wheat double cropping system in the Tai Lake region [J]. Environ Geochem Health, 2004, 26(2): 229 − 236. [20] 杨硕, 阎秀兰, 冯依涛. 河北曹妃甸某农场农田土壤重金属空间分布特征及来源分析[J]. 环境科学学报, 2019, 39(9): 3064 − 3072. YANG Shuo, YAN Xiulan, FENG Yitao. Spatial distribution and source identification of heavy metals in the farmland soil of the Caofeidian in Hebei Province [J]. Acta Sci Circumstant, 2019, 39(9): 3064 − 3072. [21] 苏姝, 王颖, 刘景, 等. 长期施肥下黑土重金属的演变特征[J]. 中国农业科学, 2015, 48(23): 4837 − 4845. SU Shu, WANG Ying, LIU Jing, et al. Evolution characteristics of heavy metals in the black soil under long-term fertilization [J]. Sci Agric Sin, 2015, 48(23): 4837 − 4845. [22] MENG Weiqing, WANG Zuwei, HU Beibei, et al. Heavy metals in soil and plants after long-term sewage irrigation at Tianjin, China: a case study assessment [J]. Agricl Water Manage, 2016, 171: 153 − 161. [23] GUO Guanghui, WU Fengchang, XIE Fazhi, et al. Spatial distribution, and pollution assessment of heavy metals in urban soils from southwest China [J]. J Environ Sci, 2012, 24(3): 410 − 418. [24] 秦鱼生, 喻华, 冯文强, 等. 成都平原北部水稻土重金属含量状况及其潜在生态风险评价[J]. 生态学报, 2013, 33(19): 6335 − 6344. QIN Yusheng, YU Hua, FENG Wenqiang, et al. Assessment on heavy metal pollution status in paddy soils in the northern Chengdu Plain and their potential ecological risk [J]. Acta Ecol Sin, 2013, 33(19): 6335 − 6344. [25] 郭晓东, 孙岐发, 赵勇胜, 等. 珲春盆地农田重金属分布特征及源解析[J]. 农业环境科学学报, 2018, 37(9): 1875 − 1883. GUO Xiaodong, SUN Qifa, ZHAO Yongsheng, et al. Distribution and sources of heavy metals in the farmland soil of the Hunchun basin of Jilin Province, China [J]. J Agro-Environ Sci, 2018, 37(9): 1875 − 1883. [26] CAI Limei, XU Zhencheng, REN Mingzhong, et al. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China [J]. Ecotoxicol Environ Saf, 2012, 78: 2 − 8. [27] LUO Xinghua, WU Chuan, LIN Yongcheng, et al. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization[J/OL]. J Environ Sci, 2022 [2021-09-21]. doi:10.1016/j.jes.2022.01.029. [28] ZERIZGHI T, GUO Qingjun, TIAN Liyan, et al. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area[J/OL]. Sci Total Environ, 2022, 814: 152653[2021-09-21]. doi: 10.1016/j.scitotenv.2021.152653. [29] 王小彬, 闫湘, 李秀英, 等. 燃煤烟气脱硫石膏农用的环境安全风险[J]. 中国农业科学, 2018, 51(5): 926 − 939. WANG Xiaobin, YAN Xiang, LI Xiuying, et al. Environment risk for application of flue gas desulfurization gypsum in soils in China [J]. Sci Agric Sin, 2018, 51(5): 926 − 939. [30] QIN Guowei, NIU Zhaodong, YU Jiangdong, et al. Soil heavy metal pollution and food safety in China: effects, sources and removing technology[J/OL]. Chemosphere, 2021, 267: 129205[2021-09-21]. doi: 10.1016/j.chemosphere.2020.129205. 期刊类型引用(1)
1. 赵雨,林琳,王群,张国哲,王杰,尚林雪,洪思丹,马清清,顾翠花. 不同组织及干旱胁迫下黄薇内参基因的筛选与验证. 浙江农林大学学报. 2023(03): 665-672 . 本站查看
其他类型引用(1)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210721