留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

文冠果不同种质资源的叶片解剖结构分析及抗旱性评价

许慧慧 刘肖娟 王孟珂 毕泉鑫 王利兵 于海燕

李芳燕, 夏晓雪, 吴梦洁, 等. 巨桉EgrCIN1响应非生物逆境的分析[J]. 浙江农林大学学报, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
引用本文: 许慧慧, 刘肖娟, 王孟珂, 等. 文冠果不同种质资源的叶片解剖结构分析及抗旱性评价[J]. 浙江农林大学学报, 2023, 40(2): 348-355. DOI: 10.11833/j.issn.2095-0756.20220202
LI Fangyan, XIA Xiaoxue, WU Mengjie, et al. Response of Eucalyptus grandis EgrCIN1 to abiotic stress[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
Citation: XU Huihui, LIU Xiaojuan, WANG Mengke, et al. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. DOI: 10.11833/j.issn.2095-0756.20220202

文冠果不同种质资源的叶片解剖结构分析及抗旱性评价

DOI: 10.11833/j.issn.2095-0756.20220202
基金项目: 国家自然科学基金资助项目(31870594,31901348);国家科技基础资源调查专项(2019FY100802)
详细信息
    作者简介: 许慧慧(ORCID: 0000-0003-0850-8960 ),从事经济林研究。E-mail: 2425779474@qq.com
    通信作者: 于海燕(ORCID: 0000-0003-0826-9429 ),研究员,博士,从事经济林研究。E-mail: yuhaiyan@caf.ac.cn
  • 中图分类号: S722

Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium

  • 摘要:   目的  评价文冠果Xanthoceras sorbifolium不同种质资源在干旱地区的适应能力,为干旱、半干旱地区筛选抗旱文冠果种质提供依据。  方法  以内蒙古自治区通辽市文冠果种质资源圃内前期筛选的200份丰产型文冠果种质资源的叶片为材料,通过制作石蜡切片对叶片解剖结构进行观测,测定了叶片厚度、栅栏组织厚度、海绵组织厚度、蜡质层厚度等13个与文冠果抗旱性相关的指标,并基于因子分析、聚类分析和隶属函数分析的方法评价不同文冠果种质资源的抗旱性。  结果  文冠果叶片解剖结构指标之间具有显著的相关性,基于因子分析法提取了4个公因子,对变异的累计贡献率达89.99%,涵盖了13个指标的大部分信息,对文冠果抗旱性的影响程度依次为:F1 (厚度指数因子)>F2 (组织指数因子)>F3 (表皮占比因子)>F4 (蜡质层占比因子)。  结论  F1公因子中载荷较大的上/下表皮厚度、栅栏组织厚度和导管直径可作为评价文冠果抗旱性的主要指标。筛选出的90份抗旱型种质资源能兼顾丰产和节水抗旱的优点,可为干旱地区提供适宜的种质材料。图1表6参32
  • 低温是限制植物生长和发育的主要逆境因子。较低的温度会损伤植物细胞的膜结构,抑制酶活性,诱导活性氧产生,破坏代谢平衡等,引起植物生长受阻、早衰甚至死亡[1]。世界上只有三分之一的陆地面积温度在冰点以上,却有42%的陆地会经历−20 ℃以下的低温,因此低温也是限制植物地理分布的重要因素[2]。为了应对低温胁迫,植物在长期进化过程中逐渐形成了低温适应机制,用来提高植物耐受低温逆境的能力,降低低温胁迫伤害。在代谢层面上,植物可以通过提高可溶性糖、游离脯氨酸等小分子渗透调节物,以及抗氧化酶过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)等的活性来增加对低温的耐受力[3]。分子层面上,低温下植物细胞膜的流动性降低,膜蛋白的构象发生改变,进而使膜刚性增加,细胞膜的这些物理变化为膜上低温受体对低温的感受提供了基础。植物细胞的受体感受低温信号后,通过提高细胞质中的钙离子(Ca2+)水平,并与Ca2+结合蛋白结合,作为二级信号激活抗寒相关转录因子,调控耐寒相关基因,实现低温胁迫响应[4]。目前,低温响应的分子调控途径中,ICE1-CBF-COR途经被认为是植物响应耐寒胁迫的主要途径[5]。低温通过Ca2+信号引发蛋白激酶磷酸化脱落酸(ABA)信号调控途径中的蛋白激酶OST1 (open stomata1,气孔开放1)/SnRK2.1 (SNF1-related protein kinase 2.1,SNF1相关蛋白激酶2.1),磷酸化的OST1与bHLH类转录因子ICE1结合并将其磷酸化,稳定ICE1的活性,使其稳定结合在CBF (C-repeat binding factor,C-重复结合因子)基因上,激活它们的表达。CBF转录因子会进一步启动冷响应相关基因CORs (cold responsive,低温响应),如编码渗透调节物质合成酶以及低温保护蛋白COR、LT1 (low temperature 1,低温1)和CIN (cold-induced,冷诱导)基因等,提高植物的低温适应性[6-7]。除此之外,植物激素[8]和ROS (reactive oxygen species,活性氧)[9]也参与了植物低温响应的调控。

    植物细胞中,低温的响应和调控主要发生在细胞质和细胞核中,但叶绿体在低温响应中也发挥了重要作用。叶绿体不仅是低温响应二级信号分子ROS产生的主要场所[10],还参与水杨酸(SA)[11]、茉莉酸(JA)[12]、ABA[13]以及脯氨酸[14]等的生物合成。这些物质在植物低温响应中都产生了积极效应。因此,参与叶绿体生物活性的相关基因在低温逆境响应中也发挥了重要的功能。近年来,研究者发现叶绿体产生的ROS等信号分子可以通过逆行性信号传递途径进入细胞核来调控核基因的表达,以实现植物对环境的适应[15]。但叶绿体参与低温胁迫响应的具体分子机制大多不清楚。随着人们对植物逆境生物学研究重视程度的提高,越来越多参与植物非生物逆境响应的基因被挖掘出来,这些基因中有些响应特异逆境,也有些能够响应多种逆境,表明植物响应逆境的分子机制非常复杂的。尽管已经确定了相当数量逆境响应基因的功能,但仍有很多功能未知的基因响应非生物逆境胁迫[16]

    Eucalyptus树是世界上生长最快的木本植物之一,作为重要的用材树种广受欢迎,但大部分桉树对低温的耐受程度比较差。以桉树为材料研究它们的耐低温分子机制,深入挖掘低温胁迫响应相关的基因资源,对桉树的栽培和育种都有促进作用[17]EgrCIN1 (cold induced 1)是一个随低温处理时间延长表达不断增强的基因。亚细胞定位表明其表达的蛋白定位在巨桉Eucalyptus grandis叶绿体中。本研究通过对该基因及其编码蛋白序列特征的分析和在拟南芥Arabidopsis thaliana中异源过表达后转基因株系对低温的响应等实验,分析该基因响应低温胁迫的功能。

    巨桉为保存于浙江农林大学苗圃的G5扦插无性系材料。拟南芥野生型为哥伦比亚生态型,生长于浙江农林大学智能实验楼拟南芥生长室,生长条件为25 ℃ 16 h光照/22 ℃ 8 h黑暗,相对湿度为65%,光照强度为100 µmol·m−2·s−1

    根据EgrCIN1的编号(Eucgr.B02882)在phytozome (https://phytozome-next.jgi.doe.gov)中获取其基因、蛋白序列。使用ProtParam (http://web.expasy.Org/protparam/)分析EgrCIN1蛋白的相对分子量、理论等电点;使用PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1)在线预测其二级结构;使用TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)进行跨膜结构预测;利用Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)对EgrCIN1在细胞中的表达位置进行预测;同时截取EgrCIN1基因起始密码子ATG上游1 500 bp的序列作为其启动子,使用在线分析网站Plant Care (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)分析EgrCIN1基因启动子上的顺式作用元件。

    1.3.1   4 ℃低温不同处理时间下的表达分析

    取6个月苗龄的巨桉G5无性系幼苗,于低温生长箱(Snijder,荷兰)中进行0.5、2.0、6.0、12.0、24.0、48.0 h的4 ℃低温处理。8 h光照/16 h黑暗,相对湿度为60%,光照强度为150 µmol·m−2·s−1。同时分别以正常温度(白天26 ℃,晚上22 ℃,湿度、光照与处理相同)条件下生长的G5无性系幼苗为对照(ck)。3株幼苗为1个处理组,设置3次重复。处理结束后,取叶片置于液氮速冻。

    1.3.2   组织特异性分析

    分别取6个月苗龄的巨桉G5无性系幼苗根、茎、嫩叶(顶端新生叶片)以及成熟叶片各100 mg,置于液氮速冻,待测。

    1.3.3   干旱、高盐、ABA、茉莉酸甲酯(MeJA)处理下的表达分析

    选取长势一致、6个月苗龄的巨桉G5无性系幼苗,分别进行干旱、高盐、ABA、MeJA等4种胁迫处理。干旱、高盐处理:干旱组不浇水即可;高盐处理组每次浇灌300 mmol·L−1氯化钠(NaCl)溶液200 mL,间隔12 h续浇1次;对照组浇灌等量清水,连续处理1周。ABA、MeJA处理:分别配制浓度为100 μmol·L−1的ABA和MeJA溶液,均匀喷洒在幼苗叶片上,对照组喷施等量清水,12 h处理1次,共处理24 h。每个处理3个植株,重复3次。处理结束后选择相同叶位的成熟叶片取样。

    1.3.4   RNA提取

    使用TIANGEN总RNA提取试剂盒(DP432),利用PrimerScript TM RT reagent Kit (TaKaRa,日本)试剂盒将RNA反转录为cDNA。设计引物(表1),以EgrACTIN为内参,用TB Green Premix Ex Taq Ⅱ(Tli RNaseH Plus)试剂盒(TaKaRa,日本)进行EgrCIN1基因表达的实时荧光定量PCR (RT-qPCR)实验,分析EgrCIN1在巨桉不同组织中及不同逆境处理后的表达情况。

    表 1  引物列表
    Table 1  Primers
    用途引物名称引物序列(5′→3′)
    35S::EgrCIN1载体构建 35S::EgrCIN1-F cgggggtaccATGGCTTCTTCACCTTGCAAAA
    35S::EgrCIN1-R gctctagaTCATCGGACATGGGGAATTACA
    35S::EgrCIN1::GFP载体构建 EgrCIN1::GFP-F gctctagaATGGCTTCTTCACCTTGCAAAA
    EgrCIN1::GFP-R cgggggtaccTCGGACATGGGGAATTACA
    半定量PCR EgrCIN1-F AGCCTATGCTTGTACTCCACCA
    EgrCIN1-R TTGCCGCCCTCGGCGCGGATGA
    AtACTIN-F TAGGCCAAGACATCATGGTGTCAT
    AtACTIN-R GTTGTACGACCACTGGCGTACAAG
    RT-qPCR EgrACTIN-F CCCGCTATGTATGTCGC
    EgrACTIN-R AAGGTCAAGACGGAGGAT
    qEgrCIN1-F ATGGCTTCTTCACCTTGCAAAA
    qEgrCIN1-R TCATCGGACATGGGGAATTACA
      说明:引物前小写字母为酶切位点及保护碱基
    下载: 导出CSV 
    | 显示表格

    以改造过的pCAMbia1300-GFP载体为骨架,在phytozome上获得EgrCIN1的转录本序列,去掉终止密码子后使用Primer Premier 5设计上下游引物并在引物2端分别添加Kpn Ⅰ和Xba Ⅰ酶切位点及保护碱基(表1),基因克隆后进行EgrCIN1::GFP融合载体构建。重组的阳性克隆提取质粒后,利用电转法转入农杆菌Agrobacterium tumetacie GV3101中。瞬时转化烟草Nicotiana tabacum叶片,共培养2 d后用激光共聚焦显微镜(ZEISS,LSM510,德国)观察并拍照。GFP荧光观察激发光波长设置为488 nm,吸收光波长为500~525 nm;观察叶绿素荧光时激发光波长设置为552 nm,吸收光波长则为620~650 nm。

    以含35S启动子的pCAMBIA1301为载体骨架,选取多克隆位点处的Xba Ⅰ和Kpn Ⅰ作为酶切位点,设计EgrCIN1带酶切位点的全长基因引物(表1),PCR扩增,鉴定后进行35S::EgrCIN1载体构建。电击转化农杆菌GV3101,蘸花法侵染拟南芥。种子收获后,在含25 μg·mL−1潮霉素B (Hygromycin B,罗氏,瑞士)的1/2 MS培养基进行阳性株系筛选,获得的阳性株系培养一段时间后,提取叶片基因组DNA,利用EgrCIN1基因特异引物(表1)进行分子鉴定。阳性株系继续繁殖、筛选,直至获得T3代转基因纯合株系。

    经筛选获得3个超表达EgrCIN1转基因纯合株系,纯合株系植株种植10 d后,提取叶片RNA,反转录为cDNA,设计引物(表1),以AtACTIN为内参,进行半定量PCR实验。

    野生型和EgrCIN1过表达株系种子经体积分数为75%乙醇消毒后,播种在1/2 MS培养基上,4 ℃春化处理2 d。低温处理:培养基上培养1周后的野生型和转基因株系幼苗分别移栽至育苗盆中,每盆中野生型和1个转基因株系各移栽4株。生长2周后,在低温培养箱中−6 ℃处理12 h后移至正常生长条件下恢复1周,观察表型并拍照。每个株系处理3盆,重复3次。实验结束后统计野生型(COL)和各株系的存活率。ABA处理:野生型和3个过表达株系分别播于含0.5 μmol·L−1 ABA的培养基上,生长10 d后,观察表型并拍照。

    定量结果采用2-ΔΔCt[18]方法计算;作图软件为GraphPad Prism ver 6.01;使用SPSS 16.0进行显著性检验,分析方法选择单因素方差分析,默认置信区间95%。

    课题组前期从巨桉4 ℃低温处理2 h的转录组中筛选到1个表达受到低温强烈诱导的基因,将其命名为EgrCIN1 (cold induced 1)。Phytozome数据库中该基因的序列号为Eucgr.B02882。为进一步了解EgrCIN1对低温的响应,利用RT-qPCR技术对4 ℃不同处理时间(0.5、2.0、6.0、12.0、24.0、48.0 h)的巨桉无性系幼苗进行EgrCIN1表达特性分析。结果表明(图1):除了处理0.5 h的植株中EgrCIN1基因的表达水平与未处理植株(对照)相比没有显著差异外,随处理时间的延长,EgrCIN1的表达水平逐渐升高,处理48.0 h时,其表达水平已经达到了对照的48.6倍。48.0 h后,叶片萎蔫严重,明显受到低温生理伤害,故未进一步取样分析。可见,EgrCIN1表达明显受低温诱导,且随处理时间的延长表达有增强的趋势。

    图 1  4 ℃低温处理不同时间下EgrCIN1的定量表达         
    Figure 1  Relative expression of EgrCIN1 gene under 4 ℃ low temperature treatment for different time

    根据巨桉数据库获取信息和相关分析可知:该基因开放阅读框全长579 bp,不含内含子。编码含有192个氨基酸的蛋白,等电点为6.98,相对分子量为20.80 kDa。该基因编码的蛋白既没有旁系同源物,也没有直系同源物,是巨桉中特有且唯一的蛋白。

    利用PSIPRED对EgrCIN1编码的蛋白的二级结构预测表明:该蛋白含有2个β转角和7个ɑ螺旋,其余部分则为无规则卷曲(图2A)。利用TMHMM对EgrCIN1蛋白序列跨膜结构的预测则表明:序列中所有氨基酸序列位点的跨膜概率均小于0.02,没有明显跨膜区域(图2B),说明其不是膜蛋白。亚细胞定位预测结果显示:EgrCIN1编码的蛋白可能在叶绿体、线粒体、细胞质及细胞核中都能表达。

    图 2  EgrCIN1蛋白二级结构(A)和跨膜结构(B)预测
    Figure 2  Prediction of EgrCIN1 protein secondary structure (A) and transmembrane structure (B)

    EgrCIN1的启动子上分布的顺式作用元件进行了分析,发现在EgrCIN1启动子上分布着多个与植物非生物逆境胁迫响应密切相关的顺式作用元件(表2),其中脱落酸应答元件(ABA response element, ABRE) 2个,乙烯响应元件(ethylene response element, ERE) 1个,低温响应元件(low temperature response element, LTR) 1个,植物转录因子MYB识别序列(MYB recongnition site)、MYC结合序列均为干旱和ABA响应元件,分别有4和6个。表明该基因的表达可能受到逆境胁迫的调控。

    表 2  EgrCIN1基因启动子上的顺式作用元件
    Table 2  Cis-elemtents in the promoter of EgrCIN1
    名称位置基序(5′→3′)数量功能
    ABRE 1 165−、1 165+ GTGCAC 2 ABA响应元件
    ERE 706+ ATTTAAA 1 乙烯响应元件
    LTR 420− AAAGCC 1 低温响应元件
    MYB 1 378+、1 152−、1 330+、1 378+ TAACCA 4 干旱、ABA响应元件
    MYC 104−、935−、630−、622+、1 015−、668+ CATTTG 6 干旱、ABA响应元件
    W-box 1 012−、1 280−、1 149− TTGACC 3 真菌诱导反应元件
      说明:+表示正义链,−表示反义链
    下载: 导出CSV 
    | 显示表格

    通过RT-qPCR分析EgrCIN1在不同组织中的表达情况,结果表明:EgrCIN1在嫩叶、成熟叶和茎中都有表达,且在茎中的表达量最高,而在根中却没有表达(图3)。

    图 3  EgrCIN1在巨桉不同组织中的定量表达
    Figure 3  Quantitative expression of EgrCIN1 in different tissues of E. grandis

    由于EgrCIN1为巨桉特有的基因,尚无其功能信息的研究,本研究构建了EgrCIN1::GFP表达载体,针对其编码蛋白在细胞中发挥功能的位置进行了亚细胞定位分析。结果表明:EgrCIN1蛋白与烟草叶片中的叶绿体具有共定位效应,表明EgrCIN1是在叶绿体中发挥作用的蛋白(图4)。

    图 4  EgrCIN1蛋白在烟草表皮细胞中的表达(标尺为50 μm)
    Figure 4  Expression of EgrCIN1 protein in tobacco epidermis cell(the bar is 50 μm)

    通过遗传转化后,从中筛选获得3个转基因株系:EgrCIN1-OE3、EgrCIN1-OE7和EgrCIN1-OE9。利用RT-qPCR技术对这3个株系中EgrCIN1的基因表达情况进行分析,结果表明:EgrCIN1在3个株系中都有明显的表达(图5)。

    图 5  野生型和EgrCIN1过表达转基因株系中EgrCIN1的半定量PCR
    Figure 5  Semi-quantitative PCR of EgrCIN1 in wild type and EgrCIN1 overexpression transgenic lines

    对3个拟南芥过表达转基因株系进行−6 ℃低温处理12 h,随后置于正常生长条件下生长1周。结果发现:−6 ℃低温处理对转基因株系和野生型都会造成低温伤害,但转基因株系的恢复情况明显好于野生型(图6A)。统计不同株系的存活率发现,野生型存活率为30.53%,而EgrCIN1-OE3、EgrCIN1-OE7和EgrCIN1-OE9等3个转基因株系分别达到了77.77%、86.07%和88.83% (图6B),表明EgrCIN1的超表达在一定程度上可以提高植株的抗寒性。

    图 6  野生型和EgrCIN1转基因株系低温处理后的表型(A)和存活率(B)
    Figure 6  Phenotype (A) and survival (B) of wild-type and EgrCIN1 transgenic lines after cold treatment

    植物低温响应分子调控途径有ABA依赖型和ABA非依赖型。针对EgrCIN1参与的抗寒性途径是否有ABA参与的这一问题,对转基因株系进行了ABA处理。结果表明:在0.5 μmol·L−1 ABA处理10 d后,3个转基因株系受到的ABA抑制作用明显强于野生型(图7),说明ABA也参与了EgrCIN1功能的发挥。

    图 7  野生型和EgrCIN1过表达株系0.5 μmol·L−1 ABA处理10 d后的表型
    Figure 7  Phenotypes of wild-type and EgrCIN1 overexpression lines treated with 0.5 μmol·L−1 ABA after 10 days

    由于不同非生物逆境因子之间往往存在相互作用,为了进一步了解其他非生物逆境因子对EgrCIN1的影响,分别分析了EgrCIN1在巨桉幼苗干旱、高盐、ABA和MeJA处理下的表达情况。结果表明:干旱和高盐处理都能诱导EgrCIN1的表达,干旱处理下EgrCIN1的表达量是对照的35.1倍;300 mmol·L−1 NaCl处理下EgrCIN1表达量则上调了16.4倍(图8A)。但EgrCIN1的拟南芥过表达转基因株系在干旱和高盐处理下与野生型相比没有显著的表型差异。此外,外源喷施ABA也能促进EgrCIN1的表达,而100 μmol·L−1 MeJA处理下,和对照相比EgrCIN1的表达并未发生显著变化(图8B)。

    图 8  巨桉幼苗高盐、干旱(A)和ABA、MeJA(B)处理下EgrCIN1的定量表达
    Figure 8  Quantitative expression of EgrCIN1 in E. grandis seedlings under high salt, drought (A) and ABA, MeJA (B) treatments

    EgrCIN1是巨桉中一个受低温诱导的未知功能的基因,本研究表明:它随着低温处理时间的延长,表达水平不断提高,显示其参与了巨桉的低温胁迫响应。基因、蛋白质序列的结构特征分析,以及多序列比对和可能功能域的搜索结果都表明该基因是巨桉中一个特有的新基因。启动子上顺式作用元件的预测也表明其表达可能受低温相关因素和信号的影响。组织特异性表达分析则表明该基因主要在巨桉茎和叶中表达,而根中没有表达。显示其可能主要在植株地上部分发挥作用。对于EgrCIN1功能的进一步研究有可能为揭示桉树低温适应性新机制提供基础。

    叶绿体在植物低温响应过程中处于中心枢纽的位置,一方面植物抵抗低温的能力取决于低温下的叶片光合活性。另一方面,叶绿体中参与光合作用的光反应中心酶活性受到抑制,进而引发PSⅡ的光能溢出效应,导致ROS积累,产生控制核基因表达的逆行性信号,调控低温响应基因表达,提高植株适应性[19]。在一定程度上,叶绿体的抗低温程度与整体植株的抗寒性密切相关。因此,叶绿体冷诱导相关的基因受到了极大的关注和重视。很多冷诱导基因在叶绿体中表达,并参与植物的低温逆境响应。针叶福禄考Phlox subulata中PsCor413im1蛋白在叶绿体膜上表达,超表达PsCor413im1的拟南芥株系在低温和冷冻逆境下,存活率和种子发芽率都有较大程度的提高[20]。拟南芥中的NAC102在叶绿体中作为抑制因子参与叶绿体基因的表达,并介导ROS对低温响应基因ZAT6、ZAT10和ZAT12等的调控[21-22];冷调控蛋白COR15A和COR15B在低温条件下也可以通过结构的改变稳定叶绿体的膜结构,实现拟南芥对低温的适应性[23]。这些结果表明:叶绿体中表达的低温诱导基因有可能成为植物低温驯化的重要靶标。尽管利用生物信息学软件预测EgrCIN1编码蛋白在叶绿体、线粒体、细胞质以及细胞核中都可能存在,但亚细胞定位结果表明其可能仅在叶绿体中表达。因此被低温强烈诱导的EgrCIN1基因表达的蛋白也定位在叶绿体中,表明其在桉树中同样有可能是叶绿体中参与低温耐受性提高的重要候选基因。拟南芥中过表达EgrCIN1株系低温处理下的结果说明了该基因的确参与了植物的低温胁迫响应,能够提高植株对低温的耐受程度。另外,该基因在不同叶绿体中表达的强度有所差异,同时并非所有叶绿体中都有该基因的表达。这可能与瞬时表达过程中该基因在不同叶绿体中表达的强度不同有关,也可能是该基因在叶绿体不同发育阶段表达模式不同。

    ABA在植物低温响应中也发挥了重要作用[24-25],包含叶绿体在内的质体是ABA生物合成开始的场所[13]。ABA在叶绿体中与逆境胁迫相关基因表达的蛋白互作调控植物对逆境的适应性。如小立碗藓Physcomitrella patens中,ABA介导了叶绿体蛋白PpCOR413im对植物低温逆境适应性的调控[26]。拟南芥中过表达匍匐剪股颖Agrostis stolonifera叶绿体定位蛋白AsHSP26.8a,可以通过调控ABA信号途径提高转基因植株对低温的抗性水平[27]EgrCIN1的过表达株系对外源ABA表现出敏感性提高的表型,同时转基因植株对低温的抗性也得到了增强,这与AsHSP26.8a作用相似。暗示ABA合成或者信号途径可能也参与了EgrCIN1对低温逆境响应的调控。同时,在巨桉中,ABA的处理也能在一定程度上诱导EgrCIN1的表达,表明ABA合成或者信号途径可能也参与了EgrCIN1功能发挥的调控。因此,EgrCIN1一方面可能受到低温等非生物逆境信号诱导而参与ABA生物合成或者信号转导对逆境响应的调控;另一方面,ABA也极可能直接影响EgrCIN1的表达,参与其功能的调控。另外,干旱、高盐也能强烈诱导EgrCIN1的表达,但实验过程中EgrCIN1拟南芥过表达转基因株系并未表现出明显的耐旱、耐盐表型,显示EgrCIN1在拟南芥和巨桉的非生物逆境响应中发挥的功能可能不同,同时也表明EgrCIN1在植物非生物逆境响应中发挥的功能比较复杂,需要进一步研究以揭示其在巨桉低温等非生物逆境响应中的功能。

    本研究表明:EgrCIN1是巨桉中特有的一个基因,受低温强烈诱导,在叶绿体中表达。其拟南芥过表达转基因株系提高了对低温的耐受性,同时对ABA的敏感程度也被增强。这表明EgrCIN1有可能是存在叶绿体中,通过与ABA互作,以ABA依赖形式的途径参与了植物对低温逆境的响应。但仍有很多问题需要进一步深入研究,如EgrCIN1是否与叶绿体的发育有关系,与ABA采用什么样的互作方式共同参与植物对低温逆境适应性的调控,在干旱、高盐等其他非生物逆境响应中的作用等。

  • 图  1  2种类型文冠果种质资源的叶片解剖结构特征

    Figure  1  Leaf anatomical structure characteristics of 2 types of X. sorbifolium

    表  1  文冠果叶片解剖结构13个指标统计分析

    Table  1.   Statistics of 13 characters of leaf anatomical structure in X. sorbifolium

    指标最小
    值/μm
    最大
    值/μm
    均值/
    μm
    标准
    偏差
    变异系
    数/%
    叶片厚度(LT) 60.22 270.04 140.90 50.99 36.19
    上表皮厚度(TU) 3.97 24.10 11.95 5.22 43.65
    下表皮厚度(TL) 4.26 21.36 10.13 4.04 39.87
    栅栏组织厚度(TP) 22.34 182.31 62.66 28.22 45.04
    海绵组织厚度(TS) 20.30 104.51 51.90 17.08 32.92
    蜡质层厚度(LCT) 1.23 10.44 3.86 1.97 51.17
    导管直径(VD) 4.03 25.01 9.74 4.41 45.31
    栅海比(P/S) 35.26 263.46 121.69 38.93 32.00
    上表皮占比(PU) 4.27 17.96 8.40 1.73 20.59
    下表皮占比(PL) 4.19 21.34 7.26 1.84 25.28
    蜡质层占比(PLCT) 1.25 5.43 2.68 0.74 27.47
    组织结构紧密度(CTR) 23.08 93.76 43.79 8.22 18.78
    组织结构疏松度(SR) 22.81 90.89 37.93 7.72 20.35
      说明:样本数为200
    下载: 导出CSV

    表  2  200份文冠果叶片解剖结构13个性状的相关性分析

    Table  2.   Correlation between 13 traits of leaf anatomical structure in 200 X. sorbifolium samples

    指标LTTUTLTPTSLCTVDP/SPUPLPLCTCTRSR
    LT 1
    TU 0.890** 1
    TL 0.823** 0.881** 1
    TP 0.903** 0.827** 0.754** 1
    TS 0.832** 0.726** 0.734** 0.653** 1
    LCT 0.832** 0.772** 0.769** 0.783** 0.719** 1
    VD 0.851** 0.86** 0.829** 0.785** 0.711** 0.741** 1
    P/S 0.393** 0.405** 0.313** 0.678** −0.075 0.366** 0.362** 1
    PU 0.139* 0.552** 0.452** 0.187** 0.115 0.195** 0.334** 0.152** 1
    PL −0.110 0.146* 0.447** −0.061 0.016 0.056 0.117 −0.064 0.595** 1
    PLCT 0.214** 0.263** 0.357** 0.252** 0.233** 0.691** 0.261** 0.157* 0.221** 0.309** 1
    CTR 0.230** 0.276** 0.251** 0.602** −0.021 0.266** 0.248** 0.838** 0.227** 0.137 0.213** 1
    SR −0.394** −0.354** −0.220** −0.493** 0.154* −0.281** −0.323** −0.792** 0.010 0.293** 0.018 −0.412** 1
      说明:缩写指代的指标见表1。*表示显著相关 (P<0.05);**表示极显著相关 (P<0.01)
    下载: 导出CSV

    表  3  主要评价指标贡献率

    Table  3.   Total variance contribution

    指标初始特征值旋转后主因子
    特征根贡献
    率/%
    累积贡
    献率/%
    特征根贡献
    率/%
    累积贡
    献率/%
    LT 6.554 50.418 50.418 5.480 42.154 42.154
    TU 2.303 17.714 68.132 2.899 22.300 64.454
    TL 1.799 13.837 81.969 1.935 14.885 79.339
    TP 1.043 8.019 89.988 1.384 10.650 89.988
    TS 0.608 4.677 94.665
    LCT 0.409 3.145 97.811
    VD 0.179 1.377 99.188
    P/S 0.037 0.288 99.476
    PU 0.023 0.176 99.652
    PL 0.018 0.137 99.789
    PLCT 0.014 0.109 99.898
    CTR 0.009 0.066 99.964
    SR 0.005 0.036 100
      说明:缩写指代的指标见表1
    下载: 导出CSV

    表  4  旋转后的因子载荷及得分系数

    Table  4.   Factor loadings and factor scores coefficient after rotated

    指标变量因子载荷因子得分
    F1F2F3F4F1F2F3F4
    LT X1 0.961 0.225 −0.105 0.051 0.211 −0.017 −0.115 −0.081
    TU X2 0.900 0.250 0.282 0.003 0.179 0.006 0.116 −0.172
    TL X3 0.848 0.137 0.397 0.157 0.151 −0.035 0.160 −0.044
    TP X4 0.800 0.537 −0.025 0.122 0.123 0.126 −0.068 −0.012
    TS X5 0.913 −0.263 −0.035 0.139 0.236 −0.209 −0.092 0.001
    LCT X6 0.788 0.194 −0.021 0.558 0.095 −0.018 −0.133 0.379
    VD X7 0.880 0.207 0.155 0.045 0.180 −0.011 0.038 −0.113
    P/S X8 0.179 0.970 0.025 0.074 −0.074 0.370 0.006 0.020
    PU X9 0.225 0.115 0.868 −0.039 0.003 0.034 0.490 −0.197
    PL X10 −0.018 −0.115 0.890 0.229 −0.072 −0.037 0.473 0.075
    PLCT X11 0.182 0.063 0.168 0.942 −0.106 −0.008 −0.052 0.779
    CTR X12 0.062 0.827 0.208 0.202 −0.115 0.326 0.096 0.125
    SR X13 −0.196 −0.821 0.207 0.148 0.009 −0.309 0.096 0.142
      说明:缩写指代的指标见表1
    下载: 导出CSV

    表  5  2种类型文冠果叶片解剖结构的隶属函数分析

    Table  5.   Subordinative function of 2 types of X. sorbifolium leaf anatomical structure

    类型隶属函数值综合评价值综合得分F
    LTTUTLTPTSLCTVDP/SPUPLPLCTCTRSR
    A组0.6100.6380.5630.4110.4710.4760.4670.4610.3460.1950.4330.3380.8200.4790.610
    B组0.2050.2030.1680.1250.2540.1310.1180.3100.2650.1640.2740.2560.2570.210−0.449
      说明:缩写指代的指标见表1
    下载: 导出CSV

    表  6  2种类型文冠果叶片解剖结构的方差分析

    Table  6.   Variance of 2 types of X. sorbifolium leaf anatomical structure

    类型LT/μmTU/μmTL/μmTP/μmTS/μmLCT/μmVD/μmP/S/%PU/%PL/%PLCT/%CTR/%SR/%
    A组188.11716.82013.87988.03764.8635.61813.818140.4999.0117.5403.06046.98735.053
    B组103.1348.0627.12342.30441.7162.4396.499106.1007.8897.0012.39341.15740.321
    P0.0000.0000.0000.0000.0000.0000.0000.0000.0000.9100.0000.0000.000
      说明:缩写指代的指标见表1
    下载: 导出CSV
  • [1] YU Haiyan, FAN Siqi, BI Quanxin, et al. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production [J]. Industrial Crops and Products, 2017, 97: 425 − 430.
    [2] 麻云霞. 文冠果种子特性变异及优良砧用种源选择[D]. 呼和浩特: 内蒙古农业大学, 2021.

    MA Yunxia. Variation of Xanthoceras sorbifolium Bunge Seed Characteristics and Selection of Superior Rootstock Provenance[D]. Huhhot: Inner Mongolia Agricultural University, 2021.
    [3] 于海燕, 胡潇予, 何春霞, 等. 文冠果不同种源叶片结构对水分胁迫的差异性响应[J]. 北京林业大学学报, 2019, 41(1): 57 − 63.

    YU Haiyan, HU Xiaoyu, HE Chunxia, et al. Differential response of water stress on leaf morphological anatomical structures of varied provenances Xanthocera sorbifolium [J]. Journal of Beijing Forestry University, 2019, 41(1): 57 − 63.
    [4] 田梦妮, 毕泉鑫, 贺晓辉, 等. 文冠果叶片解剖结构的抗旱性分析与评价[J]. 分子植物育种, 2019, 17(24): 8261 − 8270.

    TIAN Mengni, BI Quanxin, HE Xiaohui, et al. Analysis and evaluation of drought resistance of Xanthoceras sorbifolium leaf anatomical structure [J]. Molecular Plant Breeding, 2019, 17(24): 8261 − 8270.
    [5] 赵阳, 毕泉鑫, 句娇, 等. 文冠果种子及苗期生长性状地理种源变异[J]. 林业科学研究, 2019, 32(1): 163 − 171.

    ZHAO Yang, BI Quanxin, JU Jiao, et al. Geographic variation of seed and seedling growing traits in Xanthoceras sorbifolium [J]. Forest Research, 2019, 32(1): 163 − 171.
    [6] 李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J]. 植物学通报, 2005, 22(增刊 1): 118 − 127.

    LI Fanglan, BAO Weikai. Responses of the morphological and anatomical structure of the plant leaf to environmental change [J]. Chinese Bulletin of Botany, 2005, 22(suppl 1): 118 − 127.
    [7] 岑湘涛, 沈伟, 牛俊乐, 等. 基于植物叶片解剖结构的抗逆性评价研究进展[J]. 北方园艺, 2021(18): 140 − 147.

    CEN Xiangtao, SHEN Wei, NIU Junle, et al. Research progress of stress resistance evaluation based on the anatomy of plant leaves [J]. Northern Horticulture, 2021(18): 140 − 147.
    [8] 赵雪, 张秀珍, 牟洪香, 等. 文冠果幼苗叶片解剖结构和光合作用对干旱胁迫的响应[J]. 北方园艺, 2017(13): 38 − 44.

    ZHAO Xue, ZHANG Xiuzhen, MU Hongxiang, et al. Effect of drought stress on anatomical structure and photosynthesis of Xanthoceras sorbifolia leaves in seedling [J]. Northern Horticulture, 2017(13): 38 − 44.
    [9] 王孟珂, 田梦妮, 毕泉鑫, 等. 基于气孔性状的文冠果种质资源抗旱性评价及抗旱资源筛选[J]. 植物研究, 2021, 41(6): 957 − 964.

    WANG Mengke, TIAN Mengni, BI Quanxin, et al. Evaluation of drought tolerance based on stomatal characters and selection of germplasm resources from Xanthoceras sorbifolia [J]. Bulletin of Botanical Research, 2021, 41(6): 957 − 964.
    [10] 马小芬, 王兴芳, 李强, 等. 不同种源地文冠果叶片解剖结构比较及抗旱性分析[J]. 干旱区资源与环境, 2013, 27(6): 92 − 96.

    MA Xiaofen, WANG Xingfang, LI Qiang, et al. The analysis of drought resistance and the comparison of anatomical structuresof the leave of Xanthoceras sorbifolia Bunge introduced from different regions [J]. Journal of Arid Land Resources and Environment, 2013, 27(6): 92 − 96.
    [11] 韩永亮, 李世云, 路正营, 等. 62份陆地棉种质资源苗期抗旱性综合评价及耐旱种质筛选[J]. 干旱地区农业研究, 2021, 39(6): 28 − 38.

    HAN Yongliang, LI Shiyun, LU Zhengying, et al. Comprehensive identification and selection of drought resistance of 62 cotton varieties (lines) at cotton seedling stage [J]. Agricultural Research in the Arid Areas, 2021, 39(6): 28 − 38.
    [12] 宋俊乔. 水稻叶片形态、解剖结构与抗旱性的关系研究[D]. 武汉: 华中农业大学, 2010.

    SONG Junqiao. Research of the Relationship between Morphologic and Anatomic Structure and Drought Resistance of Rice[D]. Wuhan: Huazhong Agricultural University, 2010.
    [13] 赵永超. 基于因子分析和聚类分析的马铃薯节水灌溉绩效评价研究[D]. 昆明: 云南师范大学, 2021.

    ZHAO Yongchao. Study on Performance Evaluation of Potato Water-saving Irrigation Based on Factor Analysis and Cluster Analysis: A Case of Wenshan Prefecture in Yunnan Province[D]. Kunming: Yunnan Normal University, 2021.
    [14] 高源, 王霞, 高树仁, 等. 基于隶属函数法分析80份玉米自交系萌芽期的抗旱性[J/OL]. 分子植物育种, 2021-09-28[2022-01-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20210927.2137.006.html.

    GAO Yuan, WANG Xia, GAO Shuren, et al. Analysis of drought resistance of 80 maize inbred lines based on membership function at germination stage[J/OL]. Molecular Plant Breeding, 2021-09-28[2022-01-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20210927.2137.006.html.
    [15] 马胜, 齐恩芳, 文国宏, 等. 基于叶片显微结构综合评价马铃薯不同品种的抗旱性[J]. 中国马铃薯, 2021, 35(6): 500 − 506.

    MA Sheng, QI Enfang, WEN Guohong, et al. Comprehensive evaluation of drought resistance of different potato varieties based on leaf microstructure [J]. Chinese Potato Journal, 2021, 35(6): 500 − 506.
    [16] 郭燕, 张树航, 李颖, 等. 中国板栗238份品种(系)叶片形态、解剖结构及其抗旱性评价[J]. 园艺学报, 2020, 47(6): 1033 − 1046.

    GUO Yan, ZHANG Shuhang, LI Ying, et al. Studies on the leaf morphology, anatomical structure and drought resistance evaluation of 238 Chinese chestnut varieties (strains) [J]. Acta Horticulturae Sinica, 2020, 47(6): 1033 − 1046.
    [17] 高晓宁, 赵冰, 刘旭梅, 等. 4个杜鹃花品种对干旱胁迫的生理响应及抗旱性评价[J]. 浙江农林大学学报, 2017, 34(4): 597 − 607.

    GAO Xiaoning, ZHAO Bing, LIU Xiaomei, et al. Physiological response to drought stress and drought resistance evaluation of four Rhododendron cultivars [J]. Journal of Zhejiang A&F University, 2017, 34(4): 597 − 607.
    [18] BRITO C, DINIS L T, MOUTINHO-PEREIRA J, et al. Drought stress effects and olive tree acclimation under a changing climate [J]. Plants, 2019, 8(7): 232.
    [19] 赵君茹, 朱周俊, 肖诗鑫, 等. 高州油茶叶片解剖结构及抗旱性评价[J]. 分子植物育种, 2022, 20(16): 5435 − 5443.

    ZHAO Junru, ZHU Zhoujun, XIAO Shixin, et al. Study on drought resistance of leaf anatomical structure of Camellia gauchowensis Chang clone [J]. Molecular Plant Breeding, 2022, 20(16): 5435 − 5443.
    [20] 朱凯琳. 花楸属植物叶解剖特征及其环境适应性研究[D]. 南京: 南京林业大学, 2021.

    ZHU Kailin. Leaf Anatomical Characteristics and Environmental Adaptability of Sorbus Species[D]. Nanjing: Nanjing Forestry University, 2021.
    [21] 王烟霞, 樊军锋, 程玮哲, 等. 基于叶片解剖结构的12个杨树无性系抗旱性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11): 147 − 154.

    WANG Yanxia, FAN Junfeng, CHENG Weizhe, et al. Drought resistances analysis of 12 poplar clones based on leaf anatomical structures [J]. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(11): 147 − 154.
    [22] 何小三, 王玉娟, 徐林初, 等. 干旱胁迫对不同油茶品种叶片解剖结构的影响[J]. 中南林业科技大学学报, 2020, 40(10): 1 − 17.

    HE Xiaosan, WANG Yujuan, XU Linchu, et al. Effects of drought stress on leaf anatomical structure of different Camellia oleifera cultivars [J]. Journal of Central South University of Forestry &Technology, 2020, 40(10): 1 − 17.
    [23] 刘光辉, 陈全家, 吴鹏昊, 等. 棉花花铃期抗旱性综合评价及指标筛选[J]. 植物遗传资源学报, 2016, 17(1): 53 − 62, 69.

    LIU Guanghui, CHEN Quanjia, WU Penghao, et al. Screening and comprehensive evaluation of drought resistance indices of cotton at blossming and boll-forming Stages [J]. Journal of Plant Genetic Resources, 2016, 17(1): 53 − 62, 69.
    [24] VELIKOVA V, ARENA C, IZZO L G, et al. Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two Platanus orientalis populations from contrasting habitats[J/OL]. International Journal of Molecular Sciences, 2020, 21(11): 3912[2022-01-30]. doi: 10.3390/ijms21113912.
    [25] 吴丽君, 李志辉, 杨模华, 等. 赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应[J]. 应用生态学报, 2015, 26(12): 3619 − 3626.

    WU Lijun, LI Zhihui, YANG Mohua, et al. Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress [J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3619 − 3626.
    [26] MANSOOR U, FATIMA S, HAMEED M, et al. Structural modifications for drought tolerance in stem and leaves of Cenchrus ciliaris L. ecotypes from the Cholistan Desert[J/OL]. Flora, 2019, 261: 151485[2022-01-30]. doi: 10.1016/j.flora.2019.151485.
    [27] 李昭良. 不同桑树品种茎叶解剖结构的耐旱性特征研究[D]. 杨凌: 西北农林科技大学, 2014.

    LI Zhaoliang. Studies on the Drought Resistance Characteristics of Anatomical Structure of the Leaves and Stems of Different Mulberry Varieties[D]. Yangling: Northwest A&F University, 2014.
    [28] HU Yang, YANG Lu, GAO Chao, et al. A comparative study on the leaf anatomical structure of Camellia oleifera in a low-hot valley area in Guizhou Province, China[J/OL]. PLoS One, 2022, 17(1): e0262509[2022-01-30]. doi: 10.1371/journal.pone.0261942.
    [29] GONG Zhizhong, XIONG Liming, SHI Huazhong, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China-Life Sciences, 2020, 63(5): 663 − 674.
    [30] BACELAR E A, CORREIA C M, MOUTINHO-PEREIRA J M, et al. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions [J]. Tree Physiology, 2004, 24(2): 233 − 239.
    [31] 张刚. 文冠果的抗旱性研究[D]. 杨凌: 西北农林科技大学, 2014.

    ZHANG Gang. Studies on Drought Resistance of Xanthoceras sorbifolia Seedlings[D]. Yangling: Northwest A&F University, 2014.
    [32] 刘彬, 麻文俊, 王军辉, 等. 基于叶片解剖结构的砂生槐群体抗旱性评价[J]. 植物研究, 2017, 37(3): 325 − 333.

    LIU Bin, MA Wenjun, WANG Junhui, et al. Drought-resistance of Sophora moorcroftiana from different population from leaf anatomical structure [J]. Bulletin of Botanical Research, 2017, 37(3): 325 − 333.
  • [1] 杨帆, 汤孟平.  浙江省毛竹秆形结构特征 . 浙江农林大学学报, 2021, 38(6): 1289-1296. doi: 10.11833/j.issn.2095-0756.20200796
    [2] 王东丽, 张日升, 方祥, 王凯, 吴叶礼, 秦崧悦, 龙丹丹, 沈海鸥.  固沙樟子松种子萌发与幼苗生长对干旱胁迫的响应及抗旱性评价 . 浙江农林大学学报, 2020, 37(1): 60-68. doi: 10.11833/j.issn.2095-0756.2020.01.008
    [3] 牛媛, 敖妍, 李云, 田秀铭, 杨长文, 刘小天, 李志虹.  文冠果优良无性系授粉组合选择及结实性状分析 . 浙江农林大学学报, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [4] 张毅, 敖妍, 刘觉非, 赵磊磊, 由海德.  不同群体文冠果种实性状变异特征 . 浙江农林大学学报, 2019, 36(5): 1037-1043. doi: 10.11833/j.issn.2095-0756.2019.05.025
    [5] 梁芳, 卫旭芳, 白永超, 侯智霞.  文冠果新梢发育过程中不同部位矿质元素的变化特性 . 浙江农林大学学报, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
    [6] 高晓宁, 赵冰, 刘旭梅, 黄文梅.  4个杜鹃花品种对干旱胁迫的生理响应及抗旱性评价 . 浙江农林大学学报, 2017, 34(4): 597-607. doi: 10.11833/j.issn.2095-0756.2017.04.005
    [7] 洪震, 练发良, 刘术新, 胡有金.  3种乡土园林地被植物对干旱胁迫的生理响应 . 浙江农林大学学报, 2016, 33(4): 636-642. doi: 10.11833/j.issn.2095-0756.2016.04.012
    [8] 潘月, 戎洁庆, 盛卫星, 桂仁意.  硅对雷竹抗旱性的影响 . 浙江农林大学学报, 2013, 30(6): 852-857. doi: 10.11833/j.issn.2095-0756.2013.06.008
    [9] 刘欣欣, 张明如, 邹伶俐, 吴刚, 阴卓越, 吕铖香.  浙江省15个树种苗期叶片解剖结构特征比较分析 . 浙江农林大学学报, 2013, 30(4): 484-489. doi: 10.11833/j.issn.2095-0756.2013.04.004
    [10] 陈闻, 赵颖, 叶正钱, 王美琴, 王晶, 王国明.  干旱胁迫对5个海岛树种生长及生理特性的影响 . 浙江农林大学学报, 2013, 30(4): 490-498. doi: 10.11833/j.issn.2095-0756.2013.04.005
    [11] 翟丽丽, 房伟民, 陈发棣, 王晓帅, 吴洪米, 张琳.  国庆小菊品种抗旱性综合评价 . 浙江农林大学学报, 2012, 29(2): 166-172. doi: 10.11833/j.issn.2095-0756.2012.02.003
    [12] 陈友根, 李昆, 孙永玉, 张春华.  渗透胁迫对麻疯树幼苗生理生化特性的影响 . 浙江农林大学学报, 2010, 27(5): 677-683. doi: 10.11833/j.issn.2095-0756.2010.05.007
    [13] 邹武, 温国胜, 徐贵艳, 周国模, 余树全.  应用压力-容积技术测定3个防火树种的水分特征 . 浙江农林大学学报, 2010, 27(1): 76-80. doi: 10.11833/j.issn.2095-0756.2010.01.012
    [14] 张文婷, 谢福春, 王华田, 于文胜, 迟炳庆, 杜军, 宋黎, 姜成平.  3种园林灌木幼苗对干旱胁迫的生理响应 . 浙江农林大学学报, 2009, 26(2): 182-187.
    [15] 韩艳, 林夏珍.  5种常绿阔叶树幼苗的抗旱性比较 . 浙江农林大学学报, 2009, 26(6): 822-828.
    [16] 王改萍, 岑显超, 彭方仁, 杨红宁.  不同楸树品种的抗旱性鉴定 . 浙江农林大学学报, 2009, 26(6): 815-821.
    [17] 陈柯, 王小德.  常春油麻藤等3种藤本植物抗旱性生理指标研究 . 浙江农林大学学报, 2008, 25(3): 314-318.
    [18] 岑显超, 彭方仁, 陈隆升, 杨燕.  楸树品种间水分特征曲线主要参数比较与抗旱性评价 . 浙江农林大学学报, 2008, 25(6): 760-764.
    [19] 黄坚钦, 方伟, 丁雨龙, 何福基.  影响山核桃嫁接成活的因子分析 . 浙江农林大学学报, 2002, 19(3): 227-230.
    [20] 谢寅峰, 沈惠娟.  水分胁迫下3 种针叶树幼苗抗旱性与硝酸还原酶和超氧化物歧化酶活性的关系 . 浙江农林大学学报, 2000, 17(1): 24-27.
  • 期刊类型引用(3)

    1. 邱小兰. 大花序桉和托里桉生长量及主要材性比较. 福建林业科技. 2024(02): 13-18 . 百度学术
    2. 陈书兴. 大花序桉和卷荚相思生长发育规律及主要材性比较. 福建林业. 2024(05): 41-44 . 百度学术
    3. 赵安琪,尹跃,何军,安巍,秦小雅,胡体旭. 枸杞LbaHY5基因克隆、亚细胞定位及表达分析. 华北农学报. 2024(06): 76-83 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220202

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/2/348

图(1) / 表(6)
计量
  • 文章访问数:  773
  • HTML全文浏览量:  118
  • PDF下载量:  45
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-09-20
  • 录用日期:  2022-09-26
  • 刊出日期:  2023-04-20

文冠果不同种质资源的叶片解剖结构分析及抗旱性评价

doi: 10.11833/j.issn.2095-0756.20220202
    基金项目:  国家自然科学基金资助项目(31870594,31901348);国家科技基础资源调查专项(2019FY100802)
    作者简介:

    许慧慧(ORCID: 0000-0003-0850-8960 ),从事经济林研究。E-mail: 2425779474@qq.com

    通信作者: 于海燕(ORCID: 0000-0003-0826-9429 ),研究员,博士,从事经济林研究。E-mail: yuhaiyan@caf.ac.cn
  • 中图分类号: S722

摘要:   目的  评价文冠果Xanthoceras sorbifolium不同种质资源在干旱地区的适应能力,为干旱、半干旱地区筛选抗旱文冠果种质提供依据。  方法  以内蒙古自治区通辽市文冠果种质资源圃内前期筛选的200份丰产型文冠果种质资源的叶片为材料,通过制作石蜡切片对叶片解剖结构进行观测,测定了叶片厚度、栅栏组织厚度、海绵组织厚度、蜡质层厚度等13个与文冠果抗旱性相关的指标,并基于因子分析、聚类分析和隶属函数分析的方法评价不同文冠果种质资源的抗旱性。  结果  文冠果叶片解剖结构指标之间具有显著的相关性,基于因子分析法提取了4个公因子,对变异的累计贡献率达89.99%,涵盖了13个指标的大部分信息,对文冠果抗旱性的影响程度依次为:F1 (厚度指数因子)>F2 (组织指数因子)>F3 (表皮占比因子)>F4 (蜡质层占比因子)。  结论  F1公因子中载荷较大的上/下表皮厚度、栅栏组织厚度和导管直径可作为评价文冠果抗旱性的主要指标。筛选出的90份抗旱型种质资源能兼顾丰产和节水抗旱的优点,可为干旱地区提供适宜的种质材料。图1表6参32

English Abstract

李芳燕, 夏晓雪, 吴梦洁, 等. 巨桉EgrCIN1响应非生物逆境的分析[J]. 浙江农林大学学报, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
引用本文: 许慧慧, 刘肖娟, 王孟珂, 等. 文冠果不同种质资源的叶片解剖结构分析及抗旱性评价[J]. 浙江农林大学学报, 2023, 40(2): 348-355. DOI: 10.11833/j.issn.2095-0756.20220202
LI Fangyan, XIA Xiaoxue, WU Mengjie, et al. Response of Eucalyptus grandis EgrCIN1 to abiotic stress[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
Citation: XU Huihui, LIU Xiaojuan, WANG Mengke, et al. Leaf anatomical structure and evaluation of drought resistance of different germplasm resources of Xanthoceras sorbifolium[J]. Journal of Zhejiang A&F University, 2023, 40(2): 348-355. DOI: 10.11833/j.issn.2095-0756.20220202
  • 文冠果Xanthoceras sorbifolium为无患子科Sapindaceae文冠果属Xanthoceras植物,是中国北方特有的木本油料树种,其种仁含油率高,且富含不饱和脂肪酸,具有很高的食用价值和营养价值[1]。文冠果具有较强的生理适应性,抗寒旱、耐瘠薄,是北方造林绿化和防风固沙的优良生态树种[2]。文冠果不同的种质资源适应干旱的能力有明显的差异,丰产和抗旱的种质资源较为匮乏[3-4]。在全球水资源短缺问题不断加重的情况下,开展文冠果抗旱性评价,筛选文冠果抗旱种质资源对推动文冠果进一步扩大种植和推广及改善生态环境具有重要意义[5]。叶片是植物进行光合和蒸腾的主要部位,当植物长期生长在干旱少雨的地方时,其形态结构会发生变化来响应干旱胁迫,因此叶片的形态指标可以反映植物对干旱环境的适应情况[6-7]。基于叶片形态特征,研究者们发现文冠果叶片可通过提高蜡质层厚度和栅海比以及增加上表皮厚度来响应干旱,叶片厚度、栅海比、气孔密度和气孔开口面积指数等都可作为评价文冠果抗旱性的主要指标[8-10]。目前,中国通过叶片解剖结构指标来综合评价不同文冠果种质资源的抗旱性研究较少,因此,本研究基于文冠果种质资源圃内前期筛选的200份丰产型文冠果种质资源,通过观测叶片解剖结构的特征,采用因子和聚类分析的方法评价文冠果不同种质资源的抗旱性,以期为文冠果丰产抗旱型新品种选育提供理论依据。

    • 样品采集自内蒙古自治区通辽市开鲁县东风林场文冠果种质资源圃,43°40′~ 43°42′N,121°34′~121°37′E。该种质资源圃是2005年从全国范围内收集文冠果适生区内多个种源(新疆、宁夏、甘肃、内蒙古、黑龙江、吉林、辽宁、北京、山东、陕西、山西、河南、河北等)播种建立的,位于内蒙古东部,属大陆性温带半干旱季风气候。年平均气温 为5.9 ℃,年平均降水量为 338.3 mm,无霜期约148 d。

    • 选择树龄一致(15年生)、无病虫害、长势良好的实生丰产型文冠果植株,于2019年,在经历自然干旱且叶片完全展开时(7月下旬),在每株树正西方向中部选取朝向一致的6片成熟叶片,放入甲醛-乙酸-乙醇固定液(FAA)中固定。

    • 将FAA固定液中的叶片取出,在每个叶片主脉中部选取0.5 cm×0.5 cm正方形组织块。采用常规石蜡切片法对叶片进行脱水、透明、浸蜡和包埋等处理,然后使用徕卡切片机切片,厚度为8~10 μm,番红固绿染色后用中性树胶封片,之后使用奥林巴斯BX51显微镜进行观察并拍照。使用Digimizer软件测量叶片厚度(leaf thickness, LT),上表皮厚度(thickness of upper epidermis, TU),下表皮厚度 (thickness of lower epidermis, TL),栅栏组织厚度(thickness of palisade tissue, TP),海绵组织厚度 (thickness of spongy tissue, TS),蜡质层厚度(leaf cuticle thickness, LCT),导管直径(vessel diameter, VD)。计算栅海比(palisade tissue and spongy tissue ratio, P/S),上表皮占比(proportion of the upper epidermis, PU),下表皮占比(proportion of lower epidermis, PL),蜡质层占比(proportion of leaf cuticle thickness, PLCT),组织结构紧密度(tightness of leaf palisade tissue, CTR)和组织结构疏松度(looseness of leaf spongy tissue, SR),每次测量选取3个视野,每个视野测定重复10次,所有数据为30个测定值的平均值。其中:栅海比(P/S)=栅栏组织厚度(TP)/海绵组织厚度(TS)×100%;上表皮占比(PU)=上表皮厚度(PU)/叶片厚度(LT)×100%;下表皮占比(PL)=下表皮厚度(PL)/叶片厚度(LT)×100%;蜡质层占比(PLCT)=蜡质层厚度(PLCT)/叶片厚度(LT)×100%;组织结构紧密度(CTR)=栅栏组织厚度(TP)/叶片厚度(LT)×100%;组织结构疏松度(SR)=海绵组织厚度(TS)/叶片厚度(LT)×100%。

    • 数据使用 Excel 2019、SPSS 26.0与Rstudio 软件进行整理,根据不同文冠果种质资源的叶片解剖结构特征进行因子分析和聚类分析及方差分析。因子分析法是根据研究指标之间的相互关系,把多个具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析方法[11]。因子分析前,先进行KMO (Kaiser-Meyer-Olkin)检验和巴特利特(Bartlett)球形检验,判定变量是否适合做因子分析。KMO值,即抽样适度测定值,取值范围为0~1,KMO值越接近于1 (>0.5),变量之间的相关性越强,原有变量越适合作因子分析;巴特利特球形检验(Bartlett)卡方值的显著水平P<0.05,因子分析的效果比较好[12-13]。为了确保结果的可靠性,通过SPSS软件采用标准差标准化(Z标准化)法对13个评价指标进行标准化处理,进行KMO检验和巴特利特(Bartlett)球形检验后运用分析模块进行因子分析,按照特征根≥1的原则提取公因子。并采用最大方差法对因子载荷矩阵进行旋转,再对旋转后的指标变量进行因子分析,从而明确各公因子代表的变量和意义。

      同时采用隶属函数分析法对种质资源的抗旱性进行综合评价[14],隶属函数值越高,抗旱性越强,反之,抗旱性越弱[15]。其中,隶属函数值的计算公式如下:正相关:Ypq=(λpqλqmin)/(λqmaxλqmin);负相关:Ypq=1−(λpqλqmin)/ (λqmaxλqmin)。其中:Ypqp组的第q个指标的隶属函数值;λpq为第p组的第q个指标的测定值;λqmaxλqmin分别为第q个指标的最大值和最小值。

    • 表1可见:叶片解剖结构13个指标的变异系数为18.78%~51.17%,说明200份文冠果种质资源的叶片解剖结构存在明显差异。其中,蜡质层厚度(LCT)为1.23~10.44 μm,在各材料中的变异系数最大,为51.17%。相比于其他性状,组织结构紧密度(CTR)的变异系数为18.78%,变异相对较小。各指标相关性分析(表2)发现:大多数性状之间显著(P<0.05)或极显著(P<0.01)相关。其中叶片厚度(TL)与上表皮厚度(TU)、下表皮厚度(TL)、栅栏组织厚度(TP)、海绵组织厚度(TS)和蜡质层厚度(LCT)等性状呈极显著相关(P<0.01)。组织结构疏松度(SR)与栅海比(P/S)、导管直径(VD)、蜡质层厚度(LCT)等性状呈极显著负相关(P<0.01)。性状之间的相关性表明:用单个叶片解剖结构指标来评价文冠果种质资源的抗旱性具有片面性,不能全面准确地评价干旱情况下文冠果叶片特性。

      表 1  文冠果叶片解剖结构13个指标统计分析

      Table 1.  Statistics of 13 characters of leaf anatomical structure in X. sorbifolium

      指标最小
      值/μm
      最大
      值/μm
      均值/
      μm
      标准
      偏差
      变异系
      数/%
      叶片厚度(LT) 60.22 270.04 140.90 50.99 36.19
      上表皮厚度(TU) 3.97 24.10 11.95 5.22 43.65
      下表皮厚度(TL) 4.26 21.36 10.13 4.04 39.87
      栅栏组织厚度(TP) 22.34 182.31 62.66 28.22 45.04
      海绵组织厚度(TS) 20.30 104.51 51.90 17.08 32.92
      蜡质层厚度(LCT) 1.23 10.44 3.86 1.97 51.17
      导管直径(VD) 4.03 25.01 9.74 4.41 45.31
      栅海比(P/S) 35.26 263.46 121.69 38.93 32.00
      上表皮占比(PU) 4.27 17.96 8.40 1.73 20.59
      下表皮占比(PL) 4.19 21.34 7.26 1.84 25.28
      蜡质层占比(PLCT) 1.25 5.43 2.68 0.74 27.47
      组织结构紧密度(CTR) 23.08 93.76 43.79 8.22 18.78
      组织结构疏松度(SR) 22.81 90.89 37.93 7.72 20.35
        说明:样本数为200

      表 2  200份文冠果叶片解剖结构13个性状的相关性分析

      Table 2.  Correlation between 13 traits of leaf anatomical structure in 200 X. sorbifolium samples

      指标LTTUTLTPTSLCTVDP/SPUPLPLCTCTRSR
      LT 1
      TU 0.890** 1
      TL 0.823** 0.881** 1
      TP 0.903** 0.827** 0.754** 1
      TS 0.832** 0.726** 0.734** 0.653** 1
      LCT 0.832** 0.772** 0.769** 0.783** 0.719** 1
      VD 0.851** 0.86** 0.829** 0.785** 0.711** 0.741** 1
      P/S 0.393** 0.405** 0.313** 0.678** −0.075 0.366** 0.362** 1
      PU 0.139* 0.552** 0.452** 0.187** 0.115 0.195** 0.334** 0.152** 1
      PL −0.110 0.146* 0.447** −0.061 0.016 0.056 0.117 −0.064 0.595** 1
      PLCT 0.214** 0.263** 0.357** 0.252** 0.233** 0.691** 0.261** 0.157* 0.221** 0.309** 1
      CTR 0.230** 0.276** 0.251** 0.602** −0.021 0.266** 0.248** 0.838** 0.227** 0.137 0.213** 1
      SR −0.394** −0.354** −0.220** −0.493** 0.154* −0.281** −0.323** −0.792** 0.010 0.293** 0.018 −0.412** 1
        说明:缩写指代的指标见表1。*表示显著相关 (P<0.05);**表示极显著相关 (P<0.01)
    • 本研究中13个指标的KMO值为0.715,巴特利特(Bartlett)球形检验近似卡方值为4 891.701,显著性P=0.00(<0.05),说明本研究适合使用因子分析法来统计分析。在13个因子中,共提取出4个公因子F1F2F3F4。4个公因子经旋转后的方差贡献率分别为42.154%、22.300%、14.885%、10.650%,累计贡献率达89.988%,能够较好地反映13个评价指标的信息。各因子的特征值、贡献率以及累计贡献率见表3表4为旋转后的公因子载荷矩阵及得分系数矩阵,其中F1公因子在叶片厚度、海绵组织厚度、上表皮厚度、导管直径、下表皮厚度、栅栏组织厚度和蜡质层厚度上载荷较大,且这些变量均与叶片厚度呈显著正相关,因此F1公因子定义为厚度因子;F2公因子在栅海比、组织结构紧密度和组织结构疏松度上载荷较大,可定义为组织结构因子,其中组织结构疏松度对组织结构因子的影响是负向的;F3公因子的主要载荷量在上表皮占比和下表皮占比上,可定义为表皮占比因子;F4公因子中蜡质层占比最大,成为蜡质层占比因子。

      表 3  主要评价指标贡献率

      Table 3.  Total variance contribution

      指标初始特征值旋转后主因子
      特征根贡献
      率/%
      累积贡
      献率/%
      特征根贡献
      率/%
      累积贡
      献率/%
      LT 6.554 50.418 50.418 5.480 42.154 42.154
      TU 2.303 17.714 68.132 2.899 22.300 64.454
      TL 1.799 13.837 81.969 1.935 14.885 79.339
      TP 1.043 8.019 89.988 1.384 10.650 89.988
      TS 0.608 4.677 94.665
      LCT 0.409 3.145 97.811
      VD 0.179 1.377 99.188
      P/S 0.037 0.288 99.476
      PU 0.023 0.176 99.652
      PL 0.018 0.137 99.789
      PLCT 0.014 0.109 99.898
      CTR 0.009 0.066 99.964
      SR 0.005 0.036 100
        说明:缩写指代的指标见表1

      表 4  旋转后的因子载荷及得分系数

      Table 4.  Factor loadings and factor scores coefficient after rotated

      指标变量因子载荷因子得分
      F1F2F3F4F1F2F3F4
      LT X1 0.961 0.225 −0.105 0.051 0.211 −0.017 −0.115 −0.081
      TU X2 0.900 0.250 0.282 0.003 0.179 0.006 0.116 −0.172
      TL X3 0.848 0.137 0.397 0.157 0.151 −0.035 0.160 −0.044
      TP X4 0.800 0.537 −0.025 0.122 0.123 0.126 −0.068 −0.012
      TS X5 0.913 −0.263 −0.035 0.139 0.236 −0.209 −0.092 0.001
      LCT X6 0.788 0.194 −0.021 0.558 0.095 −0.018 −0.133 0.379
      VD X7 0.880 0.207 0.155 0.045 0.180 −0.011 0.038 −0.113
      P/S X8 0.179 0.970 0.025 0.074 −0.074 0.370 0.006 0.020
      PU X9 0.225 0.115 0.868 −0.039 0.003 0.034 0.490 −0.197
      PL X10 −0.018 −0.115 0.890 0.229 −0.072 −0.037 0.473 0.075
      PLCT X11 0.182 0.063 0.168 0.942 −0.106 −0.008 −0.052 0.779
      CTR X12 0.062 0.827 0.208 0.202 −0.115 0.326 0.096 0.125
      SR X13 −0.196 −0.821 0.207 0.148 0.009 −0.309 0.096 0.142
        说明:缩写指代的指标见表1

      表4可以得到各指标在4个公因子上的得分。将各项指标变量定义为X1X2$, \cdots , $ X13,其在4个公因子上的得分表示为F1F2F3F4,综合得分表示为F

      根据4个公因子的权重,求得综合得分(F)的表达式为F=(λ1F1+λ2F2+λ3F3+λ4F4)/(λ12+λ3+λ4),其中λi (i=1, 2$, \cdots , $ 4)分别为4个公因子的特征根。即:

      F=0.066X1+0.084X2+0.083X3+0.076X4+0.044X5+0.063X6+0.075X7+0.060X8+0.068X9+0.044X10+0.032X11+0.058X12−0.040X13

      其中:Xi (i=1, 2$, \;\cdots , $ 13)为各样本经过标准化后各性状指标对应的数值。

      由上述表达式指标前的系数值(即权重)可以看出:13项指标中上表皮厚度(0.084)、下表皮厚度(0.083)、栅栏组织厚度(0.076)和导管直径(0.075)指标最能反映文冠果种质资源的抗旱能力,而组织结构疏松度(−0.040)与综合得分呈负相关关系,即叶片组织结构越疏松,综合得分越低,抗旱性越差。

    • 基于因子分析得到的4个公因子的得分及综合得分,以Euclidean距离为度量标准,利用Ward法对200份种质资源进行系统聚类分析,将200份种质资源分成了A、B共2组,其中A组包括90份种质资源,B组包括110份种质资源。根据公式得到A组文冠果种质资源的综合得分为0.610,远高于B组得分−0.449(表5)。由图1可以看出:A组的叶片栅栏组织排列紧密且占比较大,紧密的栅栏组织可以有效地减少叶片的蒸腾作用,提高叶片的保水能力,从而提高植株适应干旱的能力。而B组的叶片栅栏组织和海绵组织则呈疏松状排列,细胞间隙较大,在植物受到干旱胁迫时,叶片不能维持稳定的含水量,从而影响植株的生长。

      表 5  2种类型文冠果叶片解剖结构的隶属函数分析

      Table 5.  Subordinative function of 2 types of X. sorbifolium leaf anatomical structure

      类型隶属函数值综合评价值综合得分F
      LTTUTLTPTSLCTVDP/SPUPLPLCTCTRSR
      A组0.6100.6380.5630.4110.4710.4760.4670.4610.3460.1950.4330.3380.8200.4790.610
      B组0.2050.2030.1680.1250.2540.1310.1180.3100.2650.1640.2740.2560.2570.210−0.449
        说明:缩写指代的指标见表1

      图  1  2种类型文冠果种质资源的叶片解剖结构特征

      Figure 1.  Leaf anatomical structure characteristics of 2 types of X. sorbifolium

      对2组种质资源指标数据进行隶属函数分析(表5):A组的隶属函数值为0.479,高于B组(0.210),这与因子分析的综合得分结果一致,表明因子分析法对于评价文冠果种质资源抗旱性的适用性。方差分析结果(表6)表明:A组和B组种质资源的各项指标中除下表皮占比不存在显著差异外,其余指标均存在极显著差异。A组的叶片厚度、上/下表皮厚度、栅栏组织厚度和蜡质层厚度等都显著高于B组,而B组的组织结构疏松度较高,为40.321%。这表明在同一干旱环境条件下,A组种质资源叶片的保水能力要强于B组,即A组的抗旱性要强于B组,A组的文冠果种质资源更适宜在干旱地区种植。

      表 6  2种类型文冠果叶片解剖结构的方差分析

      Table 6.  Variance of 2 types of X. sorbifolium leaf anatomical structure

      类型LT/μmTU/μmTL/μmTP/μmTS/μmLCT/μmVD/μmP/S/%PU/%PL/%PLCT/%CTR/%SR/%
      A组188.11716.82013.87988.03764.8635.61813.818140.4999.0117.5403.06046.98735.053
      B组103.1348.0627.12342.30441.7162.4396.499106.1007.8897.0012.39341.15740.321
      P0.0000.0000.0000.0000.0000.0000.0000.0000.0000.9100.0000.0000.000
        说明:缩写指代的指标见表1
    • 叶片形态的变化是植物对干旱胁迫的重要响应机制之一。长期生长在干旱环境中的植物会形成多种抗旱、耐旱的叶片结构特征,其中叶片解剖结构的多项指标在植物抗旱性评价中广泛应用[16-18],如叶片厚度[19]、上表皮厚度、下表皮厚度[19]、栅海比[20-21]、组织结构紧密度[22]等都是评价植物抗旱性的主要指标,但使用单一指标评价植物的抗旱性具有片面性,对多项指标进行综合分析是准确评价植物种质资源抗旱性的关键。本研究基于13项叶片解剖结构指标对文冠果种质资源的抗旱性进行了评价,结果表明:文冠果不同种质资源的叶片解剖结构指标的变异范围较大,且指标之间具有显著相关性。为使综合评价结果更加客观合理,采用因子分析法从上述指标中提取出4个公因子:厚度指数因子、组织指数因子、表皮占比因子和蜡质层占比因子,其中载荷量较大的上/下表皮厚度、栅栏组织厚度和导管直径可作为评价文冠果抗旱性的主要指标。

      基于因子分析的结果,结合聚类和隶属函数分析法将种质资源划分成为A组和B组。其中A组的90份种质资源具有较高的综合得分和隶属函数值,在表皮厚度、栅栏组织厚度、组织结构紧实度和导管直径等方面均具有较好的表现,即在干旱胁迫下,A组种质资源相比于B组具有较强的适应能力。叶片越厚,储水能力越强[22-24],栅栏组织厚实,细胞排列紧密能有效减少叶片水分的流失[25-26],而较大的导管直径可提高水分运输效率,使植株更好地适应干旱环境[27]。因子分析和隶属函数分析结果的一致性表明:因子分析法能够准确地评价并筛选出抗旱性文冠果种质资源,筛选出的A组种质资源能兼顾丰产和节水抗旱的优点,可为干旱地区提供适宜的种质材料。

      叶片解剖结构特征是反映植物抗旱性和筛选抗旱型种质资源的一个重要方面[28-29]。抗旱性则是植物长期适应干旱环境而产生的一种复杂的性状,涉及植物的形态构造、生理生化反应等多方面[30-32]。在今后的研究中,可以综合考虑多种因素并结合生产实践来评价并筛选抗旱种质资源。

参考文献 (32)

目录

/

返回文章
返回