Spatial variability and affecting factors of soil fertility in Chinese hickory stands at village scale
-
摘要:
目的 为村级尺度山核桃Carya cathayensis林地合理培肥提供科学依据。 方法 在浙江省岛石镇大山川村山核桃主产区,系统采集土壤(0~30 cm)样品134个,运用地统计学与地理信息系统(GIS)相结合的方法、主成分分析法(PCA)探究林地土壤肥力空间变异结构特征、土壤肥力状况及其主控因素。 结果 山核桃林地土壤pH 5.39,土壤容重为1.14 g·cm−3,有机质、全氮质量分数分别为42.13和2.33 g·kg−1,土壤碱解氮、速效钾、有效磷质量分数均值分别为115.89、82.69、1.47 mg·kg−1;容重、全氮、有效磷和速效钾的块基比均小于25%,具有强烈的空间相关性,结构因素为主导。pH、有机质具有中等空间相关性,碱解氮受随机因素影响较大;相关性分析表明:土壤pH、有机质、速效钾和碱解氮与海拔、容重显著相关(P<0.05);土壤综合肥力指数均值为0.66,肥力水平适中。主成分分析表明:有机质和碱解氮在第1主成分上具有较大载荷。 结论 山核桃林地土壤酸化及养分失衡现象严重,土壤肥力呈中部高四周低的分布格局。有机质、碱解氮是影响土壤肥力水平的主控因子,受海拔、容重影响显著。今后可按照“大配方,小调整”的原则补施生石灰、氮、磷、钾等单一肥料,以改良山核桃林地土壤酸化并提升土壤肥力质量。图4表5参28 Abstract:Objective This study, with an investigation of a total of 134 topsoil samples (0−30 cm) systematically collected from Chinese hickory (Carya cathayensis) plantation in Dashanchuan village, Daoshi town, Zhejiang Province, is aimed to provide scientific basis for rational soil fertility management of Chinese hickory plantation at village scale. Method GIS and geostatistics were utilized to reveal the spatial heterogeneity of soil fertility properties, whereas principal component analysis (PCA) was used to explore the main controlling factors affecting the soil fertility. Result (1) Soil in Dashanchuan village was acidic (pH 5.39) on the whole with the average of bulk density (BD) being 1.14 g·cm−3 while organic matter (OM), available nitrogen (AN), available potassium (AK) and total nitrogen (TN) were moderate with average concentrations of 42.13 g·kg−1, 115.89 mg·kg−1, 82.69 mg·kg−1 and 2.33 g·kg−1 respectively. (2) Available phosphorus (AP) was low with average concentrations of 1.47 mg·kg−1 with the nugget coefficients of BD, TN, AP and AK below 25%, featured with a strong spatial autocorrelation. (3) Soil pH and OM showed moderately spatial autocorrelation. (4) AN fit the weak spatial autocorrelation, which indicated that random factors had a significant influence. (5) The results of correlation analysis revealed that pH, OM, AK and AN had significant correlation with altitude and bulk density (P<0.05) while the integrated fertility index (IFI) of study area ranged from 0.20 to 0.90 with an average of 0.66, indicating moderate fertility level. (6) Principal component analysis showed that OM and AN had a high load in PC1. Conclusion The study area suffered serious the soil acidification and nutrient imbalances with the soil fertility being high in the middle but low in the surrounding areas. Besides, OM and AN, are the main controlling factors affecting soil fertility quality of the study area, with their contents significantly affected by elevation and BD. Therefore, to improve soil acidification and soil fertility quality so as to better manage the soil, single element fertilizers including quicklime, nitrogen, phosphorus and potassium could be applied under the principle of “large formula, small adjustment” based on formula fertilizer. [Ch, 4 fig. 5 tab. 28 ref.] -
Key words:
- Chinese hickory /
- village scale /
- geostatistics /
- principal component analysis /
- spatial varibility /
- soil
-
表 1 土壤肥力指标的平均相关系数和权重系数
Table 1. Average correlation coefficients and weight value of soil fertility indexes
指标 相关系数平均值 权重系数 pH 0.16 0.13 BD 0.19 0.15 OM 0.33 0.27 AN 0.23 0.19 AP 0.07 0.05 AK 0.09 0.08 TN 0.16 0.13 表 2 土壤肥力水平分级标准及各等级所占比例
Table 2. Classification standard of soil fertility and its proportion
等级 IFI 各等级比例/% 肥力水平 Ⅴ ≤0.40 2.99 差 Ⅳ (0.40~0.60] 23.88 较差 Ⅲ (0.60~0.70] 33.58 中等 Ⅱ (0.70~0.80] 20.15 良好 Ⅰ >0.80 19.40 优秀 表 3 山核桃林地土壤肥力指标描述性统计
Table 3. Descriptive statistics of soil fertility properties in Chinese hickory plantation
项目 pH BD/(g·cm−3) OM/(g·kg−1) TN/(g·kg−1) AN/(mg·kg−1) AP/(mg·kg−1) AK/(mg·kg−1) 均值 5.39 1.14 42.13 2.33 115.89 1.47 82.69 最小值 4.60 0.58 10.51 0.32 1.39 0.03 10.04 最大值 8.24 1.70 153.11 12.31 311.57 16.94 273.72 标准差 0.55 0.16 22.22 1.58 57.73 2.23 46.26 变异系数/% 10.25 14.04 52.75 67.62 49.82 151.21 55.94 偏度 2.215(1.67) −0.110 2.262(0.22) 3.753(0.12) 0.670 3.515(0.01) 1.671(−0.33) 峰度 7.330(4.48) 1.800 7.226(0.89) 19.613(2.84) 1.070 17.839(−0.03) 3.709(1.18) K-S 0.024(0.07) 0.129 0.003(0.68) 0.000(0.07) 0.448 0.000(0.20) 0.004(0.64) 说明:括号内分别为经对数、Box-Cox转换后的偏度、峰度和K-S检验的显著性水平;n=134 表 4 山核桃林地土壤肥力指标半方差函数理论模型及其相关参数
Table 4. Semi-variogram model and parameters of soil fertility properties in Chinese hickory plantation
指标 理论模型 块金值 $ \left({C}_{0}\right) $ 基台值 $ {(C}_{0}+C) $ 变程/m 块基比 $ [{C}_{0} $/( $ {C}_{0}+C $)]/% R2 pH 球状模型 0.000 5 0.001 8 732 26.33 0.98 BD 指数模型 0.001 6 0.025 3 390 6.32 0.83 OM 高斯模型 0.029 5 0.067 9 2 364 66.55 0.83 TN 高斯模型 0.002 3 0.045 9 327 5.01 0.86 AN 指数模型 2 798.202 6 3 432.030 4 1 951 81.53 0.63 AP 球状模型 0.013 0 1.447 0 342 0.90 0.94 AK 球状模型 0.004 0 0.057 2 272 7.00 0.80 表 5 土壤各肥力指标的主成分分析
Table 5. Principal component analysis of soil fertility properties
主成分 pH BD OM AN AP AK TN 特征根 方差贡献率/% 累计方差贡献率/% PC1 0.567 −0.782 0.925 0.838 0.036 0.045 0.383 2.641 37.735 37.735 PC2 0.186 0.156 0.018 0.019 0.790 0.722 −0.201 1.246 17.805 55.540 PC3 0.406 0.237 −0.025 0.188 −0.260 0.526 0.695 1.084 15.487 71.026 -
[1] 袁紫倩, 叶正钱, 李皓, 等. 影响山核桃林地土壤生产性能的主要肥力因子及其临界区间[J]. 植物营养与肥料学报, 2020, 26(1): 163 − 171. YUAN Ziqian, YE Zhengqian, LI Hao,et al. Main soil fertility factors and their critical ranges for Chinese walnut (Carya cathayensis Sarg. ) production [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 163 − 171. [2] 沈一凡, 钱进芳, 郑小平, 等. 山核桃中心产区林地土壤肥力的时空变化特征[J]. 林业科学, 2016, 52(7): 1 − 12. SHEN Yifan, QIAN Jinfang, ZHENG Xiaoping,et al. Spatial-temporal variation of soil fertility in Chinese walnut (Carya cathayensis) plantation [J]. Scientia Silvae Sinicae, 2016, 52(7): 1 − 12. [3] 胡颖槟, 金锦, 童志鹏, 等. 山核桃人工林土壤肥力研究进展[J]. 浙江农林大学学报, 2021, 38(5): 1066 − 1075. HU Yingbin, JIN Jin, TONG Zhipeng,et al. Soil fertility in Carya cathayensis plantation: a review [J]. Journal of Zhejiang A&F University, 2021, 38(5): 1066 − 1075. [4] CAMBARDELLA C A, MOORMAN T B, NOVAK J M,et al. Field-scale variability of soil properties in central Iowa soils [J]. Soil Science Society of America Journal, 1994, 58(5): 1501 − 1511. doi: 10.2136/sssaj1994.03615995005800050033x [5] ROSEMARY F, VITHARANA U W A, INDRARATNE S P,et al. Exploring the spatial variability of soil properties in an Alfisol soil catena [J]. Catena, 2017, 150: 53 − 61. doi: 10.1016/j.catena.2016.10.017 [6] 赵晴月, 许世杰, 张务帅, 等. 中国玉米主产区土壤养分的空间变异及影响因素分析[J]. 中国农业科学, 2020, 53(15): 3120 − 3133. doi: 10.3864/j.issn.0578-1752.2020.15.012 ZHAO Qingyue, XU Shijie, ZHANG Wushuai,et al. Spatial regional variability and influential factors of soil fertilities in the major regions of maize production of China [J]. Scientia Agricultura Sinica, 2020, 53(15): 3120 − 3133. doi: 10.3864/j.issn.0578-1752.2020.15.012 [7] CHEN Shuai, LIN Bowen, LI Yanqiang, et al. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China [J/OL]. Geoderma, 2020, 357: 113937[2022-07-05]. doi. org/10.1016/j. geoderma. 2019.113937. [8] 连玉珍, 曹丽花, 刘合满, 等. 色季拉山西坡表层土壤有机碳的小尺度空间分布特征[J]. 北京林业大学学报, 2020, 42(9): 70 − 79. LIAN Yuzhen, CAO Lihua, LIU Heman,et al. Spatial distribution characteristics at small scale of soil organic carbon in topsoil of the west slope in Sejila Mountain, western China [J]. Journal of Beijing Forestry University, 2020, 42(9): 70 − 79. [9] 王幼奇, 白一茹, 赵云鹏. 宁夏砂田小尺度土壤性质空间变异特征与肥力评价[J]. 中国农业科学, 2016, 49(23): 4566 − 4575. WANG Youqi, BAI Yiru, ZHAO Yunpeng. Assessment of soil fertility and its spatial variability based on small scale in the gravel mulched field of Ningxia [J]. Scientia Agricultura Sinica, 2016, 49(23): 4566 − 4575. [10] 张红桔, 马闪闪, 赵科理, 等. 山核桃林地土壤肥力状况及其空间分布特征[J]. 浙江农林大学学报, 2018, 35(4): 664 − 673. ZHANG Hongju, MA Shanshan, ZHAO Keli,et al. Soil fertility and its spatial distribution for Carya cathayensis stands in Lin’an, Zhejiang Province [J]. Journal of Zhejiang A&F University, 2018, 35(4): 664 − 673. [11] 冯晓, 乔淑, 胡峰, 等. 土壤养分空间变异研究进展[J]. 湖北农业科学, 2010, 49(7): 1738 − 1741. FENG Xiao, QIAO Shu, HU Feng,et al. Advance on spatial variability of soil nutrients [J]. Hubei Agricultural Science, 2010, 49(7): 1738 − 1741. [12] 杭州市临安区地方志编纂委员会. 临安年鉴2021[EB/OL]. 2021-11-01[2022-07-03]. http://www.linan.gov.cn/col/col1366298/index.html. Hangzhou Lin’an District Local Records Compilation Committee. Yearbook of Lin’an 2021[EB/OL]. 2021-11-01[2022-07-03]. http://www.linan.gov.cn/col/col1366298/index.html. [13] 鲍士旦. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 146 − 226. BAO Shidan. Soil Agrochemical Chemistrical Analysis[M]. Beijing: China Agriculture Science and Technology Press, 2000: 146 − 226. [14] FU Weijun, DONG Jiaqi, DING Lizhong, et al. Spatial correlation of nutrients in a typical soil- hickory system of southeastern China and its implication for site-specific fertilizer application [J/OL]. Soil and Tillage Research, 2022, 217: f9020048[2022-07-03]. doi: 10.3390/f9020048. [15] 徐建明. 土壤质量指标与评价[M]. 北京: 科学出版社, 2010. XU Jianming. Soil Quality Index and Evaluation[M]. Beijing: Science Press, 2010. [16] 叶仲节, 柴锡周. 浙江林业土壤 [M]. 杭州: 浙江科学技术出版社, 1986. YE Zhongjie, CHAI Xizhou. Forestry Soil in Zhejiang [M]. Hangzhou: Zhejiang Science and Technology Publishing House, 1986. [17] 王远鹏, 黄晶, 柳开楼, 等. 东北典型县域稻田土壤肥力评价及其空间变异[J]. 植物营养与肥料学报, 2020, 26(2): 256 − 266. WANG Yuanpeng, HUANG Jing, LIU Kailou,et al. Evaluation and spatial variability of paddy soil fertility in typical county of northeast China [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 256 − 266. [18] 张凤荣, 安萍莉, 王军艳, 等. 耕地分等中的土壤质量指标体系与分等方法[J]. 资源科学, 2002, 24(2): 71 − 75. doi: 10.3321/j.issn:1007-7588.2002.02.014 ZHANG Fengrong, AN Pingli, WANG Junyan,et al. Soil quality criteria and methodologies of farmland grading [J]. Resources Science, 2002, 24(2): 71 − 75. doi: 10.3321/j.issn:1007-7588.2002.02.014 [19] 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. National Soil Survey Office. China Soils [M]. Beijing: China Agriculture Press, 1998. [20] 何萍, 金继运, PAMPOLINO M F, 等. 基于作物产量反应和农学效率的推荐施肥方法[J]. 植物营养与肥料学报, 2012, 18(2): 499 − 505. HE Ping, JIN Jiyun, PAMPOLINO M F,et al. Approach and decision support system based on crop yield response and agronomic efficiency [J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 499 − 505. [21] TIAN Dashuan, NIU Shuli. A global analysis of soil acidification caused by nitrogen addition [J]. Environmental Research Letters, 2015, 10(2): 1714 − 1721. [22] 倪幸, 窦春英, 丁立忠, 等. 有机物料对山核桃林地土壤的培肥改良效果[J]. 植物营养与肥料学报, 2018, 24(5): 1266 − 1275. doi: 10.11674/zwyf.17389 NI Xing, DOU Chunying, DING Lizhong,et al. Organic materials improved the soil fertility in Carya cathayensis forest lands [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1266 − 1275. doi: 10.11674/zwyf.17389 [23] 张璐璐, 贾桂民, 叶建丰, 等. 浙江临安山核桃干腐病发生发展规律[J]. 浙江农林大学学报, 2013, 30(1): 148 − 152. doi: 10.11833/j.issn.2095-0756.2013.01.022 ZHANG Lulu, JIA Guimin, YE Jianfeng,et al. Frequency of Carya cathayensis canker disease in Lin’an City [J]. Journal of Zhejiang A&F University, 2013, 30(1): 148 − 152. doi: 10.11833/j.issn.2095-0756.2013.01.022 [24] 柳丽娜, 金爱武. 集约经营毛竹林土壤养分空间变异特征初探[J]. 浙江农林大学学报, 2011, 28(5): 828 − 832. LIU Li’na, JIN Aiwu. Spatial variability of soil nutrients for an intensively managed Phyllostachys pubescens forest [J]. Journal of Zhejiang A&F University, 2011, 28(5): 828 − 832. [25] 张惠. 典型绿茶茶园土壤养分和重金属的空间变异特性分析及肥力质量评价[D]. 北京: 中国农业科学院, 2015. ZHANG Hui. Analysis of the Spatial Variation and Evaluation on Soil Fertility and Heavy Metal of Typical Green Tea Plantations [D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. [26] 黄兴召, 黄坚钦, 陈丁红, 等. 不同垂直地带山核桃林地土壤理化性质比较[J]. 浙江林业科技, 2010, 30(6): 23 − 27. HUANG Xingzhao, HUANG Jianqin, CHEN Dinghong,et al. Comparison on soil physical and chemical properties at different vertical zones of Carya cathayensis stands [J]. Journal of Zhejiang Forestry Science and Technology, 2010, 30(6): 23 − 27. [27] 石红静, 马闪闪, 赵科理, 等. 有机物料对酸化山核桃林地土壤的改良作用[J]. 浙江农林大学学报, 2017, 34(4): 670 − 678. SHI Hongjing, MA Shanshan, ZHAO Keli,et al. Organic materials improved the soil fertility in Carya cathayensis forest lands [J]. Journal of Zhejiang A&F University, 2017, 34(4): 670 − 678. [28] 祁凯斌, 黄俊胜, 杨婷惠, 等. 亚高山森林自然与人工恢复对土壤涵水能力的影响[J]. 生态学报, 2018, 38(22): 8118 − 8128. QI Kaibin, HUANG Junsheng, YANG Tinghui,et al. Effects of natural and artificial restoration approaches on soil water-holding capacity in subalpine coniferous forests [J]. Acta Ecologica Sinica, 2018, 38(22): 8118 − 8128. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220544

计量
- 文章访问数: 43
- 被引次数: 0