-
花型花色单一、花期短、花叶均赏品种稀缺是木兰科Magnoliaceae植物杂交育种的主要问题[1]。目前有关含笑属Michelia杂交亲和性的研究较少,而了解物种间亲和性关系是培育新品种的关键。有研究认为:在含笑属远缘杂交过程中存在不亲和现象[2−3]。王亚玲等[4]则发现含笑属内种间杂交大多表现亲和,而紫花含笑M. crassipes×金叶含笑M. foveolata则不亲和,但未对不亲和原因进行探究。金叶含笑隶属木兰科含笑属,其花淡黄白色,花被片内扣形成独特花型,叶背密被红褐色柔毛,是木兰科中珍稀的花叶共赏树种,也是木兰科优良的杂交亲本材料。紫花含笑是含笑属珍稀的紫色花色植物,含笑M. figo的花被片边缘有紫色条纹。本研究通过金叶含笑与紫花含笑和含笑的杂交育种研究,以期将三者的优良性状相结合,培育出花叶共赏新品种,提高金叶含笑利用价值,丰富含笑属种质资源,并探究不亲和的原因,以期提高含笑属杂交成功率,为含笑属远缘杂交育种提供理论依据。
-
金叶含笑和紫花含笑来自湖南省长沙市湖南省科技示范园,含笑来自中南林业科技大学校园。
-
于2021年和2022年4—5月,收集金叶含笑、含笑、紫花含笑的花粉,置于−20 ℃的冰箱保存。在授粉前进行花粉活力测定,确保各亲本的花粉活力在60%以上。培养基配方参考柴弋霞等[5]并改良,采用固体培养基。紫花含笑花粉活力测定所用培养基的配制方法:150 g·L−1 蔗糖 + 300 mg·L−1硼酸 + 300 mg·L−1氯化钙+ 8 g·L−1琼脂;含笑花粉活力测定所用培养基的配制方法:100 g·L−1 蔗糖 + 200 mg·L−1硼酸 + 300 mg·L−1氯化钙 + 8 g·L−1琼脂;作者通过预实验已筛选出金叶含笑花粉活力测定的最适培养基为50 g·L−1蔗糖 +200 mg·L−1硼酸 + 300 mg·L−1氯化钙 + 8 g·L−1琼脂。杂交组合 (♀×♂) :含笑×金叶含笑、紫花含笑×金叶含笑、金叶含笑×含笑、金叶含笑×紫花含笑。每个组合授粉30~34朵花。
-
授粉后,在当年9—12月,采集各杂交组合的果实,统计坐果率、结籽率、单个果序上的蓇葖膨大率、种子数、单个蓇葖内含种子数、形态异常种子占比和千粒重。
-
用洗涤剂将杂交种子富含油脂的外种皮搓洗掉,经质量浓度为0.3%的高锰酸钾溶液消毒30 min,再用双蒸水(ddH2O)反复清洗,随后播种,统计各杂交组合种子的出苗率。
-
参考柴弋霞等[5]的方法并改良,在母本花蕾期去除花被片及雄蕊,授予父本花粉并套袋,在授粉后2 h、4 h、6 h、8 h、10 h、12 h、1 d、2 d、4 d、6 d、8 d取下雌蕊放入FAA固定液中,待固定48 h以上后,用解剖针将雌蕊从雌蕊群柄上取下,进行体积分数为50%、30%、10%乙醇和蒸馏水逐级复水,每级复水15 min。复水后将雌蕊置于1 mol·L−1 氢氧化钠溶液中,60 ℃水浴软化3 h,随后用蒸馏水重复清洗3次,用质量分数为0.1%苯胺蓝避光染色12 h。由于金叶含笑花柱从中部至子房基部均密被银灰色短绒毛,采用常规压片时花粉管会被绒毛所覆盖,很难观察到花粉管的生长情况,因此在本研究中,将授粉12 h前的花柱切下,再将授粉12 h后各时间点的子房壁沿心皮背缝线和腹缝线方向削去直至漏出胚珠,软化后使截面呈透明。将上述处理后的材料常规压片后置于莱卡(Leica)荧光倒置显微镜下观察花粉管的生长情况。
-
如图1所示:授粉2 h时,仅有极少量的花粉附着在含笑柱头表面且花粉未萌发(图1A);4、6 h时,附着在含笑柱头表面的花粉数量逐渐增多,但同样未萌发(图1B和C);8 h时,有少量花粉开始萌发,花粉管长度为花粉粒直径的1.5~2.0倍(图1D);10 h时,萌发的花粉数量增加,花粉管长度为花粉粒直径的2.0~3.0倍,此时花粉管无汇聚现象(图1E);1 d时,花粉大量萌发,花粉管长度生长至花粉粒直径的3.0倍以上,花粉管出现了明显的汇聚现象(图1F);2 d时,花粉管生长至近花柱底部,即将进入子房(图1G);4 d时,花粉管进入子房,生长至子房1/3~1/2处(图1H);6 d时,有少数生长较快的花粉管进入胚珠(图1I);8 d时,大多数花粉管在此时已进入胚珠(图1J)。但同时也出现了花粉管生长异常的现象:授粉4 d时,发现花柱道细胞和间隙间堆积了大量胼胝质(图1K和L),阻碍了花粉管生长,这一现象也在4、8 d时出现;2 d时,花粉管应汇聚成束进入花柱,但有些花粉管在柱头表面生长杂乱无章(图1M)。在8 d时发现,花粉管在柱头表面萌发,但因花粉管内部堆积胼胝质而停止生长(图1N)。
-
如图2所示:授粉2 h时,花粉未萌发(图2A);4 h时,柱头表面的花粉数量增多,有极少数花粉在此时开始萌发(图2B);6 h时,花粉萌发数量逐渐增多(图2C);在8 h时,大量花粉萌发,花粉管生长至花粉粒直径的3倍以上,此时花粉管存在汇聚的趋势但还没有开始汇聚(图2D);授粉后1 d,花粉管已汇聚成束,生长至柱头中部(图2E);2 d时,花粉管生长至花柱底部(图2F);4 d时,花粉管生长至子房约1/3处(图2G);6 d时,花粉管生长至子房1/2处(图2H);8 d时,大多数花粉管已进入胚珠(图2I)。该组合出现以下受精前障碍:授粉1 d时,出现花粉管生长杂乱且无汇聚现象。有的花粉萌发后,花粉管朝反方向生长(图2J);8 d时,发现有的花粉粒仍未萌发、萌发的花粉管在柱头表面彼此间交错缠绕生长,未进入柱头(图2K);花粉管在进入胚珠后,花粉管弯曲缠绕成团,阻碍受精(图2L);4 d时,花粉管内部和先端有胼胝质堆积而使花粉管膨大,阻碍其进一步生长(图2M)。
-
如图3所示:授粉2 h时,无花粉黏附在柱头表面(图3A);4 h时,有少量花粉黏附在柱头表面,并开始萌发,花粉管长度为花粉粒直径的2~3倍(图3B);6 h时,萌发的花粉数量增加,花粉管生长至花粉粒直径的4倍以上,生长较快的花粉管已开始汇聚成束(图3C);8 h时,萌发的花粉数量显著增加,花粉管有明显汇聚成束的趋势(图3D);10 h时,花粉管汇聚成束(图3E);12 h时,汇聚成束的花粉管生长至近柱头下部(图3F);1 d时,成束的花粉管生长至子房上部1/3处(图3G);2 d时,成束的花粉管开始彼此分离,生长较快者已进入胚珠(图3H);4 d时,多数花粉管已进入胚珠(图3I);6 d时,花粉管逐渐向下生长,进入底部的胚珠(图3J)。6 d时,极个别的柱头表面仍存在大量未萌发的花粉,少数已萌发花粉的花粉管内存在胼胝质堆积(图3K)。
-
如图4所示:授粉2 h后,仅有极少花粉黏附在柱头表面,无花粉萌发(图4A);4 h时,黏附的花粉数量增加,已有少量花粉萌发,花粉管生长至花粉粒直径的2~3倍,少数生长较快的花粉管生长至花粉粒直径的4倍以上(图4B);6 h时,黏附及萌发花粉数量大幅增加,花粉管生长至花粉粒直径的4倍以上(图4C);8 h时,花粉管有汇聚成束的趋势(图4D);10 h时,呈汇聚趋势的花粉管数量显著增加,汇聚趋势更加明显(图4E);12 h时,花粉管汇聚成束(图4F);1 d时,成束的花粉管生长至子房1/3~1/2处且花粉管开始彼此分离(图4G);2 d时,花粉管继续向下延伸(图4H);4 d时,多数花粉管已进入胚珠(图4I)。
-
如表1和图5所示:金叶含笑与含笑正反交的坐果率均较高,分别为75.0%和78.8%。金叶含笑与紫花含笑正反交坐果率相差极大,正交的坐果率很高,达80.0%,而反交则极低,只有6.7%。金叶含笑×紫花含笑与金叶含笑×含笑的果实在坐果率、蓇葖膨大率与种子数上无显著差异,金叶含笑×含笑的种子较金叶含笑×紫花含笑略大而饱满。含笑×金叶含笑的坐果率显著高于紫花含笑×金叶含笑,蓇葖膨大率与种子数同样高于紫花含笑×金叶含笑。
表 1 金叶含笑在不同杂交组合中的结实情况
Table 1. Fruit and seed setting status of M. foveolata in different cross combinations
杂交组合 (♀×♂) 坐果率/% 结籽率/% 单个果序蓇葖
膨大率/%种子数/粒 单个蓇葖内
含种子数/粒形态异常
种子占比/%千粒重/g 种子萌发率/% 金叶含笑×含笑 75.0 a 50.3±13.4 a 90.5±8.8 a 300.7±79.2 a 4.8±1.1 a 9.6±5.8 a 25.1 90.6 金叶含笑×紫花含笑 80.0 a 36.6±9.6 b 87.6±7.1 a 287.5±47.9 a 4.4±0.6 a 16.1±9.2 a 21.8 78.1 含笑×金叶含笑 78.8 a 27.3±9.0 bc 49.4±15.7 b 24.1±9.7 b 1.1±0.2 b 0.0±0.0 b 107.7 87.5 紫花含笑×金叶含笑 6.7 b 18.4±1.4 c 27.3±4.6 c 13.0±1.4 b 1.1±0.0 b 0.0±0.0 b 113.3 92.9 说明:不同字母表示不同杂交组合间差异显著(P<0.05)。 -
于2021年和2022年9—12月采集各杂交组合的种子。含笑×金叶含笑与紫花含笑×金叶含笑的种子经低温沙藏处理后于翌年1月播种,种子在3月初至4月初开始陆续萌发。金叶含笑×含笑与金叶含笑×紫花含笑的种子属于薄皮种子,很容易因失水、氧化而失去活性,因此采用即采即播的方式,种子在翌年2月中旬陆续萌发。由表1所示:各杂交组合的种子出苗情况良好,萌发率较高,均在75.0%以上,其中最高的为紫花含笑×金叶含笑杂交组合的种子,萌发率高达92.9%。
-
杂交障碍分为受精前障碍与受精后障碍。受精前障碍主要表现为:花粉在柱头上不能萌发;即使花粉在柱头表面萌发,但花粉管不能伸入柱头;花粉管可以穿过柱头在花柱中生长但生长受阻,不能进入子房到达胚囊;花粉管虽能达到胚囊,但不能完成双受精[6]。受精后障碍主要表现为受精后的合子不分裂或原胚发育异常或早期发育停止;胚乳发育异常或胚乳与胚发育不协调,最终导致胚体发育异常而降解;可获得种子但种子不能发芽或发芽后成株前夭亡或不能正常开花和结果[7]。
本研究中含笑×金叶含笑杂交的坐果率较高,达78.8%。平均每个果序上有49.4%的蓇葖膨大,当果序上有极少数蓇葖膨大时依然可以实现坐果。然而结籽率却较低,仅为27.3%,平均单个蓇葖内含种子数为1.1个,含笑的每心皮内含2枚胚珠,有近一半的胚珠没有成功受精或受精后胚发育异常。综合分析,在荧光显微观察中发现的花柱道细胞和间隙间堆积了大量胼胝质,阻碍了花粉管的生长;花粉管在柱头表面杂乱生长,导致花粉管无法汇聚成束进入花柱道,最终停止生长;花粉管内部和先端有胼胝质堆积,形成胼胝质塞,使花粉管生长受阻等障碍与结实情况,认为上述杂交障碍并不影响坐果,而是影响结籽。王亚玲[8]发现花粉管两型性在木兰科植物中广泛存在,绝大多数花粉是短花粉管型,极少数是长花粉管型,而只有长花粉管能完成受精。香港木兰M. championii的花粉大量萌发,在花柱道汇聚成束后,随着花粉管生长,越靠近胚珠的花粉管neng数量越少,仅有少数花粉管能到达胚珠。这种现象与本研究中含笑和紫花含笑的胚珠附近未见明显的花粉管分离现象相似。因此推测:可能是由于花粉的生理特性加上胼胝质阻碍花粉管进入胚珠完成受精,进而影响结籽率。也有研究发现木兰科植物存在大孢子发生和雌配子体发育异常的现象[9−11],这会对木兰科植物结实产生影响。
金叶含笑×紫花含笑坐果率与结籽率显著高于紫花含笑×金叶含笑,可见金叶含笑作母本时表现亲和,而作父本时亲和性较差。目前已有许多学者发现杂交亲和性具有单向性[12−14]。在王亚玲[8]研究中,紫花含笑×金叶含笑的坐果率为0,判定紫花含笑和金叶含笑杂交不亲和。本研究证实该杂交组合坐果率虽然很低,但仍可以结实。产生差异的原因可能是由于王亚玲仅对7朵花进行杂交试验,样本量过少。虽然在紫花含笑×金叶含笑中出现花粉在柱头表面未萌发,花粉管在柱头表面盘旋生长,未进入柱头,花粉管内部、先端堆积胼胝质而变得膨大,生长受阻,花粉管在胚珠内弯曲缠绕成团,阻碍受精等不亲和现象,但经观察发现绝大多数金叶含笑的花粉管已到达紫花含笑胚珠部位。杨占辉等[15]在鸢尾Iris spp.杂交试验中发现鸢尾花粉在柱头表面缠绕扭曲,但对花粉管伸长影响不大,最终都可见花粉管进入胚珠。何兴波等[16]发现‘风味玫瑰’Prunus domestica × P. armeniaca ‘Fengweimeigui’自交的花粉管在胚珠附近时,花粉管先端出现团状胼胝质,阻碍花粉管进入胚珠。张赛阳等[17]发现杂交石竹Dianthus hybridus的花粉管即使可以从珠孔进入胚囊,但在珠孔附近卷曲盘绕生长,并堆积胼胝质,阻碍双受精。在紫花含笑×金叶含笑杂交1个月后,紫花含笑的雌蕊群上仅有极少数雌蕊膨大,但未落果。在2个月时大多数雌蕊的颜色由绿色转为黄色,随后脱落。当下层雌蕊脱落时会连带上层膨大的雌蕊一起脱落,果实脱落率高达93.34%。王亚玲[8]发现没有完成双受精的香港木兰雌蕊会在授粉后10 d左右开始凋落。也有学者认为:在授粉后子房生长停滞并大量落果,是胚胎发育不良引起的[18−19]。吴美娇等[20]发现百合Lilium spp.花粉管在受精前无明显障碍,但在受精和胚胎发育过程中出现不同程度的胚败育现象。综合分析,推测紫花含笑×金叶含笑杂交不亲和主要是由受精后障碍引起的,因此,需要对受精情况和胚胎发育进一步研究。
在金叶含笑×含笑与金叶含笑×紫花含笑中均存在形态异常的种子,大多数为空瘪的种子。在2个组合中形态异常种子占比分别为9.6%和16.1%,而反交则均为饱满的种子,王亚玲[8]发现:在香港木兰授粉后部分合子出现败育,如果胚乳核继续发育,最后可以形成无胚种子。同时也存在受精胚乳核败育,胚乳没有形成营养丰富的胚乳核细胞,而是形成海绵状物质。目前已有许多方法用于克服受精前障碍,如蒙导法、重复授粉法等。贺丹等[21]研究发现:延迟授粉法可以减缓甚至克服母本柱头或花柱对异源花粉萌发及花粉管生长的抑制,克服受精前障碍,提高育种效率。对于杂交胚早期败育可采用胚抢救的方法[22−23]。因此,在今后研究中可对紫花含笑×金叶含笑的杂交胚采取胚抢救的方法克服不亲和障碍。
-
金叶含笑与含笑正反交均亲和,金叶含笑花粉管与含笑花柱道内的胼胝质堆积,但不影响坐果率,只对结籽率有一定影响。金叶含笑与紫花含笑表现为单向杂交亲和,金叶含笑×紫花含笑亲和性较强,紫花含笑×金叶含笑亲和性较差是由受精后障碍所引起的。
Compatibility between Michelia foveolata and two Michelia species
-
摘要:
目的 探明金叶含笑Michelia foveolata与含笑M. figo和紫花含笑M. crassipes的杂交亲和性。 方法 以金叶含笑与含笑和紫花含笑作正反交授粉,于授粉2 h、4 h、6 h、8 h、10 h、12 h、1 d、2 d、4 d、6 d、8 d后,通过荧光显微镜观察花粉管的生长情况。同时展开金叶含笑与含笑和紫花含笑的正反交杂交试验,统计结实情况。 结果 ①金叶含笑与含笑正反交的坐果率分别为75.0%和78.8%;②金叶含笑×紫花含笑坐果率(80.0%)显著高于紫花含笑×金叶含笑坐果率(6.7%);③含笑×金叶含笑花粉萌发较紫花含笑×金叶含笑晚2 h,花粉管在生长速度上无明显差异,均在8 d时进入胚珠;④以金叶含笑作母本的组合无明显杂交障碍,花粉管均在2~6 d内进入胚珠,种实发育良好;⑤含笑×金叶含笑存在花粉管在柱头表面杂乱生长、花粉管内部和先端有胼胝质堆积、花柱道细胞及间隙有大量胼胝质堆积等受精前障碍,虽不影响坐果,但对结籽有影响;⑥紫花含笑×金叶含笑存在受精前障碍和受精后障碍,受精前障碍包括花粉在柱头表面未萌发、花粉管在柱头表面盘旋生长未进入柱头、花粉管内部和先端堆积胼胝质而变得膨大,使花粉管生长受阻、花粉管在胚珠内弯曲缠绕成团,阻碍受精作用。但受精后障碍可能是影响落果的重要原因。 结论 金叶含笑与含笑正反交均表现亲和;金叶含笑×紫花含笑的亲和性程度高,紫花含笑×金叶含笑亲和性程度低。图5表1参23 Abstract:Objective This study is aimed to investigate the compatibility of Michelia foveolata with M. figo and M. crassipes. Method On the one hand, fluorescence microscope was used to observe the pollen tube growth after 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 1 d, 2 d, 4 d, 6 d and 8 d. On the other hand, the reciprocal cross test was carried out of M. foveolata with M. figo and M. crassipes respectively to calculate the fruit and seed setting status. Result (1) The fruit setting rates of the reciprocal cross of M. foveolata and M. figo were 75.0% and 78.8% respectively. (2) The fruit setting rate of M. foveolata × M. crassipes (80.0%) was significantly higher than that of M. crassipes × M. foveolata (6.7%). (3) The pollen germination of M. figo × M. foveolata was 2 h later than that of M. crasspies × M. foveolata and pollen tubes entered ovule on 8 d with no significant difference in growth rate. (4) There was no obvious hybridization barriers in the combination of M. foveolata as mother, and the pollen tube entered the ovule successively within 2 to 6 days with well developed fruit and seeds. (5) There were some pre-fertilization barriers, such as disarranged growth of pollen tube on stigma surface, callose accumulation in pollen tube, and callose accumulation in style channel cells and interstitial space and it was speculated that callose accumulation in style channel as the main cause of pre-fertilization barriers does not affect fruit setting, but has an effect on seed setting. (6) There were pre-fertilization and post-fertilization barriers in M. crassipes×M. foveolata. Pre-fertilization barriers include the failure of pollen to germinate on the stigma surface, the growth of pollen tubes in circles on the stigma surface, without entering the stigma, the expansion of pollen tubes due to the accumulation of callose inside and at the apex and the pollen tube becoming twisted and entangled within the ovule. However, post-fertilization barriers may be an important factor affecting fruit fall. Conclusion The reciprocal cross of M. foveolata and M. figo shows good compatibility with the compatibility degree of M. foveolata × M. crassipes being high, while the compatibility degree of M. crassipes×M. foveolata being low. [Ch. 5 fig. 1 tab. 23 ref.] -
Key words:
- Michelia foveolata /
- cross-compatibility /
- pollen tube /
- fruit setting rate /
- seed setting rate
-
树种结构指森林中树种的组成、数量及彼此之间的关系[1],是反映森林结构与功能关系的重要内容之一。树种组成是树种结构中最为重要的内容,是构成树种结构的基础。树种组成多样性反映了林分中树种构成的复杂程度和对光热水等自然资源的均衡利用程度,以及固碳释氧、生物种质资源保存等功能的有效性,具有重要生态学意义。树种组成信息丰富,为尽可能全面表达,往往需要使用详尽的语言或借助表格形式进行呈现[2-5],根据各树种蓄积量所占比例表示树种组成式,满足了人们对树种组成概要描述的需求,但不适用于森林多样性、精准经营、定量分析、对比评价和数字化管理等工作。汤孟平等[6]引入了Shannon物种多样性指数,提出了树种组成指数,并将树种组成式进行数量化。树种组成指数值与树种组成式的系数构成一一对应关系,间接体现了主要树种间的蓄积比例,但未涵盖稀疏树种、树种株数及其分布等信息。可见,树种组成指数值用于定量化表征树种组成多样性是不够全面的。
目前,对于树种组成多样性的定量表述,往往借助于α多样性指数,但依旧存在局限性。王寿兵[7]和赵中华等[8]研究发现:多样性指数本身存在不足与缺陷,一般的多样性指数无法全面客观地反映林分树种组成的重要林学属性。如何科学定量化表达林分树种组成,构建数量化指标的问题值得深入研究[9]。鉴于此,本研究对树种组成多样性的数量化方法进行了探究,构建了树种组成多样性指数,以期为树种组成的表征提供新的度量角度与多样性评价方法,为森林质量评价、森林结构优化调控和森林质量精准提升提供理论和技术依据。
1. 林分树种组成多样性指数的构建
1.1 理论基础
林分树种组成多样性指数构建既要遵循生物多样性表征的基本规律和要求,又要充分体现林分树种组成的具体特征和经营管理要求。满足树种丰富度越大,树种分布越均匀,指数值就越高这一基本思想。
树种组成多样性指数的构建首先应满足生物多样性意义,指数值应分别与树种丰富度、分布均匀度呈相应的正向等比关系。其次,应以科学合理的方式结合丰富度、均匀度等多方面信息。最后构建的指数值体现相应的树种组成特征,反映树种总数、树种密度以及树种蓄积(生物量)比例和分布等多方面的内在相关信息。
构建指数选用指标时应兼顾科学性和可操作性2条重要原则[10]。科学性主要从指标的构建方法考虑,涉及构建的指标参数应当准确客观,具有指征性、代表性和可比性。参数之间应相互补充、相对独立,尽可能全面而不重复地反映树种组成特征。可操作性体现在计算指标的原始数据要容易收集,指标计算方法不宜太复杂,要容易被理解接受并易于推广使用等。
1.2 树种结构多样性指数模型
基于树种组成多样性指数构建的基本理论和要求,对体现树种丰富度的信息与各树种均匀度的信息进行分解使其相对独立,并通过和式进行综合。用树种数体现树种丰富度的信息,用现实林分各个树种的实际株数、蓄积比例与理想林分中完全均匀分布时的树种株数、蓄积所占比例值(1/s,s为树种数)进行较差,并赋予树种株数均匀度、蓄积均匀度相同的权重关系,用平方消除正负值偏差,以体现各树种均匀度的信息,并使之与丰富度信息之间不产生交互和干扰作用。构建的林分树种组成多样性指数(ISCD)计算模型为:
$$ {I_{{\text{SCD}}}} = s - \frac{1}{2}\sum\limits_{i = 1}^s {\left[ {{{\left( {\frac{{{v_i}}}{v} - \frac{1}{s}} \right)}^2} + {{\left( {\frac{{{n_i}}}{n} - \frac{1}{s}} \right)}^2}} \right]} 。 $$ (1) 式(1)中:ISCD为树种组成多样性指数;s为树种数;v为森林总蓄积量;vi为森林中树种i的蓄积量;n为森林总株数;ni为森林中树种i的株数。
1.3 林分树种组成多样性指数内涵
ISCD与树种数、树种株数和树种蓄积比例分布均匀性呈正相关。作为正向指标,ISCD直接体现林分树种组成多样性的特征,并具有以下意义:①ISCD表达了林分中树种数这一重要特征。绝对纯林时,树种数s为1,ISCD为1。非绝对纯林时,树种数s≥2,ISCD为(s−1,s],林分的丰富度或树种数可由ISCD向上取整得到,即可以根据数值所处范围直接确定树种数。当林分中树种数相等时,树种混交程度越高,各树种的株树、蓄积分布越均匀,其比例越接近于1/s,则ISCD越大;当林分中所有树种在株数和蓄积2个方面都呈均匀分布时,ISCD达到最大值s。②ISCD表达了林分中各树种的株数、蓄积比例及分布均匀性,体现出混交程度。林分树种均匀度、混交度由ISCD值的小数部分体现。当林分中树种间均匀度、混交度越小,ISCD值的小数部分就越小;反之就越大。小数部分与数值1的差值体现在一定树种数下,实际林分与分布最均匀、混交度最高时的理想林分之间的差异程度。由于同时考虑了不同树种的株数占比和蓄积占比,ISCD更能全面反映树种的分布及混交情况。
2. 林分树种组成多样性指数的变化规律
2.1 2个树种时ISCD的变化规律
从图1可以看出:当2个树种的株数、蓄积比例分布越不均匀,即某个树种的株数、蓄积占比越接近100%,另一个树种的株数、蓄积占比越接近0时,ISCD就越小,其值就越接近于s−1;当2个树种的株数、蓄积分布越平均,即占比各自越接近50%时,树种结构多样性指数就越趋近最大值2。
2.2 3个树种时ISCD的变化规律
当树种数大于2个时,将各树种的株数和蓄积比例按照其分布均匀程度,进行相应的等级(状态)划分,并以此作为x轴、y轴和z轴数据。设当树种数为3个时,对树种a、b、c存在的株数(或蓄积)分布等级按“3等份”进行划分,并根据Simpson均匀度指数进行分级,株数(或蓄积)分布等级见表1。其中,均匀度等级越大,表明株数(或蓄积)分布的均匀程度越高,Ⅶ为最理想的完全均匀状态。根据表1,对树种的均匀性分布类型组合进行汇总,得到表2。对现实林分中不同均匀度等级之间还存在的连续过渡类型,拟合ISCD变化趋势曲面图(图2)表明:森林中各树种的株数与蓄积的分布均匀度等级越高,ISCD越大,越接近最大值3。与树种数为2个时的规律一致,株数和蓄积分布不均都会导致最终的指数值远小于最大值,ISCD越接近于s−1。
表 1 树种数为3个时的株数(或蓄积)分布均匀度等级Table 1 Distribution uniformity grade of plants number (or volume) of 3 tree species分布均匀
度等级树种a
占比树种b
占比树种c
占比Simpson均匀
度指数Ⅰ 1/9 1/9 7/9 0.622 Ⅱ 1/9 2/9 6/9 0.773 Ⅲ 1/9 3/9 5/9 0.853 Ⅳ 1/9 4/9 4/9 0.879 Ⅴ 2/9 2/9 5/9 0.906 Ⅵ 2/9 3/9 4/9 0.966 Ⅶ 3/9 3/9 3/9 1.000 表 2 树种均匀性分布类型Table 2 Summary of tree species uniformity distribution types树种株数分布
均匀度等级树种蓄积分布均匀度等级 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅰ (Ⅰ,Ⅰ) (Ⅰ,Ⅱ) (Ⅰ,Ⅲ) (Ⅰ,Ⅳ) (Ⅰ,Ⅴ) (Ⅰ,Ⅵ) (Ⅰ,Ⅶ) Ⅱ (Ⅱ,Ⅰ) (Ⅱ,Ⅱ) (Ⅱ,Ⅲ) (Ⅱ,Ⅳ) (Ⅱ,Ⅴ) (Ⅱ,Ⅵ) (Ⅱ,Ⅶ) Ⅲ (Ⅲ,Ⅰ) (Ⅲ,Ⅱ) (Ⅲ,Ⅲ) (Ⅲ,Ⅳ) (Ⅲ,Ⅴ) (Ⅲ,Ⅵ) (Ⅲ,Ⅶ) Ⅳ (Ⅳ,Ⅰ) (Ⅳ,Ⅱ) (Ⅳ,Ⅲ) (Ⅳ,Ⅳ) (Ⅳ,Ⅴ) (Ⅳ,Ⅵ) (Ⅳ,Ⅶ) Ⅴ (Ⅴ,Ⅰ) (Ⅴ,Ⅱ) (Ⅴ,Ⅲ) (Ⅴ,Ⅳ) (Ⅴ,Ⅴ) (Ⅴ,Ⅵ) (Ⅴ,Ⅶ) Ⅵ (Ⅵ,Ⅰ) (Ⅵ,Ⅱ) (Ⅵ,Ⅲ) (Ⅵ,Ⅳ) (Ⅵ,Ⅴ) (Ⅵ,Ⅵ) (Ⅵ,Ⅶ) Ⅶ (Ⅶ,Ⅰ) (Ⅶ,Ⅱ) (Ⅶ,Ⅲ) (Ⅶ,Ⅳ) (Ⅶ,Ⅴ) (Ⅶ,Ⅵ) (Ⅶ,Ⅶ) 说明:组合(Ⅰ,Ⅰ)中,表示树种株数的均匀度等级为Ⅰ,树种蓄积的均匀度等级为Ⅰ,林分株数(或蓄积)的分布均匀度等级见表1。
其他组合依次类推2.3 10个树种以内时ISCD的变化规律
对树种数10个以内的ISCD的变化规律,可以采用“十分法”的分级方法进行均匀度等级划分,即将各树种的株数或蓄积比例的范围划分为10个等份,每变化10%作为一级进行组合。对树种数处于[1,10]的森林,计算其各自不同分布情况下的ISCD值(表3)。
表 3 不同树种组合类型的树种组成多样性指数(ISCD)值Table 3 Diversity index of tree species composition (ISCD) value of different tree specie composition types树种数/个 树种组成
形式数/个树种组成
类型数/个ISCD 均值 中位数 最小值 最大值 极差 标准差 1 1 1 1.000 1.000 1.000 1.000 0.000 − 2 5 15 1.880 1.900 1.680 2.000 0.320 0.093 3 8 36 2.883 2.893 2.673 2.993 0.320 0.075 4 8 36 3.895 3.905 3.730 3.970 0.240 0.058 5 7 28 4.926 4.935 4.800 5.000 0.200 0.048 6 5 15 5.935 5.938 5.867 5.987 0.120 0.031 7 3 6 6.956 6.958 6.923 6.983 0.060 0.022 8 2 3 7.975 7.975 7.965 7.985 0.020 0.010 9 1 1 8.991 8.991 8.991 8.991 0.000 − 10 1 1 10.000 10.000 10.000 10.000 0.000 − 总计 41 142 说明:−表示标准差缺失,仅有1个数值无法进行标准差计算 当森林具有a、b 2个树种时,“十分法”下2个树种株数(或蓄积)的比例可以分为9∶1、8∶2、7∶3、6∶4、5∶5这5种中任意一种,即树种组成形式[6]数为5。此外,每种类型还需考虑蓄积(或株数)比例,则又各自有5种可能性,故理论上所有可能的树种混交组合形式应为25种。但由于ISCD赋予树种株数均匀度、蓄积均匀度相同的权重关系,且在考量株数、蓄积均匀度时都是基于树种占比与1/s较差取平方的计算方式,故a树种株数占比为x、蓄积占比为y的森林与株数占比为y、蓄积占比为x的森林拥有相同的ISCD指数值,可认为两者属于同一均匀度分布水平,可进行合并。故25个类型又最终归并为15个,即树种组成类型数为15。
由图3可见:142个树种混交组合中,ISCD随树种数增加呈线性增长趋势,且不同树种数之间ISCD互不重叠。
综上所述,ISCD随树种数增加呈明显增大趋势。当树种数不变时,ISCD能随树种株数及蓄积(生物量)比例和分布的均匀度、混交度变化而有相应的同向变化。同理,对树种数10个以上的ISCD值,经推论也有相同的规律和特性。
3. 林分树种组成多样性指数的实际应用及比较分析
以浙江省2009年森林资源连续清查数据中322个针阔混交林样地为材料,计算分析ISCD模型的实际应用情况,并比较ISCD与其他多样性指数在反映林分树种组成中树种丰富度、均匀度及多样性等方面的实用表现。
3.1 林分树种组成多样性指数对丰富度的度量
选取Margalef指数[11]、Menhinick指数[11]与ISCD对样地林分丰富度进行计算和对比分析。从图4可见:ISCD随树种数的增多呈上升趋势,具有明显的“分段”现象,表明ISCD对树种数的分异性能强;Margalef指数与Menhinick指数值聚集在较小范围内,随树种数增多呈上升趋势,但变化幅度不大。
根据不同树种数时各指数的分布形态(图5),对其进行指数函数、线性函数、对数函数、多项式函数以及幂函数等多种函数拟合,并选择最优拟合模型。结果显示:ISCD、Margalef指数以及Menhinick指数与树种数均呈正相关。ISCD的线性拟合决定系数(R2)达0.999,斜率接近于1,与树种丰富度相关性十分紧密,可信度高。Margalef指数的线性拟合R2为0.869,斜率为0.185 1,与树种丰富度相关性较为紧密,可信度较高。Menhinick指数与树种数的拟合模型R2均未超过0.4,线性斜率为0.006 1,与树种丰富度相关性不明显。表明ISCD比Margalef指数和Menhinick指数对树种丰富度变化的反映更敏感,更具有一致性。
3.2 林分树种组成多样性指数对均匀度的度量
基于ISCD指数的构造特性,其值中的小数部分(ISCD-U)仅反映树种分布的均匀度,故可单独提取用于比较分析,以消除树种丰富度的影响。ISCD-U指标计算公式为:
$$ {I_{{\text{SCD-U}}}} = {{I}_{{{\text{SCD}}}}}-s + {\text{1}} = {\text{1}} - \frac{1}{2}\sum\limits_{i = 1}^s {\left[ {{{\left( {\frac{{{v_i}}}{v} - \frac{1}{s}} \right)}^2} + {{\left( {\frac{{{n_i}}}{n} - \frac{1}{s}} \right)}^2}} \right]} 。 $$ (2) 选取α多样性指数中的Shannon均匀度指数[12]、Simpson均匀度指数[12]、Alatalo均匀度指数[13]等与ISCD-U进行均匀度计算和对比分析。各均匀度指数统计结果见表4,依ISCD-U进行升序排列结果见图6。
表 4 针阔混交林样地均匀度指数值Table 4 Uniformity index values of coniferous and broad-leaved mixed forest变量名 ISCD-U Simpson均匀
度指数Shannon均匀
度指数Alatalo均匀
度指数均值 0.808 0.801 0.722 0.730 中位数 0.824 0.829 0.737 0.742 方差 0.007 0.013 0.012 0.010 标准差 0.086 0.112 0.111 0.102 标准误 0.005 0.006 0.006 0.006 最小值 0.361 0.052 0.091 0.339 最大值 0.968 0.992 0.994 0.992 极差 0.607 0.940 0.903 0.652 由表4和图6可知:ISCD-U与Simpson均匀度指数、Shannon均匀度指数以及Alatalo均匀度指数具有较强一致性,且ISCD-U与Simpson均匀度指数分布较为接近,两者均值分别为0.808、0.801,中位数分别为0.824、0.829,最大值和最小值有所差异,且ISCD-U的变动幅度小于Simpson均匀度指数。此外,ISCD-U、Simpson均匀度指数的均值、中位数明显大于Shannon均匀度指数、Alatalo均匀度指数。从分布范围来看,ISCD-U的分布最为集中,对树种均匀程度的评价最为严密。
对ISCD-U、Shannon均匀度指数、Simpson均匀度指数及Alatalo均匀度指数进行Pearson相关分析(表5)表明:ISCD-U与Simpson均匀度指数相关系数为0.840,与Shannon均匀度指数相关系数为0.825,与Alatalo均匀度指数相关系数为0.555。4个指数两两之间相关性均达到极显著水平(P<0.01)。Simpson均匀度指数与Shannon均匀度指数相关性最高,其次是ISCD-U与Simpson均匀度指数、ISCD-U与Shannon均匀度指数。相关性最低的为ISCD-U与Alatalo均匀度指数。ISCD-U与Shannon均匀度指数、Simpson均匀度指数在反映林分树种组成均匀度方面具有比较一致的灵敏性和分异性。
表 5 均匀度指数之间的相关系数Table 5 Correlation coefficient between uniformity indexes均匀度指标 ISCD-U Simpson
均匀度指数Shannon
均匀度指数Alatalo
均匀度指数ISCD-U 1 Simpson
均匀度指数0.840** 1 Shannon
均匀度指数0.825** 0.934** 1 Alatalo
均匀度指数0.555** 0.668** 0.622** 1 说明:**表示在0.01水平上相关极显著(双尾) 3.3 林分树种组成多样性指数对多样性的度量
选取具有代表性的Simpson多样性指数[12]、修正Simpson多样性指数[14]、Shannon多样性指数[12]、Shannon多样性幂指数[14]、Hill多样性指数[15]、Mclntosh指数[16]等与ISCD进行多样性的对比分析。
由表6和图7可知:多样性指数按指数范围从大到小依次为ISCD、Shannon多样性幂指数、Hill多样性指数、Shannon多样性指数、修正Simpson多样性指数、Simpson多样性指数、Mclntosh多样性指数,7个指数的均值、中位数、最大值、最小值等都有明显差异。分布形态上,ISCD呈分段聚集,与其他6个指数的分布形态明显不同。Shannon多样性幂指数与Hill多样性指数分布较为接近,Shannon多样性指数与修正Simpson多样性指数分布较为接近,Simpson多样性指数与Mclntosh多样性指数分布较为接近。
表 6 针阔混交林样地的多样性指数值Table 6 Diversity index values of coniferous and broad-leaved mixed forest变量名 ISCD Simpson多样
性指数修正Simpson
多样性指数Shannon多样
性指数Mclntosh多样
性指数Shannon多样性
幂指数Hill多样
性指数均值 7.774 0.688 1.228 1.456 0.499 4.576 3.635 中位数 7.776 0.712 1.243 1.468 0.509 4.341 3.467 方差 7.497 0.014 0.128 0.134 0.012 2.662 1.704 标准差 2.738 0.117 0.357 0.366 0.110 1.631 1.305 标准误 0.153 0.007 0.020 0.020 0.006 0.091 0.073 最小值 1.724 0.035 0.035 0.100 0.019 1.106 1.036 最大值 16.860 0.870 2.044 2.291 0.727 9.889 7.719 极差 15.136 0.836 2.009 2.191 0.708 8.783 6.684 由表7可知:7个指数间相关性都达到极显著水平(P<0.01)。ISCD与其他多样性指数具有极显著的相关性(P<0.01),与Shannon多样性幂指数的相关系数最大,为0.840,其次是Shannon多样性指数、修正Simpson指数、Hill多样性指数、Simpson多样性指数以及Mclntosh多样性指数。α多样性指数中,各指数之间普遍具有显著相关性(P<0.01),对多样性的评价具有一致性。
表 7 多样性指数之间的相关系数Table 7 Correlation coefficient between diversity indexes多样性指标 ISCD Simpson多样
性指数修正Simpson
多样性指数Shannon多样
性指数Mclntosh多样
性指数Shannon多样性
幂指数Hill多样
性指数ISCD 1 Simpson多样性指数 0.684** 1 修正Simpson多样性指数 0.724** 0.967** 1 Shannon多样性指数 0.839** 0.943** 0.965** 1 Mclntosh多样性指数 0.635** 0.967** 0.965** 0.929** 1 Shannon多样性幂指数 0.840** 0.878** 0.952** 0.974** 0.891** 1 Hill多样性指数 0.719** 0.891** 0.975** 0.934** 0.914** 0.967** 1 说明:**表示在0.01水平上相关极显著(双尾) 由图7可知:同一树种数时,ISCD、Simpson多样性指数、修正Simpson多样性指数、Shannon多样性指数、Shannon多样性幂指数、Mclntosh多样性指数以及Hill多样性指数均对样地林分多样性水平具有较为一致的评价;由于对稀有种的不同看法,一旦树种数增加,就会产生2种截然不同的变化:ISCD重视树种数的重要性,强调树种的“存在价值”,认为树种数多,多样性便高,指数就呈不断上升趋势,稀有树种与富集树种的差异更多反映在小数部分。而其余指数则倾向于对树种多度分布均匀的样地赋予更大的指数值。稀有树种的出现并不一定直接提高林分多样性。
在多样性指数中,普遍存在1个指数值对应多种树种数的现象,即存在指标难以区分低丰富度高均匀度群落与高丰富度低均匀度群落的问题,指数的大小并不能有效反映具体的多样性信息,只在相对比较中具有意义。ISCD在反映树种组成多样性上弥补了现有多样性指数的缺陷,更有利于实现对林分树种组成的定量化表征。
4. 讨论
4.1 ISCD与物种多样性指数
在对树种组成的定量化描述上,不论是Margalef指数、Menhinick指数,还是Shannon指数、Simpson指数,亦或是Hill指数,都各有其优势与不足。Margalef指数和Menhinick指数等试图权衡丰富度与总丰度的关系,却缺少考虑物种内个体的同质性(均匀性);在测度树种的丰富度时,以树种数和林分总株数的关系为基础,虽然肯定了稀疏树种与富集树种对群落林分中树种多度的贡献,但对于描述林分树种组成而言仍显不足,其数值具有较大不确定性,即只能判断相对抽象的树种丰富性程度,却无法给出具体丰富度信息等(如林分树种数)。
基于丰度的多样性指数(如Shannon指数和Simpson指数)在物种丰富度的基础上增加了个体数量的信息,考虑了异质性,却依旧无法代表一个群落的真正“多样性”。对于均匀性的度量方案似乎是无穷无尽的,有许多方法可以根据“均匀性”的不同定义来估计,这使得对均匀性的概念并不十分清晰[17]。目前常用的Simpson均匀度指数与Shannon均匀度指数将均匀度定义为群落的实测多样性与理论最大多样性的比率。
Shannon指数和Simpson指数及变体往往被认为可以将物种丰富度和均匀度巧妙地整合成全方位的衡量标准而广泛使用。然而,这些复合指数对多样性的度量依旧有限:①Shannon指数植根于信息理论,是一种熵,量化的是随机挑选得到的某个个体物种身份的不确定性强弱(不确定性强,多样性高)。Simpson指数也是广义的熵[18],量化的是从数据集中随机挑选的2个个体不代表同一物种的概率。指数作为熵,反映的是物种集合体与多样性有关的不同特性,衡量的是不确定性,并不是真正的多样性[19]。虽然熵的变化在数学上与物种丰富度相关,但在很大程度上它们与丰富度的关系已被证明是不一致的[20-21]。此外,熵及其变化因其可能掩盖多样性各组成部分之间的差异而显得不足,致使有学者认为复合指数在很大程度上是没有意义[22]。②物种丰富度和均匀度之间可能存在反向关系,在复合指数中会相互抵消,并不能得到与直观感觉一致的结果[23]。③复合指数对多样性和均匀性的权重高于丰富性,且对稀有物种与丰富物种赋予不同的权重,这掩盖了物种丰富度的重要性。
HILL[24]提出希尔数(hill numbers),即有效物种数,用以量化多样性。有效物种数借助参数实现对丰富物种与稀有物种的权重控制,并能服从生物学家多样性概念中隐含的复制原则或加倍性质,被认为是物种多样性丰度的最佳选择[25]。然而同样有学者提出,有效物种数的使用存在一定局限性[17]。
ISCD以树种数量直接作为多样性丰富度,指数值接近实际树种数显得更加简洁、直观、有效,可根据指数值快速反推单个样地树种数。这是其他α多样性指数无法实现的。
ISCD对均匀度的评价方法以林分中树种的个数及各树种的属性比例作为变量,从树种的株数分布和蓄积分布2个方面衡量森林中树种分配的均匀性。通过各树种株数以及蓄积比例的不同,对两者的作用有了明确区分。此外,ISCD-U指标以现有林分与同一树种数下的理想林分(树种完全均匀分布)之间存在的差距进行均匀性评价,是一种新视角下的均匀性度量方式。
从指数构造角度而言,ISCD也具有科学性。物种丰富度和均匀度之间存在一定关系[26]。许多学者倾向于认为物种丰富度与均匀度应该是相对独立的[20, 27],但实际发现均匀度总是不可避免地受到丰富度的制约,两者依旧存在相关关系。ISCD将指数丰富度信息与均匀度信息进行了明确分离,使其各自独立而不再相互作用。
4.2 ISCD实际应用
从指数表现来看,ISCD对林分树种丰富度反映灵敏,有着很好的区分性,弥补了现有指数对林分树种数反映表征模糊、指数范围重叠、区分不灵敏等不足。在反映树种组成多样性综合效应时,比其他指数有更好的区分性,同时与其他指数存在显著相关性,表明ISCD具有与其他多样性指数相同的理论基础,其本质相同但形式与侧重点不同。
对于α多样性指数而言,当用直径、树高或其他结构分类变量来代替物种时,它就可以反映林分结构多样性,体现对应林分组成结构属性特征[9],例如Simpson大小多样性指数、Shannon大小多样性指数、Simpson大小分化度指数、Shannon大小分化度指数等林木大小多样性指数[28]以及树高多样性指数等。同理,ISCD在后续应用时,亦可衍生类似指数,例如以胸高断面积、生物量、生产力替代蓄积使用,ISCD指数同样具有一定的可拓展性。但对于描述复杂树种结构而言,依旧存在不足。如何体现树种结构的空间分布,如何对不同树种属性进行合理的权重设置,仍是ISCD未来需要攻克的难点。
5. 结论
ISCD在数量化表达林分树种组成多样性时,有效地将树种丰富度与树种株数、蓄积均匀性既分离又融合在一起,是一个较全面反映树种组成多样性信息的综合指标。它对林分树种组成的丰富度反映比其他多样性指数更加灵敏,分异性更强,对林分树种组成的均匀度有着与其他多样性指数一致的灵敏度和区分度,其数值大小还体现出现有林分与理想林分的差距,这也为评价林分树种组成均匀程度提供了一种新思路。相互独立的丰富度、均匀性信息使得指数值本身具有意义,解决了对低丰富度高均匀度、高丰富度低均匀度等不同林分树种组成类型难以有效区分这一难题,有利于准确描述树种组成多样性。
-
表 1 金叶含笑在不同杂交组合中的结实情况
Table 1. Fruit and seed setting status of M. foveolata in different cross combinations
杂交组合 (♀×♂) 坐果率/% 结籽率/% 单个果序蓇葖
膨大率/%种子数/粒 单个蓇葖内
含种子数/粒形态异常
种子占比/%千粒重/g 种子萌发率/% 金叶含笑×含笑 75.0 a 50.3±13.4 a 90.5±8.8 a 300.7±79.2 a 4.8±1.1 a 9.6±5.8 a 25.1 90.6 金叶含笑×紫花含笑 80.0 a 36.6±9.6 b 87.6±7.1 a 287.5±47.9 a 4.4±0.6 a 16.1±9.2 a 21.8 78.1 含笑×金叶含笑 78.8 a 27.3±9.0 bc 49.4±15.7 b 24.1±9.7 b 1.1±0.2 b 0.0±0.0 b 107.7 87.5 紫花含笑×金叶含笑 6.7 b 18.4±1.4 c 27.3±4.6 c 13.0±1.4 b 1.1±0.0 b 0.0±0.0 b 113.3 92.9 说明:不同字母表示不同杂交组合间差异显著(P<0.05)。 -
[1] 王晶, 王先磊, 赵强民, 等. 木兰科植物杂交育种研究进展[J]. 安徽农业科学, 2014, 42(16): 5084 − 5087. WANG Jing, WANG Xianlei, ZHAO Qiangmin, et al. Research advance in Magnoliaceae crossbreeding [J]. Journal of Anhui Agricultural Sciences, 2014, 42(16): 5084 − 5087. [2] 粟莉圆. 火力楠种子园开花动态与繁育系统研究[D]. 南宁: 广西大学, 2021. SU Liyuan. Study on the Flowering Dynamics and Breeding System in Seed Orchard of Michelia macclurei [D]. Nanning: Guangxi University, 2021. [3] 刘向东, 殷云龙. 不同固体培养基配方对台湾含笑花粉萌发的影响及台湾含笑杂交亲和性分析[J]. 植物资源与环境学报, 2022, 31(2): 49 − 56. LIU Xiangdong, YIN Yunlong. Effects of different solid medium formulas on pollen germination of Michelia compressa and analysis on cross-compatibility of M. compressa [J]. Journal of Plant Resources and Environment, 2022, 31(2): 49 − 56. [4] 王亚玲, 李勇, 张寿洲, 等. 木兰科植物的人工杂交[J]. 武汉植物学研究, 2003, 21(6): 508 − 514. WANG Yaling, LI Yong, ZHANG Shouzhou, et al. The crossing result of Magnoliaceae [J]. Journal of Wuhan Botanical Research, 2003, 21(6): 508 − 514. [5] 柴弋霞, 胡希军, 张冬林, 等. 紫花含笑与含笑、深山含笑和阔瓣含笑杂交亲和性分析[J]. 园艺学报, 2018, 45(10): 1970 − 1978. CHAI Yixia, HU Xijun, ZHANG Donglin, et al. Studies on compatibility of interspecific hybridization between Michelia crassipes and M. figo, M. maudiae, M. platypetala [J]. Acta Horticulturae Sinica, 2018, 45(10): 1970 − 1978. [6] 邓衍明, 叶晓青. 园艺作物远缘杂交受精前生殖障碍及其克服方法[J]. 华北农学报, 2012, 27(增刊 1): 81 − 86. DENG Yanming, YE Xiaoqing. The prefertilization reproductive barriers and overcoming methods of horticultural crops distant hybridization [J]. Acta Agriculturae Boreali-Sinica, 2012, 27(suppl 1): 81 − 86. [7] 邓衍明, 叶晓青. 植物远缘杂交受精后生殖障碍及其克服方法[J]. 华北农学报, 2013, 28(增刊 1): 120 − 124. DENG Yanming, YE Xiaoqing. The post-fertilization eproductive barriers and overcoming methods of horticultural crops distant hybridization [J]. Acta Agriculturae Boreali-Sinica, 2013, 28(suppl 1): 120 − 124. [8] 王亚玲. 香港木兰Magnolia championii Benth的保护生物学研究[D]. 杨凌: 西北农林科技大学, 2006. WANG Yaling. Study on the Conservation Biology of Magnolia championii Benth [D]. Yangling: Northwest A&F University, 2006. [9] 赵兴峰, 孙卫邦, 杨华斌, 等. 极度濒危植物西畴含笑的大小孢子发生及雌雄配子体发育[J]. 云南植物研究, 2008, 30(5): 549 − 556. ZHAO Xingfeng, SUN Weibang, YANG Huabin, et al. Mega- and microsporogenesis and development of female and male gametophytes of Michelia coriacea (Magnoliaceae), a globally critical endangered plant in South-East Yunnan of China [J]. Acta Botanica Yunnanica, 2008, 30(5): 549 − 556. [10] 熊海燕, 刘志雄. 深山含笑大、小孢子发生和雌、雄配子体发育研究[J]. 植物研究, 2018, 38(2): 212 − 217. XIONG Haiyan, LIU Zhixiong. Mega- and microsporogenesis and development of female and male gametophytes in Michelia maudiae Dunn [J]. Bulletin of Botanical Research, 2018, 38(2): 212 − 217. [11] 王姗, 沈永宝, 鲍华鹏, 等. 宝华玉兰大小孢子发生和雌雄配子体发育过程中解剖结构的变化[J]. 植物资源与环境学报, 2021, 30(3): 46 − 53. WANG Shan, SHEN Yongbao, BAO Huafeng, et al. Change of anatomical structure in the process of mega- and microsporogenesis and female and male gametophyte development of Yulania zenii [J]. Journal of Plant Resources and Environment, 2021, 30(3): 46 − 53. [12] 李娜, 邓童, 罗乐, 等. 榆叶梅的远缘杂交亲和性和花粉管行为[J]. 分子植物育种, 2022, 20(17): 5754 − 5762. LI Na, DENG Tong, LUO Le, et al. Distant hybridization compatibility and pollen tube behavior of Prunus triloba [J]. Molecular Plant Breeding, 2022, 20(17): 5754 − 5762. [13] 田青兰, 吴艳艳, 张英俊, 等. 西番莲自交和异交的花粉管荧光显微观察及授粉亲和性分析[J]. 果树学报, 2023, 40(1): 98 − 110. TIAN Qinglan, WU Yanyan, ZHANG Yingjun, et al. Pollen tube fluorescence microscopic observation and pollination compatibility analysis of self and cross- pollination in passion fruit (Passiflora edulis) [J]. Journal of Fruit Science, 2023, 40(1): 98 − 110. [14] 王文鹏, 周莉花, 赵宏波, 等. 蜡梅与光叶红蜡梅和夏蜡梅属间杂交亲和性初步研究[J]. 浙江农林大学学报, 2015, 32(5): 756 − 762. WANG Wenpeng, ZHOU Lihua, ZHAO Hongbo, et al. Intergeneric cross-compatibility from pollen-pistil interactions of three Calycanthaceae species [J]. Journal of Zhejiang A&F University, 2015, 32(5): 756 − 762. [15] 杨占辉, 高亦珂, 史言妍, 等. 无髯鸢尾远缘杂交障碍[J]. 中国农业大学学报, 2013, 18(4): 71 − 76. YANG Zhanhui, GAO Yike, SHI Yanyan, et al. Crossbreeding barriers of distant hybridization in beardless irises [J]. Journal of China Agricultural University, 2013, 18(4): 71 − 76. [16] 何兴波, 雷莉莉, 李芳东, 等. 杏李杂交种‘风味玫瑰’花柱类型与花粉管的生长观察[J]. 热带作物学报, 2014, 35(4): 655 − 661. HE Xingbo, LEI Lili, LI Fangdong, et al. Pistil variability and pollen tube growth of Prunus domestica × P. armeniaca ‘Fengweimeigui’ [J]. Chinese Journal of Tropical Crops, 2014, 35(4): 655 − 661. [17] 张赛阳, 栗燕, 郝鹏博, 等. 杂交石竹授粉受精及其胚胎发育过程的观察[J]. 西北植物学报, 2016, 36(10): 1984 − 1989. ZHANG Saiyang, LI Yan, HAO Pengbo, et al. Pollination fertilization and embryonid development of Dianthus hybridus [J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(10): 1984 − 1989. [18] 王虹妍, 孙英, 孙婉仪, 等. 梅与桃、山桃杂交亲和性和花粉管行为研究[C]// 张启翔. 中国观赏园艺研究进展2017, 北京: 中国林业出版社, 2017: 239 − 245. WANG Hongyan, SUN Ying, SUN Wanyi, et al. Study on compatibility and pollen tube growth after pollination of distant hybridization between Prunus mume and P. persica, P. davidiana [C]// ZHANG Qixiang. Advances in Ornamental Horticulture of China 2017. Beijing: China Forestry Publishing House, 2017: 239 − 245. [19] 任海燕, 李登科, 王永康, 等. 迎秋红枣的柱头形态变化及早期胚胎发育研究[J]. 果树学报, 2022, 39(4): 602 − 609. REN Haiyan, LI Dengke, WANG Yongkang, et al. Stigma morphological changes and early embryogenesis development of Yingqiuhong Chinese jujube (Ziziphus jujuba Mill. ) [J]. Journal of Fruit Science, 2022, 39(4): 602 − 609. [20] 吴美娇, 张亚明, 王雪倩, 等. 无花粉污染百合的杂交育种研究[J]. 南京农业大学学报, 2019, 42(6): 1030 − 1039. WU Meijiao, ZHANG Yaming, WANG Xueqian, et al. Study on hybrid breeding of pollen-free lily [J]. Journal of Nanjing Agricultural University, 2019, 42(6): 1030 − 1039. [21] 贺丹, 张佼蕊, 何松林, 等. 授粉方式对牡丹和芍药远缘杂交受精前障碍的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(3): 99 − 106. HE Dan, ZHANG Jiaorui, HE Songlin, et al. Effects of pollination method on pre-fertilization barriers in Paeonia latiflora × Paeonia suffruticosa crosses [J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(3): 99 − 106. [22] 杨莹, 于淑霞, 杨林毅, 等. 紫荆属种间杂交胚拯救研究[J]. 植物生理学报, 2022, 58(11): 2173 − 2180. YANG Ying, YU Shuxia, YANG Linyi, et al. Study on embryo rescue of interspecific hybridization in Cercis Linn. [J]. Plant Physiology Journal, 2022, 58(11): 2173 − 2180. [23] 苏晓倩, 鲍仁蕾, 胡凤荣. 不同风信子品种杂交亲和性及胚拯救[J]. 东北林业大学学报, 2019, 47(3): 27 − 30. SU Xiaoqian, BAO Renlei, HU Fengrong. Hybrid affinity and embryo rescue of different hyacinth varieties [J]. Journal of Northeast Forestry University, 2019, 47(3): 27 − 30. 期刊类型引用(4)
1. 张凌峰,刘兆刚,董灵波. 帽儿山天然硬阔叶林发育阶段划分及林分结构特征. 北京林业大学学报. 2025(02): 10-22 . 百度学术
2. 杨丽娜,黄敏,邢韶华. 不同优势度的脱皮榆群落特征差异及生态位分析. 中国野生植物资源. 2024(07): 56-65 . 百度学术
3. 陈黎,秦浩龙,刘成功,房震,潘健,尹琛琛,万志兵. 祁门浙江楠天然林树种组成与空间结构特征分析. 鲁东大学学报(自然科学版). 2023(02): 183-192 . 百度学术
4. 陈静,王丹丹,周芳玲,彭泽,杨向晖. 枇杷花序支轴紧密度量化指标初步研究及新型判别技术开发. 果树学报. 2023(07): 1471-1485 . 百度学术
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230021