-
干旱作为植物重要的非生物胁迫之一,是全球面临的重大环境问题,严重影响植物的生长、发育和生存[1]。植物会通过形态、生理生化、光合作用及分子水平等层次的响应抵御干旱胁迫[2−9]。植物受干旱胁迫伤害时,脂膜过氧化导致丙二醛(MDA)积累,使蛋白质和核酸变性,导致膜流动性降低,膜透性增强,因此MDA的多少可衡量植物细胞受伤害的程度[10];活性氧保护酶过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)协同作用可有效清除植物体内过多的自由基,从而维持植物体内活性氧代谢系统的平衡[11−12];植物还会积累可溶性糖等渗透调节物质以提高细胞保水能力,从而维持细胞的正常生理过程来响应干旱胁迫[13−15];干旱胁迫还能破坏植物水分代谢,导致叶绿素分解,影响光能电子传递和转换、光合磷酸化及暗反应等过程,使植物光合速率下降,严重时还可导致叶绿体光合机构的破坏,对植物体造成不可逆影响。叶绿素荧光参数对干旱胁迫的响应非常灵敏,可作为监测光合作用过程中光能的吸收、传递、耗散和分配的指标,判断植物干旱胁迫的程度;董斌等[16]利用叶绿素荧光检测油茶Camellia oleifera的干旱抗性,选育出抗干旱的油茶品种。
植物根系利用细胞水势低于土壤水势的原理进行吸水,聚乙二醇6000(PEG 6000)可降低溶液水势,根系不易从周围吸收水分,从而造成干旱胁迫[17]。已有学者[18−19]利用不同质量分数PEG 6000模拟不同程度的干旱胁迫对小麦Triticum aestvum和玉米Zea mays的影响。铁皮石斛Dendrobium candidum是兰科Orchidaceae多年生草本植物,兼具很高的药用和观赏价值,分布于中国安徽、浙江、福建等地[20−21]。目前,已将铁皮石斛野生资源成功进行驯化和人工移栽,实现了铁皮石斛的大面积规模化产业种植和近野生栽培,不仅提高了铁皮石斛的经济价值,还推动中国中药材产业的可持续发展[22]。在铁皮石斛产业化种植和近野生栽培过程中,水分是一个重要的限制性生态因子,因缺水引起的干旱严重影响铁皮石斛的产量和品质,因此了解干旱胁迫下铁皮石斛生理生化和叶绿素荧光参数的变化特征,对研究铁皮石斛耐干旱机制及铁皮石斛的近野生栽培意义重大。近年来,已有关于干旱对铁皮石斛的生长和生理特性变化的报道。阮凌暄等[23]研究发现:随着PEG 6000模拟干旱胁迫时间的延长和胁迫强度的增加,3年生盆栽铁皮石斛叶片活性氧积累呈上升趋势,保护酶POD和SOD活性先增加后降低,第8天时达到最大值,叶片叶绿素最大荧光(Fm)、最大光化学效率(Fv/Fm)和光化学猝灭系数(qp)逐渐降低,光反应能力降低。吕朝燕等[24]研究指出:3年生盆栽铁皮石斛叶片净光合速率和气孔导度随干旱胁迫时间的延长呈先升高后降低的趋势,而胞间二氧化碳 (CO2)摩尔分数和蒸腾速率则相反,呈先降低再升高的趋势,认为铁皮石斛为干旱避免型植物。为进一步探讨铁皮石斛抵抗干旱胁迫的生理特性,本研究拟通过不同质量分数PEG 6000模拟干旱胁迫,对铁皮石斛幼苗MDA、可溶性糖和可溶性蛋白、POD、CAT等生理生化指标和叶绿素质量分数、叶绿素荧光参数等进行分析,探讨铁皮石斛幼苗抗旱的生理和叶绿素荧光特性,以期为铁皮石斛的品种选育及产业化栽培和近野生栽培技术的建立提供参考。
Effects of PEG 6000 simulated drought stress on physiological and chlorophyll fluorescence characteristics of Dendrobium candidum seedlings
-
摘要:
目的 研究聚乙二醇6000(PEG 6000)模拟干旱对铁皮石斛Dendrobium candidum生理和叶绿素荧光特性的影响,为铁皮石斛的品种选育、产业化栽培和近野生栽培等提供参考。 方法 以铁皮石斛‘晶品1号’D. candidum ‘Jingpin No. 1’幼苗为实验材料,通过不同质量分数PEG 6000 (5%、10%、20%、30%)模拟干旱胁迫处理铁皮石斛幼苗,观察铁皮石斛幼苗茎段和叶片细胞结构,并检测铁皮石斛叶片过氧化物酶(POD)、过氧化氢酶(CAT)活性及丙二醛(MDA)质量摩尔浓度、可溶性糖质量分数、可溶性蛋白质量分数、叶绿素质量分数及叶绿素荧光参数的动态变化。 结果 ①高质量分数PEG 6000 (20%~30%)处理后铁皮石斛茎段和叶片细胞内叶绿素质量分数减少。②PEG 6000模拟干旱胁迫处理对铁皮石斛幼苗可溶性糖和可溶性蛋白、MDA、POD和CAT有显著影响(P<0.05)。可溶性糖质量分数随着PEG 6000质量分数的增加和处理时间的延长均呈上升趋势,到第12天时达最高值;可溶性蛋白则呈下降趋势;MDA质量摩尔浓度、POD活性和CAT活性随着PEG 6000质量分数的增加呈先上升后下降的趋势,在PEG 6000为20%时达到峰值。③PEG 6000模拟干旱处理对铁皮石斛幼苗最大光化学效率(Fv/Fm)、光合效率(α)、电子传递速度(ETR)、光化学猝灭系数(qP)和非化学猝灭系数(qNP)等叶绿素荧光参数有显著的影响(P<0.05)。随着PEG 6000胁迫处理时间的延长和PEG 6000质量分数的增加,α、ETR、Fv/Fm和qP均呈显著下降趋势(P<0.05);而qNP则呈先上升后下降的趋势。 结论 20% PEG 6000处理12 d可用作铁皮石斛抗干旱品种的筛选,铁皮石斛幼苗可通过增加可溶性糖质量分数,减少可溶性蛋白质量分数,提高POD和CAT活性等防御酶活性抵抗和适应一定程度的干旱胁迫;铁皮石斛幼苗的最大光能转换效率降低,光合系统Ⅱ(PS Ⅱ)受到胁迫损伤,严重影响铁皮石斛幼苗的光合作用。同时,铁皮石斛幼苗通过启动qNP途径来消耗PSⅡ反应中心吸收的过剩光能,维持正常的光合作用。因此,可溶性糖和可溶性蛋白、POD和CAT以及叶绿体荧光参数均可作为铁皮石斛耐干旱的指标。图6参44 Abstract:Objective The objective is to study the effects of PEG 6000 simulated drought on physiological and chlorophyll fluorescence characteristics of Dendrobium candidum, so as to provide reference for variety selection, industrial cultivation, and near wild cultivation of D. candidum. Method The seedlings of D. candidum ‘Jingpin No. 1’ were used as experimental materials and treated with PEG 6000 at different concentrations to simulate drought stress. The stem segment and leaf cell structure of D. candidum seedlings were observed, and the dynamic changes of peroxidase (POD), catalase (CAT) activity, malondialdehyde (MDA), soluble sugar, soluble protein, chlorophyll content and chlorophyll fluorescence parameters in D. candidum leaves were detected. Result (1) The content of chlorophyll in the stem and leaf cells of D. candidum decreased after treatment with high concentration of PEG 6000 (20%−30%). (2) PEG 6000 simulated drought stress significantly affected the content of soluble sugar and protein, MDA, POD and CAT activity of D. candidum seedlings. The soluble sugar content increased with the increase of PEG 6000 concentration and the extension of treatment time, reaching its highest value on the 12th day, while the soluble protein showed a downward trend. MDA content, POD and CAT activity increased first and then decreased with the increase of PEG 6000 concentration, reaching the peak at a PEG 6000 concentration of 20%. (3) PEG 6000 simulated drought treatment of D. candidum seedlings significantly affected chlorophyll fluorescence parameters such as maximum photochemical efficiency (Fv/Fm), photosynthetic efficiency (α), electron transfer rate (ETR), photochemical quenching coefficient (qP) and non-chemical quenching coefficient (qNP). With the extension of PEG 6000 stress treatment time and the increase of PEG 6000 concentration, α, ETR, Fv/Fm and qP showed a significant downward trend, while qNP showed a trend of first increasing and then decreasing. Conclusion 20% PEG 6000 treatment for 12 days can be used as a method for screening drought resistant varieties of D. candidum, which can resist and adapt to a certain degree of drought stress by increasing the content of soluble sugar, reducing the content of soluble protein and improving the activities of defense enzymes such as POD and CAT. The maximum light energy conversion efficiency of D. candidum seedlings decreases, and the photosystemⅡ (PSⅡ) is damaged by stress, which seriously affect the photosynthesis of D. candidum seedlings. At the same time, D. candidum seedlings consume the excess light energy absorbed by the PSⅡ reaction center by activating the qNP pathway to maintain normal photosynthesis. Therefore, soluble sugars and protein, POD and CAT, and chloroplast fluorescence parameters can all be used as indicators of drought resistance in D. candidum. [Ch, 6 fig. 44 ref.] -
-
[1] 翟宇宁, 张广华, 董寅壮, 等. PEG 6000模拟干旱胁迫对甜菜幼苗生长及生理指标的影响[J/OL]. 黑龙江大学自然科学学报, 2023, 40[2023-04-11]. doi: 10.13482/j.issn1001-7011.2022.05.112. ZHAI Yuning, ZHANG Guanghua, DONG Yinzhuang, et al. Effects of PEG-6000 imulated drought stress on growth and physiological indexes of sugar beet seedling [J/OL]. Journal of Natural Science of Heilongjiang University, 2023, 40[2023-04-11]. doi: 10.13482/j.issn1001-7011.2022.05.112. [2] 刘淑兰, 李进, 马永慧, 等. 独脚金内酯对干旱胁迫下黑果枸杞种子萌发和幼苗生理变化的影响[J]. 草地学报, 2023, 31(1): 130 − 139. LIU Shulan, LI Jin, MA Yonghui, et al. Effects of strigolactones on seed germination and seedling physiological changes of Lycium ruthenicum under drought [J]. Acta Agrestia Sinica, 2023, 31(1): 130 − 139. [3] 邓杨, 王瑶, 郭洋楠, 等. 干旱胁迫下柳枝稷在露天矿区土壤中的种子萌发和生长特性[J]. 生态学报, 2022, 42(22): 9175 − 9185. DENG Yang, WANG Yao, GUO Yangnan, et al. Effect of drought stress on the seed germination and growth characteristics of switchgrass [J]. Acta Ecologica Sinica, 2022, 42(22): 9175 − 9185. [4] 汪堃, 南丽丽, 师尚礼, 等. 干旱胁迫对不同根型苜蓿根系生长及根际土壤细菌的影响[J]. 生态学报, 2021, 41(19): 7735 − 7742. WANG Kun, NAN Lili, SHI Shangli, et al. Influence of root growth and bacterial community in the rhizosphere of different root types of alfalfa under drought stress [J]. Acta Ecologica Sinica, 2021, 41(19): 7735 − 7742. [5] 伊力努尔·艾力, 陈晓楠, 高文礼, 等. AMF-多枝柽柳幼苗共生体对干旱胁迫的生理响应[J]. 植物科学学报, 2022, 40(5): 724 − 732. Yilinuer Aili, CHEN Xiaonan, GAO Wenli, et al. Physiological responses of arbuscular mycorrhizal fungus-Tamarix ramosissima Ledeb. seedling symbionts to drought stress [J]. Plant Science Journal, 2022, 40(5): 724 − 732. [6] 刘鑫, 付丽娟, 于静, 等. 5种外源物质对干旱胁迫下笔筒树幼苗生长的缓解效应[J]. 西北植物学报, 2022, 42(7): 1169 − 1179. LIU Xin, FU Lijuan, YU Jing, et al. Alleviation effect of five exogenous substances on Sphaeropteris lepifera seedings under drough stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(7): 1169 − 1179. [7] 路秉翰, 卓定龙, 刘晓洲, 等. 干旱胁迫对红玉姜黄光合和叶绿素荧光参数的影响[J]. 热带农业科学, 2022, 42(6): 11 − 16. LU Binghan, ZHUO Dinglong, LIU Xiaozhou, et al. Effect of drought stress on photosynthetic and chlorophyll fluorescence parameters of Curcuma ‘Hongyu’ [J]. Chinese Journal of Troical Agriculture, 2022, 42(6): 11 − 16. [8] 魏娜, 李艳鹏, 马艺桐, 等. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118 − 130. WEI Na, LI Yanpeng, MA Yitong, et al. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118 − 130. [9] 李晓艳, 周敬雯, 严铸云, 等. 基于转录组测序揭示适度干旱胁迫对丹参基因表达的调控[J]. 中草药, 2020, 51(6): 1600 − 1608. LI Xiaoyan, ZHOU Jingwen, YAN Zhuyun, et al. Sequencing and analysis of transcriptome to reveal regulation of gene expressionin Salvia miltiorrhiza under moderate drought stress [J]. Chinese Traditional and Herbal Drugs, 2020, 51(6): 1600 − 1608. [10] 韩志顺, 郑敏娜, 梁秀芝, 等. 干旱胁迫对不同紫花苜蓿品种形态特征和生理特性的影响[J]. 中国草地学报, 2020, 42(3): 37 − 43. HAN Zhishun, ZHENG Minna, LIANG Xiuzhi, et al. Effects of drought stress on morphological and physiological characteristics of different alfalfa cultivars [J]. Chinese Journal of Grassland, 2020, 42(3): 37 − 43. [11] 武曦, 张罡, 郭华, 等. 干旱胁迫对多裂叶荆芥幼苗形态和不同部位生理生化指标的影响[J]. 山西农业科学, 2022, 50(2): 161 − 169. WU Xi, ZHANG Gang, GUO Hua, et al. Effects of drought stress on morphology, physiological and biochemical indexes in different parts of Nepeta multifida L. seedlings [J]. Journal of Shanxi Agricultural Sciences, 2022, 50(2): 161 − 169. [12] 杨顺强, 吴银梅, 王磊, 等. 光叶珙桐根系对PEG模拟干旱胁迫的生理响应及综合评价[J]. 南方林业科学, 2020, 48(3): 1 − 6. YANG Shunqiang, WU Yinmei, WANG Lei, et al. Physiological response and comprehensive evaluation of the root systemof Davidia involucrata var. vilmoriniana to drought stress simulated by PEG [J]. South China Forestry Science, 2020, 48(3): 1 − 6. [13] 孙萍, 段喜华. 干旱胁迫对长春花光合特性及可溶性糖的影响[J]. 东北林业大学学报, 2010, 38(8): 54 − 56. SUN Ping, DUAN Xihua. Effects of drought stress on souble sugars and photosynthetic characteristics of Catharanthus roseus seedlings [J]. Journal of Northeast Forestry University, 2010, 38(8): 54 − 56. [14] 周芳, 刘恩世, 孙海彦, 等. 前期干旱锻炼对木薯根系内源激素及可溶性糖含量的影响[J]. 热带作物学报, 2013, 34(3): 486 − 494. ZHOU Fang, LIU Enshi, SUN Haiyan, et al. Effect of drought hardening on the content of endogenous phytohormone and soluble sugar incassava roots [J]. Chinese Journal of Tropical Crops, 2013, 34(3): 486 − 494. [15] 徐扬, 赵健, 张雷, 等. 干旱胁迫对板栗2年生嫁接苗叶片相对含水量和可溶性糖含量的影响[J]. 农学学报, 2017, 7(1): 91 − 94. XU Yang, ZHAO Jian, ZHANG Lei, et al. Effect of drought stress on leaf relative water content and soluble sugar content of 2-year-old grafted Castanea mollissima [J]. Journal of Agriculture, 2017, 7(1): 91 − 94. [16] 董斌, 蓝来娇, 黄永芳, 等. 干旱胁迫对油茶叶片叶绿素含量和叶绿素荧光参数的影响[J]. 经济林研究, 2020, 38(3): 16 − 25. DONG Bin, LAN Laijiao, HUANG Yongfang, et al. Effects of drought stress on photosynthetic pigments and chlorophyll fluorescence characteristics in leaves of Camellia oleifera [J]. Non-wood Forest Research, 2020, 38(3): 16 − 25. [17] AZZEME A, ABDULLAH S N A, AZIZ M A, et al. Oil palm drought inducible DREB1 induced expression of DRE/CRT- and non-DRE/CRT-containing genes in lowland transgenic tomato under cold and PEG treatments [J]. Plant Physiology and Biochemistry, 2017, 112: 129 − 151. [18] 王爱英, 李双, 焦浈, 等. PEG-6000模拟干旱对不同抗性小麦品种光合和叶绿素荧光特性的影响[J]. 甘肃农业大学学报, 2022, 57(4): 49 − 56. WANG Aiying, LI Shuang, JIAO Zhen, et al. Effects of PEG-6000 simulated drought stress on photosynthetic and chlorophyll fluorescence characteristics of different drought resistant wheat varieties [J]. Journal of Gansu Agricultural University, 2022, 57(4): 49 − 56. [19] 王霞, 尹晓雨, 于晓明, 等. 玉米跨代干旱胁迫记忆生理机制及DNA甲基化变化分析[J]. 西北植物学报, 2021, 41(10): 1691 − 1699. WANG Xia, YIN Xiaoyu, YU Xiaoming, et al. Transgenerational drought stress on memory physiological mechanism and changes of DNA methylation in maize [J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(10): 1691 − 1699. [20] 斯金平, 张媛, 罗毅波, 等. 石斛与铁皮石斛关系的本草考证[J]. 中国中药杂志, 2017, 42(10): 2001 − 2005. SI Jinping, ZHANG Yuan, LUO Yibo, et al. Herbal textual research on relationship between Chinese medicine“Shihu”(Dendrobium spp. ) and “Tiepi Shihu”(D. catenatum) [J]. China Journal of Chinese Materia Medica, 2017, 42(10): 2001 − 2005. [21] 杨健, 吴浩, 吕朝耕, 等. 基于稳定同位素的铁皮石斛产地识别研究[J]. 中国中药杂志, 2018, 43(6): 1118 − 1123. YANG Jian, WU Hao, LÜ Chaogeng, et al. Geographical origin discriminant of Dendrobium officinale based on stable isotope ratios [J]. China Journal of Chinese Materia Medica, 2018, 43(6): 1118 − 1123. [22] 周美玲, 张志勇, 蒋春艳, 等. 福建省铁皮石斛产业发展现状及对策[J]. 现代农业科技, 2018(13): 89 − 90. ZHOU Meiling, ZHANG Zhiyong, JIANG Chunyan, et al. Development status and countermeasures of Dendrobium candidum industry in Fujian Province [J]. Modern Agricultural Science and Technology, 2018(13): 89 − 90. [23] 阮凌暄, 马骁勇, 林秀莲, 等. 干旱胁迫对铁皮石斛叶片活性氧清除系统与叶绿素荧光特性的影响[J]. 西部林业科学, 2017, 46(6): 104 − 107. RUAN Lingxuan, MA Xiaoyong, LIN Xiulian, et al. Effects of drought stress on active oxygen scavenging systems and chlorophyll fluorescence characteristics of Dendrobium officinale leaves [J]. Journal of West China Forestry Science, 2017, 46(6): 104 − 107. [24] 吕朝燕, 高智席, 邓富梅, 等. 2种石斛属植物光合特性对干旱胁迫及复水的响应[J]. 节水灌溉, 2023(2): 111 − 120, 127. LÜ Chaoyan, GAO Zhixi, DENG Fumei, et al. Responses of photosynthetic characteristics of two Dendrobium plants to drought stress and rewatering [J]. Water Saving Irrigation, 2023(2): 111 − 120, 127. [25] 李妍, 宋凯旋, 赵静, 等. 聚乙二醇(PEG)模拟干旱胁迫对三叶草生长及抗氧化酶活性的影响[J]. 北方园艺, 2019(11): 92 − 96. LI Yan, SONG Kaixuan, ZHAO Jing, et al. Effect of drought stress stimulated by PEG on growth and anti-oxidative enzyme activity in white clover [J]. Northern Horticulture, 2019(11): 92 − 96. [26] 刘美雅, 张群峰, 倪康, 等. 1种高效的茶树基因细胞学定位方法: CN110398483A[P]. 2019-11-01. LIU Meiya, ZHANG Qunfeng, NI Kang, et al. An Efficient Cytological Mapping Method of Tea Tree Genes: CN110398483A[P]. 2019-11-01. [27] 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207 − 210. ZHAO Shijie, XU Changcheng, ZHOU Qi, et al. Improvements of method for measurement of malondialdehvde in plant tissues [J]. Plant Physiology Communication, 1994, 30(3): 207 − 210. [28] 张清航, 张永涛. 植物体内丙二醛(MDA)含量对干旱的响应[J]. 林业勘查设计, 2019(1): 110 − 112. ZHANG Qinghang, ZHANG Yongtao. Study on response to drought stress of MDA content in plants [J]. Forest Investigation Design, 2019(1): 110 − 112. [29] 位杰, 吴翠云, 蒋媛, 等. 蒽酮法测定红枣可溶性糖含量条件的优化[J]. 食品科学, 2014, 35(24): 136 − 140. WEI Jie, WU Cuiyun, JIANG Yuan, et al. Sample preparation optimization for determination of soluble sugar in red jujube fruits by Anthrone method [J]. Food Science, 2014, 35(24): 136 − 140. [30] 陈卫东, 张玉霞, 丛百明, 等. 钾肥对紫花苜蓿根颈丙二醛、可溶性蛋白含量与抗氧化系统的影响[J]. 草地学报, 2021, 29(4): 717 − 723. CHEN Weidong, ZHANG Yuxia, CONG Baiming, et al. Effects of potassium fertilizer on MDA, SP content and antioxidant system of alfalfa root neck [J]. Acta Agrestia Sinica, 2021, 29(4): 717 − 723. [31] 曾维军, 屈坤杰, 万诚, 等. 干旱胁迫对毛豹皮樟扦插苗光合作用与叶片组织结构的影响[J]. 广东农业科学, 2021, 48(6): 7 − 14. ZENG Weijun, QU Kunjie, WAN Cheng, et al. Effects of drought stress on photosynthesis and leaf tissue structure of Litsea coreana Levl. var. lanuginose cutting seedlings [J]. Guangdong Agriculture Science, 2021, 48(6): 7 − 14. [32] 何季, 鲍芳, 吴波, 等. 典型荒漠植物白刺叶绿素荧光特性对模拟增雨的响应[J]. 西北林学院学报, 2020, 35(2): 55 − 63. HE Ji, BAO Fang, WU Bo, et al. Response of chlorophyll fluorescence characteristics of a typical desert plant species Nitraria tangutorum to simulated rainfall enhancement [J]. Journal of Northwest Forestry University, 2020, 35(2): 55 − 63. [33] 王波. 干旱胁迫及多胺修复下闽楠幼苗光合生理的研究[D]. 长沙: 中南林业科技大学, 2019. WANG Bo. Study on Photosynthetic Physiology of Phoebe minnan Seedlings under Drought Stress and Polyamine Repair[D]. Changsha: Central South University of Forestry Science and Technology, 2019. [34] 王红梅, 蒙玺, 孙海龙. 植物卷材不同肥水配比对紫穗槐生理特性的影响[J]. 北方园艺, 2017(16): 90 − 94. WANG Hongmei, MENG Xi, SUN Hailong. Effect of different fertilizer and water ratios of vegetation coil on physiology characteristic of Amorpha fruticosa [J]. Northern Horticulture, 2017(16): 90 − 94. [35] 万燕, 欧阳建勇, 袁航, 等. 干旱胁迫对苦荞生理特征和红外光谱表征特性的影响[J]. 成都大学学报(自然科学版), 2020, 39(3): 230 − 233, 240. WAN Yan, OUYANG Jianyong, YUAN Hang, et al. Effects of drought stress on physiological characteristics and infrared spectrum characterization of tartary buckwheat [J]. Journal of Chengdu University (Natural Science Edition), 2020, 39(3): 230 − 233, 240. [36] 丁菲, 杨帆, 杜天真. 干旱胁迫对构树幼苗抗氧化酶活性变化的影响[J]. 江西农业大学学报, 2018, 30(4): 680 − 683. DING Fei, YANG Fang, DU Tianzhen. Effects of drought stress on activities of antioxidant enzymes in Broussonetia papyrifera L. [J]. Acta Agriculturea University Jiangxiensis, 2018, 30(4): 680 − 683. [37] 苏寒之, 金建邦, 祝遵凌. 干旱胁迫对北美红栎幼苗生理特性的影响[J]. 东北林业大学学报, 2014, 42(8): 34 − 39. SU Hanzhi, JIN Jianbang, ZHU Zunling. Effects of drought stress on physiological characteristics of Quercus rubra seedlings [J]. Journal of Northeast Forestry University, 2014, 42(8): 34 − 39. [38] 张春兰, 曹帅, 满丽莉, 等. PEG胁迫下2个大豆品种苗期的耐旱性与相关响应基因表达分析[J]. 分子植物育种, 2019, 17(18): 5891 − 5898. ZHANG Chunlan, CAO Shuai, MAN Lili, et al. Analysis of PEG stress on drought tolerance and related response genes expression in soybean seedlings of two varieties [J]. Molecular Plant Breeding, 2019, 17(18): 5891 − 5898. [39] HAYASHI T, HARADA A, SAKAI T, et al. Ca2+ transient induced by extracellular changes in osmotic pressure in Arabidopsis leaves: differential involvement of cell wall-plasma membrane adhesion [J]. Plant Cell Environment, 2006, 29(4): 661 − 672. [40] 王仲林, 谌俊旭, 程亚娇, 等. 干旱胁迫下玉米叶片可溶性糖光谱估测研究[J]. 四川农业大学学报, 2018, 36(4): 436 − 443. WANG Zhonglin, CHEN Junxu, CHENG Yajiao, et al. Assessing the soluble sugar of maize leaves in drought stress based on Hyperspectral Data [J]. Journal of Sichuan Agricultural University, 2018, 36(4): 436 − 443. [41] 崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报, 2017, 33(3): 220 − 226. CUI Huiping, ZHOU Wei, GUO Changhong. The role of plant peroxisomes in ROS signalling network [J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220 − 226. [42] 张雪, 李强, 余宏军, 等. 氮胁迫对黄瓜幼苗抗氧化酶系统的影响[J]. 农业工程学报, 2016, 32(增刊 2): 142 − 147. ZHANG Xue, LI Qiang, YU Hongjun, et al. Response of antioxidant enzyme system to nitrogen deficiency in cucumber seedling [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(suppl 2): 142 − 147. [43] 胡根海, 董娜, 晁毛妮, 等. PEG模拟干旱胁迫对不同抗逆性棉花的生理特性的影响[J]. 干旱地区农业研究, 2017, 35(5): 223 − 228. HU Genhai, DONG Na, CHAO Maoni, et al. Effects of drought stress simulated by PEG 6000 on physiological characteristics of different upland cotton [J]. Agricultural Research in the Arid Areas, 2017, 35(5): 223 − 228. [44] 杨斌, 彭长辉, 张贤, 等. 干旱胁迫对刺槐幼苗叶片氮含量、光合速率及非结构性碳水化合物的影响[J]. 应用与环境生物学报, 2019, 25(6): 1261 − 1269. YANG Bin, PENG Changhui, ZHANG Xian, et al. The mechanism of enzymatic control on soil organic carbon in response to external input of nitrogen and phosphorus in a peatland in the Changbai Mountains [J]. Chinese Journal of Applied Environmental Biology, 2019, 25(6): 1261 − 1269. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230301