-
杂草稻Oryza sativa f. spontanea是一种伴生性的稻田恶性杂草,与栽培稻O. sativa 同属禾本科Poaceae稻属Oryza[1]。目前,杂草稻已广泛分布于全球50多个国家,几乎全世界所有稻作区都有杂草稻的发生,由于其和栽培稻竞争营养、水、光照以及其他资源,严重威胁粮食安全[2]。杂草稻在生长早期,其形态与栽培稻相似,且较栽培稻开花早、光合作用强、籽粒灌浆快,还兼有种子落粒性强、休眠期短等特点,导致杂草稻不但竞争力强于栽培稻,还可以在稻田内长期续存,极难防治[3−5]。
利用简单重复序列、限制性片段长度多态性和全基因组序列对杂草稻的分子研究表明:全球杂草稻群体存在巨大遗传变异[6]。杂草稻长期处于野生状态,具耐冷、耐旱、耐盐碱、抗病等多种有利的性状和基因[7]。同时,杂草稻和栽培稻不存在生殖隔离,因此杂草稻也是栽培稻遗传改良的重要资源[8]。但不同区域的杂草稻对逆境胁迫的耐受能力并不一致。一般认为杂草稻较栽培稻具有更强的耐深播能力,宁厦杂草稻在播深12 cm时均能出苗,栽培稻则不出苗[9]。但李玉融等[10]研究表明:当埋土深度在4~7 cm内,江苏地区的常规栽培稻出苗率显著高于杂草稻。
近年来,随着水稻直播技术的广泛推广以及农业收割机跨地区作业大面积的普及,浙江省杂草稻危害愈发严重,最早发生和最为严重的是湖州市长兴县,2018年全县田畈发生频度达93.4%,除移栽稻田块和封闭式耕作田块未发现杂草稻外,全县其余水稻种植区域均有杂草稻发生,严重田块甚至颗粒无收[11],对农民的经济收入造成严重的影响。为遏制浙江省杂草稻的蔓延趋势,探索适宜的防控技术,本研究以浙江省湖州市长兴县杂草稻种子为材料,研究其在多种胁迫环境下的种子萌发特性,为杂草稻的防除和种质资源利用提供依据。
-
从表1可见:在室内标准发芽条件下,杂草稻发芽势、发芽率、发芽指数显著高于栽培稻(P<0.05),平均发芽时间显著低于栽培稻(P<0.05)。幼苗品质方面,杂草稻的平均根长显著低于栽培稻(P<0.05),平均苗长则显著高于栽培稻(P<0.05),杂草稻和栽培稻的根鲜质量和苗鲜质量无显著差异。
表 1 标准发芽条件下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 1. Seed germination and seedling quality of weedy rice and cultivated rice under standard germination conditions
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 78.9±3.6 a 86.2±8.1 a 3.0±0.1 b 32.2±1.0 a 6.3±0.2 b 8.3±0.5 a 17.2±1.8 a 25.3±7.2 a 栽培稻 56.0±3.4 b 63.5±1.4 b 4.4±0.2 a 19.2±1.4 b 8.6±0.2 a 5.9±0.6 b 18.3±0.9 a 21.4±7.1 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
由表2可见:在0.15 mol·L−1NaCl盐胁迫处理下,杂草稻和栽培稻种子的发芽势和平均发芽时间无显著差异,但杂草稻的发芽率和发芽指数显著高于栽培稻(P<0.05)。盐胁迫条件下萌发的杂草稻幼苗,其平均根长和苗长均显著低于栽培稻(P<0.05),根鲜质量、苗鲜质量与栽培稻无显著差异。此外,与标准发芽结果(表1)相比,盐胁迫处理后杂草稻和栽培稻种子的发芽势、发芽指数、幼苗品质(根长、苗长、根苗鲜质量)均明显下降(下降幅度在30.2%~81.4%),平均发芽时间明显延长(幅度分别为143.3%和61.4%),但杂草稻的发芽率仅下降了3.5%。
表 2 盐胁迫下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 2. Seed germination and seedling quality of weedy rice and cultivated rice under salt stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 14.7±5.7 a 83.2±3.3 a 7.3±1.2 a 15.0±0.7 a 4.4±0.9 b 2.4±0.6 b 7.3±0.1 a 9.3±0.2 a 栽培稻 24.3±3.3 a 48.3±1.4 b 7.1±0.4 a 8.6±0.6 b 6.0±1.3 a 4.0±0.7 a 8.4±0.2 a 10.1±0.2 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
从表3可见:干旱胁迫下,杂草稻和栽培稻种子的平均发芽时间无显著差异,杂草稻的发芽势、发芽率和发芽指数均显著高于栽培稻(P<0.05)(表3)。幼苗品质方面,杂草稻的平均根长、根鲜质量和苗鲜质量均与栽培稻无显著差异,平均苗长则显著低于栽培稻(P<0.05)。与标准发芽结果(表1)相比,干旱胁迫处理后杂草稻和栽培稻种子的发芽势、发芽率、发芽指数和幼苗质量(根长、苗长、根苗鲜质量)均明显下降(下降幅度在31.4%~100.0%),平均发芽时间明显延长(幅度分别为226.7%和97.7%)。
表 3 干旱胁迫下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 3. Seed germination and seedling quality of weedy rice and cultivated rice under drought stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 3.8±3.3 a 59.1±14.6 a 9.8±0.2 a 7.7±2.3 a 3.8±0.6 a 0.5±0.4 b 4.0±0.2 a 2.5±0.1 a 栽培稻 0.0±0.0 b 32.7±4.1 b 8.7±0.9 a 3.5±0.9 b 3.5±0.4 a 1.2±0.3 a 3.5±0.1 a 3.1±0.1 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
在5 cm水深条件下,杂草稻种子的发芽势、发芽指数均显著低于栽培稻(P<0.05),发芽率、平均发芽时间与栽培稻无显著差异(表4)。与栽培稻相比,淹水胁迫显著降低了杂草稻的平均根长和苗鲜质量(P<0.05);但杂草稻的苗长和根鲜质量均与栽培稻无显著差异。与标准发芽结果(表1)相比,淹水胁迫处理后杂草稻和栽培稻种子的发芽势、发芽率、发芽指数和幼苗品质(根长、苗长、根苗鲜质量)均明显下降(下降幅度在35.6%~94.2%),平均发芽时间明显延长(幅度分别为116.7%和38.6%)。
表 4 淹水胁迫下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 4. Seed germination and seedling quality of weedy rice and cultivated rice under flooding stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 5.8±1.8 b 37.3±9.4 a 6.5±0.3 a 5.7±1.2 b 0.9±0.0 b 1.8±0.2 a 1.0±0.2 a 3.1±0.7 b 栽培稻 17.1±1.6 a 40.9±8.0 a 6.1±0.0 a 7.1±1.3 a 1.6±0.0 a 1.8±0.1 a 1.1±0.2 a 5.2±0.2 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
15 ℃低温条件下,杂草稻和栽培稻种子的发芽势均为0,其他发芽指标均无显著差异(表5)。幼苗品质方面,杂草稻的平均根长和苗长均与栽培稻无显著差异,但其根鲜质量和苗鲜质量均显著高于栽培稻(P<0.05)。此外,与标准发芽结果(表1)相比,低温胁迫处理后杂草稻和栽培稻种子的发芽势、发芽率、发芽指数和幼苗质量(根长、苗长、根苗鲜质量)均明显下降(下降幅度为63.6%~100.0%),平均发芽时间明显延长(幅度分别为323.3%和195.5%)。
表 5 低温下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 5. Seed germination and seedling quality of weedy rice and cultivated rice under chilling stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 0.0±0.0 a 24.8±3.4 a 12.7±0.2 a 1.5±0.3 a 0.8±0.0 a 0.4±0.1 a 2.2±0.7 a 2.8±0.6 a 栽培稻 0.0±0.0 a 23.1±4.9 a 13.0±0.2 a 1.2±0.4 a 0.8±0.0 a 0.4±0.0 a 0.8±0.1 b 1.1±0.2 b 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
盐胁迫处理后,杂草稻幼苗的CAT、SOD、POD活性均显著高于栽培稻(P<0.05),MDA质量摩尔浓度则显著低于栽培稻(P<0.05,表6)。杂草稻和栽培稻幼苗的APX活性无显著差异。
表 6 盐胁迫下杂草稻和栽培稻幼苗抗氧化物酶活性及MDA质量摩尔浓度
Table 6. Antioxidant enzyme activity and MDA content of weedy rice and cultivated rice seedlings under salt stress
材料 CAT/(×16.67 nkat·g−1) SOD/(×16.67 nkat·g−1) POD/(×16.67 nkat·g−1) APX/(×16.67 nkat·g−1) MDA/(nmol·g−1) 杂草稻 37.3±2.7 a 239.5±18.3 a 204.5±9.1 a 177.8±1.5 a 4.7±0.2 b 栽培稻 22.2±1.5 b 112.4±7.7 b 193.9±7.0 b 168.9±3.1 a 8.9±0.6 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
干旱胁迫处理后,杂草稻和栽培稻幼苗的APX活性差异不显著(表7)。杂草稻幼苗的MDA质量摩尔浓度显著低于栽培稻(P<0.05),CAT、SOD和POD活性则显著高于栽培稻(P<0.05)。
表 7 干旱迫下杂草稻和栽培稻幼苗抗氧化物酶活性及MDA质量摩尔浓度
Table 7. Antioxidant enzyme activity and MDA content of weedy rice and cultivated rice seedlings under drought stress
材料 CAT/(×16.67 nkat·g−1) SOD/(×16.67 nkat·g−1) POD/(×16.67 nkat·g−1) APX/(×16.67 nkat·g−1) MDA/(nmol·g−1) 杂草稻 34.5±0.1 a 228.3±31.1 a 367.9±32.9 a 115.2±7.1 a 3.6±0.3 b 栽培稻 13.8±0.7 b 155.4±14.1 b 303.5±15.4 b 112.4±4.6 a 11.1±0.9 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。
Identification of seed germination ability of weedy rice under stress in Zhejiang Province
-
摘要:
目的 探究浙江省杂草稻Oryza sativa f. spontanea种子对不同胁迫环境的耐受性,为稻种遗传改良和杂草稻防控提供依据。 方法 以浙江省杂草稻和同一田块采集的栽培稻‘南粳46’O. sativa‘Nangeng 46’种子为材料,分别在室内标准发芽条件、盐胁迫(0.15 mol·L−1 NaCl)、干旱胁迫(质量分数为15%的聚乙二醇溶液模拟)、淹水胁迫(5 cm水深模拟)和低温胁迫(15 ℃低温)下研究种子的发芽情况和幼苗品质,并测定了干旱和盐胁迫下幼苗的抗氧化物酶活性和丙二醛质量摩尔浓度。 结果 室内标准发芽条件下,杂草稻种子的各项发芽指标均显著优于栽培稻(P<0.05)。不同环境胁迫均抑制了种子萌发,影响了幼苗品质。盐胁迫下,杂草稻种子的发芽率和发芽指数显著高于栽培稻,幼苗长度低于栽培稻(P<0.05)。干旱胁迫下,杂草稻种子的发芽势、发芽率和发芽指数均显著高于栽培稻(P<0.05)。干旱和盐胁迫后,杂草稻幼苗的过氧化氢酶、超氧化物歧化酶和过氧化物酶活性显著高于栽培稻,丙二醛质量摩尔浓度显著低于栽培稻(P<0.05)。淹水胁迫下,杂草稻的发芽势、发芽指数均显著低于栽培稻(P<0.05)。低温胁迫后,杂草稻和栽培稻种子的发芽指标无显著差异,杂草稻幼苗质量较栽培稻更好。 结论 浙江省杂草稻在适宜环境下的萌发能力显著强于栽培稻,但对淹水胁迫敏感。与栽培稻相比,杂草稻更耐干旱和盐胁迫,这种能力可能与其具备更强的抗氧化活性有关。表6参32 Abstract:Objective The aim is to investigate the tolerance of weedy rice (Oryza sativa f. spontanea) seeds to different stress environments in Zhejiang Province, and to provide evidence for genetic improvement of rice varieties and prevention and control of weedy rice. Method The seeds of weedy rice and cultivated rice (O. sativa ‘Nangeng 46’) collected from the same field in Zhejiang Province were used as material. The germination of seeds and seedling quality were studied under indoor standard germination condition, salt stress (0.15 mol·L−1 NaCl), drought stress (simulated with 15% PEG 6000), flooding stress (simulated with 5 cm water depth), and low temperature stress (at 15 ℃). The antioxidant enzyme activities and malondialdehyde (MDA) content of seedlings under drought and salt stress were measured. Result Under standard germination conditions, the germination indicators of weedy rice seeds were significantly better than those of cultivated rice (P<0.05). Different environmental stresses inhibited seed germination and affected seedling quality. Under salt stress, the germination rate and germination index of weedy rice seeds were significantly higher than those of cultivated rice, and the seedling length was lower than that of cultivated rice (P<0.05). Under drought stress, the germination potential, germination rate, and germination index of weedy rice seeds were significantly higher than those of cultivated rice (P< 0.05). After drought and salt stress treatment, the activities of catalase, superoxide dismutase, and peroxidase in weedy rice seedlings were significantly higher than those in cultivated rice , and the MDA content was significantly lower than that in cultivated rice (P<0.05). Under flood stress, the germination potential and germination index of weedy rice were significantly lower than those of cultivated rice (P<0.05). Under chilling stress, there was no significant difference in germination indicators between weedy rice and cultivated rice seeds, and the quality of weedy rice seedlings was better than that of cultivated rice. Conclusion The germination ability of weedy rice in Zhejiang Province is significantly stronger in suitable environments than that of cultivated rice in the same region, but it is sensitive to flooding stress. Compared with cultivated rice, weedy rice is more tolerant to drought and salt stress, which may be related to its stronger antioxidant activity. [Ch, 6 tab. 32 ref.] -
Key words:
- weedy rice /
- seed germination /
- environmental stress /
- antioxidant capacity
-
表 1 标准发芽条件下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 1. Seed germination and seedling quality of weedy rice and cultivated rice under standard germination conditions
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 78.9±3.6 a 86.2±8.1 a 3.0±0.1 b 32.2±1.0 a 6.3±0.2 b 8.3±0.5 a 17.2±1.8 a 25.3±7.2 a 栽培稻 56.0±3.4 b 63.5±1.4 b 4.4±0.2 a 19.2±1.4 b 8.6±0.2 a 5.9±0.6 b 18.3±0.9 a 21.4±7.1 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 表 2 盐胁迫下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 2. Seed germination and seedling quality of weedy rice and cultivated rice under salt stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 14.7±5.7 a 83.2±3.3 a 7.3±1.2 a 15.0±0.7 a 4.4±0.9 b 2.4±0.6 b 7.3±0.1 a 9.3±0.2 a 栽培稻 24.3±3.3 a 48.3±1.4 b 7.1±0.4 a 8.6±0.6 b 6.0±1.3 a 4.0±0.7 a 8.4±0.2 a 10.1±0.2 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 表 3 干旱胁迫下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 3. Seed germination and seedling quality of weedy rice and cultivated rice under drought stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 3.8±3.3 a 59.1±14.6 a 9.8±0.2 a 7.7±2.3 a 3.8±0.6 a 0.5±0.4 b 4.0±0.2 a 2.5±0.1 a 栽培稻 0.0±0.0 b 32.7±4.1 b 8.7±0.9 a 3.5±0.9 b 3.5±0.4 a 1.2±0.3 a 3.5±0.1 a 3.1±0.1 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 表 4 淹水胁迫下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 4. Seed germination and seedling quality of weedy rice and cultivated rice under flooding stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 5.8±1.8 b 37.3±9.4 a 6.5±0.3 a 5.7±1.2 b 0.9±0.0 b 1.8±0.2 a 1.0±0.2 a 3.1±0.7 b 栽培稻 17.1±1.6 a 40.9±8.0 a 6.1±0.0 a 7.1±1.3 a 1.6±0.0 a 1.8±0.1 a 1.1±0.2 a 5.2±0.2 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 表 5 低温下杂草稻和栽培稻种子的发芽情况及幼苗品质
Table 5. Seed germination and seedling quality of weedy rice and cultivated rice under chilling stress
材料 发芽势/% 发芽率/% 平均发芽时间/d 发芽指数 根长/cm 苗长/cm 根鲜质量/(mg·株−1) 苗鲜质量/(mg·株−1) 杂草稻 0.0±0.0 a 24.8±3.4 a 12.7±0.2 a 1.5±0.3 a 0.8±0.0 a 0.4±0.1 a 2.2±0.7 a 2.8±0.6 a 栽培稻 0.0±0.0 a 23.1±4.9 a 13.0±0.2 a 1.2±0.4 a 0.8±0.0 a 0.4±0.0 a 0.8±0.1 b 1.1±0.2 b 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 表 6 盐胁迫下杂草稻和栽培稻幼苗抗氧化物酶活性及MDA质量摩尔浓度
Table 6. Antioxidant enzyme activity and MDA content of weedy rice and cultivated rice seedlings under salt stress
材料 CAT/(×16.67 nkat·g−1) SOD/(×16.67 nkat·g−1) POD/(×16.67 nkat·g−1) APX/(×16.67 nkat·g−1) MDA/(nmol·g−1) 杂草稻 37.3±2.7 a 239.5±18.3 a 204.5±9.1 a 177.8±1.5 a 4.7±0.2 b 栽培稻 22.2±1.5 b 112.4±7.7 b 193.9±7.0 b 168.9±3.1 a 8.9±0.6 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 表 7 干旱迫下杂草稻和栽培稻幼苗抗氧化物酶活性及MDA质量摩尔浓度
Table 7. Antioxidant enzyme activity and MDA content of weedy rice and cultivated rice seedlings under drought stress
材料 CAT/(×16.67 nkat·g−1) SOD/(×16.67 nkat·g−1) POD/(×16.67 nkat·g−1) APX/(×16.67 nkat·g−1) MDA/(nmol·g−1) 杂草稻 34.5±0.1 a 228.3±31.1 a 367.9±32.9 a 115.2±7.1 a 3.6±0.3 b 栽培稻 13.8±0.7 b 155.4±14.1 b 303.5±15.4 b 112.4±4.6 a 11.1±0.9 a 说明:不同字母表示同一指标在不同材料间差异显著(P<0.05)。 -
[1] 王蓓, 何雨, 吴蓉, 等. 杂草稻生物学特性、发生与防控研究进展[J]. 浙江农林大学学报, 2019, 36(5): 1028 − 1036. WANG Bei, HE Yu, WU Rong, et al. Research progress on biological characteristics, occurrence and control of Oryza sativa f. spontanea [J]. Journal of Zhejiang A&F University, 2019, 36(5): 1028 − 1036. [2] ESTORNINOS L E, GEALY D R, GBUR E E, et al. Rice and red rice interference. Ⅱ. rice response to population densities of three red rice (Oryza sativa) ecotypes [J]. Weedy Science, 2005, 53(5): 683 − 689. [3] DAI Lei, DAI Weimin, SONG Xiaoling, et al. A comparative study of competitiveness between different genotypes of weedy rice (Oryza sativa) and cultivated rice [J]. Pest Management Science, 2014, 70(1): 113 − 122. [4] DAI Lei, SONG Xiaoling, HE Baoye, et al. Enhanced photosynthesis endows seedling growth vigour contributing to the competitive dominance of weedy rice over cultivated rice [J]. Pest Management Science, 2017, 73(7): 1410 − 1420. [5] ZHAO Can, XU Wenrong, SONG Xiaoling, et al. Early flowering and rapid grain filling determine early maturity and escape from harvesting in weedy rice [J]. Pest Management Science, 2018, 74(2): 465 − 476. [6] OSAKINA A, JIA Y. Genetic diversity of weedy rice and its potential application as a novel source of disease resistance [J/OL]. Plants, 2023, 12: 2850[2023-10-01]. doi: 10.3390/plants12152850. [7] REAGON M, THURBER C S, GROSS B L, et al. Genomic patterns of nucleotide diversity in divergent populations of U. S weedy rice [J/OL]. BMC Evolutionary Biology, 2010, 10(1): 180[2023-10-01]. doi: 10.1186/1471-2148-10-180. [8] 丁国华, 马殿荣, 杨光, 等. 聚乙二醇模拟干旱胁迫对杂草稻发芽特性的影响[J]. 沈阳农业大学学报, 2013, 44(6): 721 − 726. DING Guohua, MA Dianrong, YANG Guang, et al. Weedy rice response to drought stress at germination and seeding growth stage [J]. Journal of Shenyang Agricultural University, 2013, 44(6): 721 − 726. [9] 徐嘉寅, 王兴盛, 来长凯, 等. 宁夏杂草稻的生存传播习性研究Ⅱ——杂草稻种子的顶土出苗能力和越冬性鉴定[J]. 种子, 2015, 34(11): 88 − 90. XU Jiayin, WANG Xingsheng, LAI Changkai, et al. Research of habits and characteristics about survival and spread of weedy rice ningxia Ⅱ: identification on seedling emergence and wintering ability of weedy rice seed [J]. Seed, 2015, 34(11): 88 − 90. [10] 李玉融, 董立尧, 李俊, 等. 苏南苏中苏北地区3个杂草稻生物型萌发特性比较研究[J]. 杂草科学, 2011, 29(2): 14 − 18. LI Yurong, DONG Liyao, LI Jun, et al. Comparative study on germination characteristics of three weedy rice (Oryza sativa L. ) biotypes in southern, middle and northern Jiangsu Province [J]. Weedy Science, 2011, 29(2): 14 − 18. [11] 宁国云, 王蓓, 彭志清, 等. 长兴县杂草稻的分布、特性及发生规律调查[J]. 浙江农业科学, 2018, 59(12): 2214 − 2217. NING Guoyun, WANG Bei, PENG Zhiqing, et al. Investigation on the distribution, characteristics and occurrence rules of weed rice in Changxing County [J]. Zhejiang Agricultural Science, 2018, 59(12): 2214 − 2217. [12] 陈志超, 黄婷婷, 王洋, 等. 水稻种子休眠特性与耐藏性的关系[J]. 浙江农林大学学报, 2018, 35(3): 490 − 496. CHEN Zhichao, HUANG Tingting, WANG Yang, et al. Dormancy characteristics and seed storage tolerance in rice [J]. Journal of Zhejiang A&F University, 2018, 35(3): 490 − 496. [13] 李振博, 董立尧, 李俊, 等. 不同环境因子对江苏省杂草稻与常规栽培稻发芽势影响的比较[J]. 杂草科学, 2009(4): 28 − 31. LI Zhenbo, DONG Liyao, LI Jun, et al. Comparison of effects of different environmental factors on germination potential of weed rice and conventional cultivated rice in Jiangsu Province [J]. Weedy Science, 2009(4): 28 − 31. [14] 张丽丽, 马殿荣, 林志强, 等. 耐盐杂草稻幼苗对NaCl胁迫响应及其生理基础[J]. 华北农学报, 2010, 25(4): 123 − 129. ZHANG Lili, MA Dianrong, LIN Zhiqiang, et al. Responses of NaCl stress on seedling of tolerant weedy rice and physiological basis [J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 123 − 129. [15] 余柳青, MORTIMER A M, 玄松南, 等. 杂草稻落粒粳的抗逆境特性研究[J]. 应用生态学报, 2005, 16(4): 717 − 720. YU Liuqing, MORTIMER A M, XUAN Songnan, et al. Stress resistance of weedy rice Luolijing (Oryza sativa) [J]. Chinese Journal of Applied Ecology, 2005, 16(4): 717 − 720. [16] WANG Yang, HU Jin, QIN Guochen, et al. Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds [J]. Botany, 2012, 90(9): 845 − 855. [17] HU Jin, XIE Xiujuan, WANG Zhoufei, et al. Sand priming improves alfalfa germination under high-salt concentration stress [J]. Seed Science Technology, 2006, 34(1): 199 − 204. [18] GUAN Yajing, HU Jin, WANG Xianju, et al. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress [J]. Journal of Zhejiang University Science-B, 2009, 10(6): 427 − 433. [19] WANG Yang, WEN Tingting, HUANG Yutao, et al. Salicylic acid biosynthesis inhibitors increase chilling injury to maize (Zea mays L. ) seedlings [J]. Plant Growth Regulation, 2018, 86: 11 − 21. [20] WANG Yang, HE Jinna, YE Haotian, et al. Transcriptome analysis revealed the key genes and pathways involved in seed germination of maize tolerant to deep-sowing [J/OL]. Plants, 2022, 11: 359[2023-10-01]. doi: 10.3390/plants11030359. [21] 杨金玲, 强胜, 张帮华, 等. 中国杂草稻种群的发芽期耐冷性研究[J]. 植物遗传资源学报, 2017, 18(1): 1 − 9. YANG Jinling, QIANG Sheng, ZHANG Banghua, et al. Cold tolerance of seed germination for weedy rice populations in China [J]. Journal of Plant Genetic Resources, 2017, 18(1): 1 − 9. [22] 李其勇, 李星月, 朱从桦, 等. 杂草稻的竞争优势及耐逆性研究进展[J]. 中国农学通报, 2019, 35(31): 115 − 123. LI Qiyong, LI Xingyue, ZHU Congye, et al. Research progress of competitive advantage and stress tolerance of weedy rice [J]. Chinese Agricultural Science Bulletin, 2019, 35(31): 115 − 123. [23] 陈雷, 金曼, 张维乐, 等. 杂草稻的特性及其危害与防治研究进展[J]. 作物学报, 2020, 46(7): 969 − 977. CHEN Lei, JIN Man, ZHANG Weile, et al. Research advances on characteristics, damage and control measures of weedy rice [J]. Acta Agronomica Sinica, 2020, 46(7): 969 − 977. [24] NADIR S, XIONG Haibo, ZHU Qian, et al. Weedy rice in sustainable rice production. a review [J/OL]. Agronomy for Sustainable Development, 2017, 37(5): 46[2023-10-01]. doi:10.1007/s13593-017-0456-4. [25] NORAIKIM M H, MISPAN M S, LIM P E, et al. The 21st century agriculture: when rice research draws attention to climate variability and how weedy rice and underutilized grains come in handy [J/OL]. Plants, 2020, 9(3): 365[2023-10-01]. doi:10.3390/plants9030365. [26] 邹德堂. 黑龙江省杂草稻的特征特性及耐冷性分析[J]. 农业现代化研究, 2008, 29(2): 235 − 238. ZOU Detang. Characteristic of weedy rice and cold tolerance in Heilongjiang Province [J]. Research of Agricultural Modernization, 2008, 29(2): 235 − 238. [27] 李海粟, 李俭, 傅民杰, 等. 东北稻区杂草稻种子的越冬特性[J]. 吉林农业大学学报, 2017, 39(4): 409 − 416, 422. LI Haisu, LI Jian, FU Minjie, et al. Overwintering characteristics of weedy rice seed in northeast China [J]. Journal of Jilin Agricultural University, 2017, 39(4): 409 − 416, 422. [28] 马静, 李亚卉, 王兴盛, 等. 宁夏杂草稻生存传播习性研究Ⅰ——杂草稻种子耐冻性鉴定[J]. 种子, 2015, 34(9): 97 − 101. MA Jing, LI Yahui, WANG Xingsheng, et al. Research of habits and characteristics about survival and spread of weedy rice in ningxia Ⅰ: identification about freeze resistance of weedy rice seeds [J]. Seed, 2015, 34(9): 97 − 101. [29] 黄俊浩. 上海地区杂草稻种子萌发特性[J]. 上海交通大学学报(农业科学版), 2014, 32(3): 15 − 20. HUANG Junhao. Germination characteristics of weedy rice in Shanghai [J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2014, 32(3): 15 − 20. [30] 丁国华, 马殿荣, 刘晓亮, 等. 中国北方杂草稻幼苗对干旱胁迫的生理响应[J]. 干旱地区农业研究, 2013, 31(6): 127 − 133. DING Guohua‚MA Dianrong‚LIU Xiaoliang, et al. Physiological responses of weedy rice to drought stress at seedling stage [J]. Agricultural Research in the Arid Areas, 2013, 31(6): 127 − 133. [31] WANG Yuan, MO Shuda, KONG Mengyao, et al. Better performance of germination in hyperosmotic solutions in conspecific weedy rice than cultivated rice [J]. Journal of Systematics and Evolution, 2019, 57(5): 519 − 529. [32] 曹旦, 戴伟民, 强胜, 等. 不同土层和水层深度对国内15个杂草稻种群出苗的影响[J]. 江苏农业学报, 2011, 27(4): 750 − 755. CAO Dan, DAI Weimin, QIANG Sheng, et al. Effects of soil and water depth on germination rates of fifteen weedy rice populations in China [J]. Jiangsu Journal of Agricultural Science, 2011, 27(4): 750 − 755. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230521