-
香榧Torreya grandis ‘Merrillii’是红豆杉科Taxaceae榧树属Torreya的优质品种,其种子可食用,是著名的特色干果[1];种仁含油率较高[2],具有很高的经济价值[3]。随着各类栽培技术的开发,中国的香榧种植产业规模也在不断扩大,对于香榧植株及干果[4]的有关研究已经比较成熟,但对于香榧愈伤组织培养的研究还处在相对落后的阶段。
植物愈伤细胞的悬浮培养是一种通过调控细胞生长,快速获得大量细胞以及目的产物的技术,不受各类局限进行周年生产。建立好的培养体系以及优化培养条件,可以超过原有的生产方式[5]。王沐兰等[6]通过建立红豆杉Taxus chinensis高产悬浮细胞系,提高了紫杉醇的产量;赵文佳[7]诱导青钱柳Cyclocarya paliurus红色愈伤系,并利用细胞悬浮培养技术建立了花青素的生产体系。此外,国槐Sophora japonica[8]、南方红豆杉Taxus wallichiana[9]和落叶松Larix gmelinii[10]等植物的悬浮培养体系也已经建立。然而在香榧悬浮培养体系中,细胞生长动力学规律及最佳培养条件尚不清晰。
悬浮细胞的培养过程中需添加各类激素以促生长。赤霉素(GAs)是植物体内的一种重要激素,已被发现较多的种类,并按顺序命名为赤霉素A1 (GA1)、赤霉素A3 (GA3)等,在植物生长的各个环节都不可缺少[11−12]。在非生物胁迫或生物刺激下,外施赤霉素可以增加防御酶的数量或活性,进而影响植物抗性[13]。赤霉素还可对植物愈伤组织增殖过程中的褐化情况进行抑制,促进愈伤组织增殖[14]。
鉴于此,本研究通过优化香榧胚性愈伤组织悬浮培养基,探究其动力学特性,筛选最适合的培养条件,同时探究GA3处理下香榧胚性愈伤组织生长及差异基因表达的规律,为香榧愈伤组织的生长和遗传转化体系的构建提供科学依据。
-
以浙江农林大学省部共建亚热带森林培育国家重点实验室培育的香榧胚性愈伤组织为试验材料。使用SH液体培养基,其中添加脱落酸(ABA) 1.0 mg·L−1、水解酪蛋白(CH) 500.0 mg·L−1、蔗糖30.0 g·L−1、活性炭2.0 g·L−1和GA3 0.5 mg·L−1,设置pH 5.7,摇床转速为110 r·min−1,25 ℃暗培养。
-
在100 mL的锥形瓶中添置30 mL的SH液体培养基(配方同1.1),香榧胚性愈伤组织接种量为30 g·L−1,设置pH 5.7,转速为110 r·min−1,每3 d取样测定细胞鲜质量及细胞活力(氯化三苯四氮还原法,TTC),即波长为485 nm处的吸光度。
-
在100 mL锥形瓶中添置30 mL的SH液体培养基(配方及培养条件同1.1),设置转接愈伤组织接种量为10、20、30、40、50 g·L−1;pH为5.5、5.6、5.7、5.8、5.9;摇床转速为70、90、110、130、150 r·min−1。25 ℃摇床中振荡暗培养。每个处理设置3个重复,21 d时统计鲜质量,计算细胞增长率,细胞增长率=(收获量−接种量)/接种量×100%。
-
超氧化物歧化酶(SOD)活性采用氮蓝四唑光化还原法测定;过氧化物酶(POD)活性采用愈创木酚法测定;过氧化氢酶(CAT)活性采用紫外吸收法测定[15]。
-
将香榧胚性愈伤组织接种于SH液体培养基中(配方及培养条件同1.1),设置对照组(ck)和实验组(GA3+),对照组培养基中不添加GA3,实验组培养基中施加GA3。18 d后收集材料,使用多糖多酚植物总RNA提取试剂盒(北京天根生化科技有限公司),按说明书提取RNA,分别设置3个生物学重复,使用分光光度计检测浓度与纯度。
-
测序工作由北京诺禾致源科技有限公司完成,采用Illumina HiSeqTM 2000测序平台进行测序。由于香榧没有参考基因组,将聚类分析结果中最长的转录本作为参考序列单基因簇进行后续分析。
-
采用RSEM软件将每个样品过滤后的数据(clean reads)在参考序列上做比对。采用DESeq分析差异表达基因(DEG),以|log2Fc|>1 (Fc为表达量的差异倍数)且P<0.005为筛选条件[16]。将差异表达基因注释到基因本体论数据库(GO)和京都基因与基因组百科全书(KEGG),并进行GO和KEGG富集分析。
-
使用Primer 3.0 input在线软件设计引物(表1),以TgActin为内参基因[16]。用Takara生物科技有限公司的反转录试剂将提取的RNA反转录成cDNA进行RT-qPCR验证,每个样品3个生物学重复。反应体系为10.0 μL,包括5.0 μL的TB GREEN,0.2 μL的上下游引物,0.4 μL的模板cDNA,4.2 μL的ddH2O。PCR反应程序为:95 ℃ 10 min,95 ℃ 10 s,60 ℃ 1 min,95 ℃ 30 s,60 ℃ 15 s共39个循环。
表 1 差异表达基因RT-qPCR的特异性引物信息
Table 1. Gene-specific primer information for RT-qPCR
引物名称 正向引物(5′→3′) 反向引物(5′→3′) XM_024662224.1 TCCAAGGGAAGGGGAACATC TCCCCGGATTGCAGAAGATT XM_027242615.1 TGTACCCTCCACCCTTTTCC TCTATCAGGGAGGGAGCAGA XM_020665027.1 TACGACCAGTCAGAGGCTTG AAACACCCACCGTCTTTGAC XM_002991298.2 CACGCCCAATTTTCACGAGA CGAAAACTAGGCAGGGCATC XM_022920293.1 TCGACCTTGAGACCTGGAAC TGATGGTGCAGCAAATCAGG TgActin TGGCATCTCTCAGCACATTCCA TGCCAACATCTCAAGCAAGCAC -
使用Excel处理数据,采用SPSS 26进行单因素方差分析(one-way ANOVA)和多重比较(邓肯法),显著性水平为0.05,使用GraphPad Prism 9软件作图。
Suspension culture dynamics of embryogenic callus from Torreya grandis ‘Merrillii’ and its response to gibberellin
-
摘要:
目的 以香榧Torreya grandis ‘Merrillii’胚性愈伤组织为试验材料,对其悬浮细胞的生长以及悬浮培养动力学进行研究,探究香榧胚性愈伤组织对赤霉素的响应。 方法 以实验室培育的香榧胚性愈伤组织为试验材料,通过测定细胞活力、细胞鲜质量进行悬浮培养动力学的研究,优化培养条件,并对施加外源赤霉素A3 (GA3)的愈伤组织进行转录组分析。 结果 ①在培养周期内,悬浮细胞的鲜质量增长呈S型曲线,细胞活力在3 d时达最高值后平稳下降。②香榧悬浮细胞培养最佳继代周期为9~12 d,最佳接种量为30 g·L−1,培养基最佳初始pH为5.7,最佳摇床转速为110 r·min−1。③对外源GA3处理后的香榧胚性愈伤组织进行转录组分析,共获得差异表达基因428个,其中上调基因236个,下调基因192个。在差异基因的GO富集分析中,GA3处理后上调表达基因主要参与催化活性、氧化还原过程、氧化还原酶活性等,在KEGG代谢通路中,差异表达基因主要富集在苯丙烷类生物合成、木栓质生物合成等途径中。 结论 香榧胚性愈伤组织培养动力学分析能获得最佳接种时期,优化培养条件能提高其细胞增长率及抗逆性,外源GA3处理下的香榧胚性愈伤组织细胞中,苯丙烷生物合成、木栓质生物合成等代谢通路为差异基因主要参与部分,且部分关键基因表达量变化可能在香榧愈伤组织生长发育、适应环境及应对胁迫中发挥重要作用。图5表1参31 Abstract:Objective This study, with embryogenic callus from Torreya grandis ‘Merrillii’ employed as the experimental material, is aimed to investigate the growth and suspension culture dynamics of its suspension cells, explore the response of T. grandis ‘Merrillii’ embryogenic callus to gibberellin treatment. Method Using the embryogenic callus of T. grandis ‘Merrillii’ cultivated in laboratory as the experimental material, the suspension culture dynamics were studied by measuring cell viability and fresh cell weight, and the culture conditions were optimized before a transcriptome analysis was performed on the callus treated with exogenous GA3. Result (1) Within the culture cycle, the fresh weight growth curve of the suspension cells exhibited an S-shaped pattern, with cell viability reaching its peak at 3 days and then gradually decreasing steadily. (2) The optimal subculture period for T. grandis ‘Merrillii’ suspension cells was determined to be 9 to 12 days, with an optimal inoculation rate of 30 g·L−1, an initial pH of 5.7 for the culture medium, and an optimal shaking speed of 110 r·min−1. (3) transcriptome analysis of T. grandis ‘Merrillii’ embryogenic callus treated with exogenous GA3 revealed 428 differentially expressed genes, including 236 upregulated and 192 downregulated genes whereas GO enrichment analysis of these differentially expressed genes showed that the upregulated genes after GA3 treatment were mainly involved in catalytic activity, oxidation-reduction processes, and oxidoreductase activity, and in the KEGG metabolic pathways, the differentially expressed genes were primarily enriched in phenylpropanoid biosynthesis and suberin biosynthesis. Conclusion The kinetic analysis of T. grandis ‘Merrillii’ embryogenic callus culture can identify the optimal inoculation period and optimizing the culture conditions can enhance cell growth rate and stress resistance. In embryogenic callus of T. grandis ‘Merrillii’ under exogenous GA3 treatment, metabolic pathways such as phenylpropanoid biosynthesis and suberin biosynthesis are the main participating parts of differentially expressed genes. Moreover, changes in the expression levels of some key genes may play an important role in the growth and development, environmental adaptation, and stress response of T. grandis ‘Merrillii’ callus. [Ch, 5 fig. 1 tab. 31 ref.] -
Key words:
- Torreya grandis ‘Merrillii’ /
- embryogenic callus /
- suspension culture /
- gibberellin
-
表 1 差异表达基因RT-qPCR的特异性引物信息
Table 1. Gene-specific primer information for RT-qPCR
引物名称 正向引物(5′→3′) 反向引物(5′→3′) XM_024662224.1 TCCAAGGGAAGGGGAACATC TCCCCGGATTGCAGAAGATT XM_027242615.1 TGTACCCTCCACCCTTTTCC TCTATCAGGGAGGGAGCAGA XM_020665027.1 TACGACCAGTCAGAGGCTTG AAACACCCACCGTCTTTGAC XM_002991298.2 CACGCCCAATTTTCACGAGA CGAAAACTAGGCAGGGCATC XM_022920293.1 TCGACCTTGAGACCTGGAAC TGATGGTGCAGCAAATCAGG TgActin TGGCATCTCTCAGCACATTCCA TGCCAACATCTCAAGCAAGCAC -
[1] 黎章矩, 骆成方, 程晓建, 等. 香榧种子成分分析及营养评价[J]. 浙江林学院学报, 2005, 22(5): 540 − 544. LI Zhangju, LUO Chengfang, CHENG Xiaojian, et al. Component analysis and nutrition evaluation of seeds of Torreya grandis ‘Merrillii’ [J]. Journal of Zhejiang Forestry College, 2005, 22(5): 540 − 544. [2] 何慈颖, 娄和强, 吴家胜. 香榧油脂及其合成调控机制研究进展[J]. 浙江农林大学学报, 2023, 40(4): 714 − 722. HE Ciying, LOU Heqiang, WU Jiasheng. Research progress on synthesis and regulation mechanism of Torreya grandis ‘Merrillii’ kernel oil [J]. Journal of Zhejiang A&F University, 2023, 40(4): 714 − 722. [3] 余盛武, 吕赟薇, 蒋敏, 等. 香榧的营养和功能成分探析[J]. 南方农业, 2017, 11 (5): 75, 77. YU Shengwu, LÜ Yunwei, JIANG Min, et al. Analysis of nutritional and functional components of Torreya grandis ‘Merrillii’ [J]. South China Agriculture, 2017, 11 (5): 75, 77. [4] 胡渊渊, 鲍俊俊, 蔡晓郡, 等. 纳米复合膜对香榧坚果储藏过程中油脂品质的影响[J]. 浙江农林大学学报, 2024, 41(3): 447 − 456. HU Yuanyuan, BAO Junjun, CAI Xiaojun, et al. Effect of nanocomposite film on oil quality of Torreya grandis ‘Merrillii’ nuts during storage [J]. Journal of Zhejiang A&F University, 2024, 41(3): 447 − 456. [5] 陈林, 李永成. 海南粗榧细胞悬浮培养体系的建立[J]. 广东农业科学, 2014, 41(24): 54 − 57, 62. CHEN Lin, LI Yongcheng. Establishment of cell suspension culture system for Cephalotaxus mannii [J]. Guangdong Agricultural Sciences, 2014, 41(24): 54 − 57, 62. [6] 王沐兰, 杨生超, 郁步竹, 等. 红豆杉高产悬浮细胞系建立及其紫杉醇诱导的研究进展[J]. 广西植物, 2016, 36(9): 1137 − 1146. WANG Mulan, YANG Shengchao, YU Bubu, et al. Research progress in high yielding suspension cell lines and the induction of taxol in Taxus [J]. Guihaia, 2016, 36(9): 1137 − 1146. [7] 赵文佳. 青钱柳红色愈伤组织的诱导和筛选及细胞悬浮培养生产花青素[D]. 南昌: 江西农业大学, 2020. ZHAO Wenjia. Inducement and Screening of Cyclocarya Paliurus Red Callus and Cell Suspension Culture to Produce Anthocyanin [D]. Nanchang: Jiangxi Agricultural University, 2020. [8] 陈红贤, 于笑笑, 王晨阳, 等. 国槐槐角种胚细胞悬浮培养的动力学研究[J]. 浙江农林大学学报, 2016, 33(2): 272 − 279. CHEN Hongxian, YU Xiaoxiao, WANG Chenyang, et al. Kinetics of Sophora japonica embryo cells in a suspension culture system [J]. Journal of Zhejiang A&F University, 2016, 33(2): 272 − 279. [9] 徐志荣. 南方红豆杉细胞悬浮培养体系建立及培养条件优化[D]. 南昌: 江西农业大学, 2018. XU Zhirong. The Establishment of Cell Suspension Culture System and Optimization Culture Conditions of Taxus chinensis var. mairer [D]. Nanchang: Jiangxi Agricultural University, 2018. [10] 宋跃, 李淑娟, 张含国, 等. 落叶松胚性愈伤组织悬浮培养体系的优化[J]. 林业科学, 2018, 54(7): 146 − 154. SONG Yue, LI Shujuan, ZHANG Hanguo, et al. Establishment and optimization of embryogenic callus suspension culture system of Larix [J]. Scientia Silvae Sinicae, 2018, 54(7): 146 − 154. [11] KHAIPER M, DHANDA S K, AHLAWAT K S, et al. The effect of pre-sowing treatments with Glomus mosseae and GA3 on the leaves physiology of Melia azedarach seedling [J]. International Journal of Environment and Climate Change, 2023, 13(9): 2926 − 2937. [12] 马焕普, 刘志民. 赤霉素与果树的生长发育[J]. 植物学通报, 1998, 15(1): 27 − 36. MA Huanpu, LIU Zhimin. Gibberellins and fruit tree development [J]. Chinese Bulletin of Botany, 1998, 15(1): 27 − 36. [13] MOOSAVI M R. The effect of gibberellin and abscisic acid on plant defense responses and on disease severity caused by Meloidogyne javanica on tomato plants [J]. Journal of General Plant Pathology, 2017, 83(3): 173 − 184. [14] 程雨飞, 朱向涛, 季雯, 等. 牡丹愈伤组织增殖及褐化研究[J]. 广东农业科学, 2019, 46(6): 30 − 36. CHENG Yufei, ZHU Xiangtao, JI Wen, et al. Study on proliferation and browning of Peony callus [J]. Guangdong Agricultural Sciences, 2019, 46(6): 30 − 36. [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164 − 168. LI Hesheng. Principles and Techniques of Plant Physiology and Biochemistry Experiments [M]. Beijing: Higher Education Press, 2000: 164 − 168. [16] GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644 − 652. [17] WANG Y, WEATHERS P J. Sugars proportionately affect artemisinin production [J]. Plant Cell Reports, 2007, 29(7): 1073 − 1081. [18] 钟巍然, 柴友荣, 张凯, 等. 苯丙烷代谢途径中细胞色素P450的研究[J]. 安徽农业科学, 2008, 36(13): 5285 − 5289. ZHONG Weiran, CHAI Yourong, ZHANG Kai, et al. Study on the cytochrome P450s in phenylpropanoid metabolic pathway [J]. Journal of Anhui Agricultural Sciences, 2008, 36(13): 5285 − 5289. [19] QIN Yuzhi, TAI G, XIE Kaiyun, et al. Ambient light alters gene expression pattern of enzymes and transcription factors involved in phenylpropanoid metabolic pathway in potato under chilling stress [J]. Agricultural Science & Technology, 2014, 15(11): 1899 − 1904. [20] FANG Lin, XU Xin, LI Ji, et al. Transcriptome analysis provides insights into the non-methylated lignin synthesis in Paphiopedilum armeniacum seed [J/OL]. BMC Genomics, 2019[2024-04-01]. doi: 10.21203/rs.2.13152/v2. [21] COMPAGNON V, DIEHL P, BENVENISTE I, et al. CYP86B1 is required for very long chain ω-hydroxyacid and α, ω-dicarboxylic acid synthesis in root and seed suberin polyester [J]. Plant Physiology, 2009, 150(4): 1831 − 1843. [22] KOSMA D K, BOURDENX B, BERNARD A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis [J]. Plant Physiology, 2009, 151(4): 1918 − 1929. [23] LI Sufang, YE Tianwen, XU Xin, et al. Callus induction, suspension culture and protoplast isolation in Camellia oleifera [J/OL]. Scientia Horticulturae, 2021, 286 (1): 110193[2024-04-01]. doi: 10.1016/j.scienta.2021.110193. [24] 陈继光, 上官新晨, 尹忠平, 等. 青钱柳悬浮细胞的培养及其基质消耗的规律[J]. 现代食品科技, 2014, 30(1): 44 − 49. CHEN Jiguang, SHANGGUAN Xinchen, YIN Zhongping, et al. Establishment of the cell suspension culture system of Cyclocarya paliurus and matrix consumption laws [J]. Modern Food Science and Technology, 2014, 30(1): 44 − 49. [25] PENG Chunxue, GAO Fang, WANG Hao, et al. Suspension culture and somatic embryogenesis of Korean pine [J]. International Journal of Experimental Botany, 2022, 91(1): 223 − 238. [26] GAO Jie, XUE Jingqi, XUE Yuqian, et al. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors [J]. Plant Physiology and Biochemistry, 2020, 149: 36 − 49. [27] XUE Zhenglian, WANG Bingsheng, QU Changyu, et al. Response of salt stress resistance in highland barley (Hordeum vulgare L. var. nudum) through phenylpropane metabolic pathway [J/OL]. PLoS One, 2023, 18 (10): e0286957[2024-04-01]. doi: 10.1371/journal.pone.0286957. [28] XIE Pengdong, YANG Yangyang, OYOM W, et al. Chitooligosaccharide accelerated wound healing in potato tubers by promoting the deposition of suberin polyphenols and lignin at wounds[J/OL]. Plant Physiology and Biochemistry, 2023, 199 : 107714[2024-04-01]. doi: 10.1016/j.plaphy.2023.107714. [29] HU Bo, ZHANG Guifang, LIU Wu, et al. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms [J]. Regeneration, 2017, 4(3): 132 − 139. [30] POLLARD M, BEISSON F, LI Yonghua, et al. Building lipid barriers: biosynthesis of cutin and suberin [J]. Trends in Plant Science, 2008, 13(5): 236 − 246. [31] 魏晓博. 脱落酸与茉莉酸互作调控猕猴桃果实愈伤木栓质多聚酚类物质合成的作用机制[D]. 杭州: 浙江大学, 2022. WEI Xiaobo. The Mechanism of Abscisic Acid-jasmonic Acid Interaction in Regulating the Synthesis of Suberin Polyphenolics in Wounded Kiwifruit [D]. Hangzhou: Zhejiang University, 2022. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240291