-
二氧化碳(CO2)浓度升高导致的全球气候变暖已成为人类生存面临的重要生态问题[1],覆盖陆地表面约31%的森林固定了约1/3的CO2排放量[2],是陆地上主要的碳汇生态系统[3],能在一定程度上缓解温室效应[4]。森林固碳是指森林植被通过光合作用将碳转化为有机质储存于树干、根系及凋落物等[5],其中,树木木质部生长是对环境变化较敏感的固碳过程,生长过程中的木质部特征对环境因子的响应存在种间差异[6]。因此对木质部形成进行季节动态监测,有助于了解环境因子对树木生长的影响,可为预估和评价森林碳储量变化提供科学依据。
通过微树芯法可以对木质部生长季节动态进行高时间分辨率监测(天或旬),目前相关的研究主要针对针叶树,如青杄Picea wilsorii[7]、欧洲落叶松Larix decidua[8]、祁连圆柏Juniperus przewalskii[9]、欧洲赤松Pinus sylvestris[10],也有少数阔叶树,如夏栎Quercus robur[11]、欧洲山毛榉Fagus sylvatica[12]等。这些研究主要集中在高纬度或高海拔地区,径向生长持续期主要在春末至秋初,不超过6个月。有研究发现,在受温度限制的湿润地区,温度升高有利于树木生长季延长[13]。在受水分限制的温带地区,温度升高加剧树木蒸腾作用,引起水分亏缺,部分树木出现生长短期停滞现象[14]。此外,同一树种,受年龄、海拔等因素的影响,对气候变化的响应存在一定差异[15]。
同一生境下,不同树种的径向生长动态存在差异。楸树Catalpa bungei、樟树Cinnamomum camphora、白蜡Fraxinus chinensis和栾树Koelreuteria paniculata是中国温带、亚热带重要的园林绿化树种,在维护城市生态系统稳定性上有较高的生态学价值。这4个树种属于环孔材树种,目前对它们的年内木质部生长仍缺乏相关研究,因此探索其木质部形成动态有助于加深对环孔材树种木质部生长的理解。本研究用微树芯技术监测了4个树种木质部径向生长的季节性动态变化,并分析了它们与气候因子的关系,以期掌握这4个树种的木质部生长规律,为评估和提高本地区森林的固碳能力提供基础数据。
-
4个树种的形成层细胞数量呈先上升后下降的单峰曲线(图3)。楸树的形成层最早开始活动,在3月10日,年积日为69 d。栾树形成层活动开始时间与楸树基本一致,且最早达到形成层细胞数量最大值,在5月4日。樟树形成层细胞数量最少,仅9个,其余3个树种为11~12个。楸树形成层活动结束最早,在9月中旬,樟树最晚,在10月中旬。
-
4个树种年内径向生长在持续时间上略有差异。径向生长结束时间最早的是栾树,在10月中旬,樟树最晚,在11月初。木质部生长持续期栾树最短为220 d,樟树最长为236 d (表1)。
表 1 4个环孔材树种的形成层活动和木质部分化动态
Table 1. Phenology of cambial activity and xylem differentiation of four ring-porous tree species
树种 形成层活动启动时间/d 形成层活动停止时间/d 径向生长结束时间/d 形成层活动持续期/d 径向生长持续期/d 楸树 69±0.0 258±14.6 301±12.1 189±14.6 232±14.8 樟树 71±3.5 287±14.0 311±4.2 216±10.1 236±5.2 白蜡 80±4.6 280±17.6 301±6.4 199±13.0 221±9.5 栾树 69 273 289 204 220 说明:数值为平均值±标准差。栾树仅2个植株,未列标准差。 -
各树种的年内径向生长曲线基本一致,呈“S”型(图4),Gompertz函数拟合效果较好(表2),R2=0.58~0.95,P<0.000 1。年内总径向生长拟合量以楸树最大,为(8 276±1 744.2) μm,其次是栾树、樟树和白蜡,分别为6 727、(6 399±1 241.7)和(5 807±2 191.9) μm。
图 4 不同树种径向生长年内累积量实测值及其Gompertz拟合曲线
Figure 4. Seasonal cumulative radial growth and its model prediction from the microcore measurements
表 2 4个树种的木质部径向生长动态
Table 2. Phenology of xylem for four ring-porous species
树种 木质部径向生长
实测值/μm木质部径向生长
拟合值/μmR2 P 平均生长速率/
(μm·d−1)最大生长速率/
(μm·d−1)最大生长速率
出现的时间/d楸树 8 467±2 423.7 8 276±1 744.2 0.93~0.95 <0.000 1 55±17.7 90±28.9 126±1.5 樟树 5 869±1 548.7 6 399±1 241.7 0.84~0.91 <0.000 1 39±2.7 64±4.4 134±6.4 白蜡 5 541±2 260.1 5 807±2 191.9 0.58~0.80 <0.000 1 41±19.5 68±39.0 136±15.5 栾树 8 281 6 727 0.70~0.77 <0.000 1 54.3 88.8 137 说明:数值为平均值±标准差。栾树仅2个植株,未列标准差。 -
4个树种的生长速率呈先上升后下降的单峰曲线(图5),均在5月中旬达到峰值。由表2可见:楸树的峰值最高,为(90±28.9) μm·d−1,樟树最低,为(64±4.4) μm·d−1。楸树最早达到峰值,在5月6日(年积日126 d),比樟树、白蜡和栾树分别早8、10和11 d。
-
由表3可见:4个树种的年内径向生长量与气温和地表温度均呈极显著正相关(P<0.01),降水量仅与樟树树木年内径向生长的显著正相关(P<0.05)。
表 3 径向生长与同期气候因子相关性分析
Table 3. Correlation analysis between radial growth and contemporaneous environmental factors
树种 气温/℃ 地表温度/℃ 降水量/mm 相对湿度/% 日照时长/h 楸树 0.519** 0.523** 0.272 0.186 0.266 樟树 0.669** 0.663** 0.389* 0.286 0.260 白蜡 0.636** 0.629** 0.345 0.258 0.207 栾树 0.595** 0.587** 0.316 0.252 0.197 说明:**. P<0.01;*. P<0.05。 -
4个树种中栾树的导管直径最大(表4),为(243±19.2) μm,其次是楸树和白蜡,樟树的导管直径最小,为(137±24.0) μm。
表 4 4个环孔材树种的导管直径与横截面积
Table 4. Diameter and area of vessels in four ring-porous species
树种 导管直径/μm 导管面积/μm2 楸树 240±14.7 46 123±5 278.6 樟树 137±24.0 15 734±4 919.8 白蜡 216±5.8 38 370±1 381.9 栾树 243±19.2 48 125±8 475.7 说明:数值为平均值±标准差。
Intra-annual growth and its response to climatic factors in four ring-porous wood species
-
摘要:
目的 树木茎干木质部生长动态被认为是对环境变化敏感的指标之一,因此明确木质部年内形成过程对于阐明树木与气候的关系具有重要意义。 方法 利用微树芯技术,对茎干周期性采样(7~10 d),通过切片观察河南洛阳市4种环孔材树种楸树Catalpa bungei、樟树Cinnamomum camphora、白蜡Fraxinus chinensis和栾树Koelreuteria paniculata的木质部年内径向生长动态,并利用Gompertz模型对测量的木质部径向生长累积量进行拟合。 结果 ①4个树种形成层活动时间集中在3月上旬至10中旬,其中楸树最短,为(189±14.6) d,樟树最长,为(216±17.4) d。②4个树种木质部形成动态相似,均呈“S”型生长曲线,在11月初完成径向生长,最大生长速率出现在5月中旬。但不同树种的年内径向生长量差异较大,其中白蜡最短,为(5 807±2 192.9) μm,楸树最长,为(8 276±1 744.2) μm。③温度可能是影响本地区树木径向生长的主要气候因子,气温和地表温度与树木径向生长均呈极显著正相关(P<0.01)。降水量只与樟树生长呈显著正相关(r=0.39,P<0.05),这可能是因为樟树的导管直径与导管面积均最小,对水分条件较敏感。 结论 洛阳市4个树种的径向生长都与气温呈极显著正相关,并且半环孔材樟树对气候因子的响应要强于其他3个环孔材树种。图5表4参52 Abstract:Objective The radial growth dynamics of xylem is considered one of the indicators of sensitivity to environmental change. Investigating the xylem formation is crucial to elucidate the relationship between trees growth and the climate. Method Microcore sampling and paraffin sections technology were used to monitor the intra-annual growth dynamics of xylem formation. We collected the microcores of Catalpa bungei, Cinnamomum camphora, Fraxinus chinensis and Koelreuteria paniculata every 7−10 d, and Gompertz model was used to fit the modeled value of cumulative radial growth. Result (1) Cambial activity began in early March and ended in mid-October. The duration of cambial activity was shortest for C. bungei [(189±14.6) d], and longest for C. camphora [(216±17.4) d]. (2) Four species finished the xylem differentiation in early November, and their maximum growth rate occurred in the middle of May. However, the widths of cumulative radial growth showed great variations among four ring-porous species which were from (5 807±2 192.9) μm for F. chinensis to (8 276±1 744.2) μm for C. bungei. (3) Additionally, temperature may be the main climatic factor influence the radial growth in study area. Both air temperature and surface ground temperature had a significantly positive correlation on the xylem growth increment for four ring-porous wood species (P<0.01). The positive correlation between precipitation and xylem growth was only in C. camphora (r=0.39, P<0.05). It may explained by the smallest diameter and area of vessel of C. camphora, which led to the trees were more sensitive to precipitation. Conclusion The radial growth of the four tree species in the local area is highly significantly positively correlated with air temperature. The response of the C. camphora plants to climatic factors is stronger than the other three ring-porous porous tree species. [Ch, 5 fig. 4 tab. 52 ref.] -
Key words:
- ring-porous wood /
- cambium /
- Gompertz model /
- intra-annual radial growth dynamics /
- microcore /
- Pearson correlation
-
表 1 4个环孔材树种的形成层活动和木质部分化动态
Table 1. Phenology of cambial activity and xylem differentiation of four ring-porous tree species
树种 形成层活动启动时间/d 形成层活动停止时间/d 径向生长结束时间/d 形成层活动持续期/d 径向生长持续期/d 楸树 69±0.0 258±14.6 301±12.1 189±14.6 232±14.8 樟树 71±3.5 287±14.0 311±4.2 216±10.1 236±5.2 白蜡 80±4.6 280±17.6 301±6.4 199±13.0 221±9.5 栾树 69 273 289 204 220 说明:数值为平均值±标准差。栾树仅2个植株,未列标准差。 表 2 4个树种的木质部径向生长动态
Table 2. Phenology of xylem for four ring-porous species
树种 木质部径向生长
实测值/μm木质部径向生长
拟合值/μmR2 P 平均生长速率/
(μm·d−1)最大生长速率/
(μm·d−1)最大生长速率
出现的时间/d楸树 8 467±2 423.7 8 276±1 744.2 0.93~0.95 <0.000 1 55±17.7 90±28.9 126±1.5 樟树 5 869±1 548.7 6 399±1 241.7 0.84~0.91 <0.000 1 39±2.7 64±4.4 134±6.4 白蜡 5 541±2 260.1 5 807±2 191.9 0.58~0.80 <0.000 1 41±19.5 68±39.0 136±15.5 栾树 8 281 6 727 0.70~0.77 <0.000 1 54.3 88.8 137 说明:数值为平均值±标准差。栾树仅2个植株,未列标准差。 表 3 径向生长与同期气候因子相关性分析
Table 3. Correlation analysis between radial growth and contemporaneous environmental factors
树种 气温/℃ 地表温度/℃ 降水量/mm 相对湿度/% 日照时长/h 楸树 0.519** 0.523** 0.272 0.186 0.266 樟树 0.669** 0.663** 0.389* 0.286 0.260 白蜡 0.636** 0.629** 0.345 0.258 0.207 栾树 0.595** 0.587** 0.316 0.252 0.197 说明:**. P<0.01;*. P<0.05。 表 4 4个环孔材树种的导管直径与横截面积
Table 4. Diameter and area of vessels in four ring-porous species
树种 导管直径/μm 导管面积/μm2 楸树 240±14.7 46 123±5 278.6 樟树 137±24.0 15 734±4 919.8 白蜡 216±5.8 38 370±1 381.9 栾树 243±19.2 48 125±8 475.7 说明:数值为平均值±标准差。 -
[1] 竹万宽, 许宇星, 王志超, 等. 尾巨桉人工林土壤呼吸对林下植被管理措施的响应[J]. 浙江农林大学学报, 2023, 40(1): 164 − 175. ZHU Wankuan, XU Yuxing, WANG Zhichao, et al. Response of soil respiration to understory vegetation management in Eucalyptus urophylla × E. grandis plantation [J]. Journal of Zhejiang A&F University, 2023, 40(1): 164 − 175. [2] RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system [J]. Agricultural and Forest Meteorology, 2013, 169: 156 − 173. [3] HUANG Jianguo, MA Qianqian, ROSSI S, et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers [J]. Proceedings of the National Academy of Sciences, 2020, 117(34): 20645 − 20652. [4] NJANA M A, MBILINYI B, ELIAKIMU Z. The role of forests in the mitigation of global climate change: Emprical evidence from Tanzania [J/OL]. Environmental Challenges, 2021, 4: 100170[2023-10-20]. doi: 10.1016/j.envc.2021.100170. [5] KOLO H, KINDU M, KNOKE T. Optimizing forest management for timber production, carbon sequestration and groundwater recharge [J/OL]. Ecosystem Services, 2020, 44: 101147[2023-10-20]. doi: 10.1016/j.ecoser.2020.101147. [6] 郭霞丽, 余碧云, 梁寒雪, 等. 结合微树芯方法的树木生长生理生态学研究进展[J]. 植物生态学报, 2017, 41(7): 795 − 804. GUO Xiali, YU Biyun, LIANG Hanxue, et al. Advancement in studies of tree growth and ecophysiology incorporating micro-sampling approach [J]. Chinese Journal of Plant Ecology, 2017, 41(7): 795 − 804. [7] 牛豪阁, 张芬, 于爱灵, 等. 祁连山东部青杄年内径向生长动态对气候的响应[J]. 生态学报, 2018, 38(20): 7412 − 7420. NIU Haoge, ZHANG Fen, YU Ailing, et al. Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains [J]. Acta Ecologica Sinica, 2018, 38(20): 7412 − 7420. [8] MOSER L, FONTI P, BÜNTGEN U, et al. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps [J]. Tree Physiology, 2010, 30(2): 225 − 233. [9] REN Ping, ZIACO E, ROSSI S, et al. Growth rate rather than growing season length determines wood biomass in dry environments [J]. Agricultural and Forest Meteorology, 2019, 271: 46 − 53. [10] JYSKE T, MÄKINEN H, KALLIOKOSKI T, et al. Intra-annual tracheid production of Norway spruce and Scots pine across a latitudinal gradient in Finland [J]. Agricultural and Forest Meteorology, 2014, 194: 241 − 254. [11] GONZÁLEZ-GONZÁLEZ B D, GARCÍA-GONZÁLEZ I, VÁZQUEZ-RUIZ R A. Comparative cambial dynamics and phenology of Quercus robur L. and Q. pyrenaica Willd. in an Atlantic forest of the northwestern Iberian Peninsula [J]. Trees, 2013, 27(6): 1571 − 1585. [12] GIAGLI K, VETEŠKA O, VAVRČÍK H, et al. Monitoring of seasonal dynamics in two age-different European beech stands [J]. Wood Research, 2015, 60(6): 1005 − 1016. [13] PEREZ-DE-LIS G, ROSSI S, VAZQUEZ-RUIZ R A, et al. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks [J]. New Phytologist, 2016, 209(2): 521 − 530. [14] GAO Jiani, YANG Bao, PENG Xiaomei, et al. Tracheid development under a drought event producing intra-annual density fluctuations in the semi-arid China [J/OL]. Agricultural and Forest Meteorology, 2021, 308 − 309: 108572[2023-10-20]. doi: 10.1016/j.agrformet.2021.108572. [15] ROSSI S, GIRARD M J, MORIN H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production [J]. Global Change Biology, 2014, 20(7): 2261 − 2271. [16] 朱华. 中国热带生物地理北界的建议[J]. 植物科学学报, 2018, 36(6): 893 − 898. ZHU Hua. Suggestions for the northern boundary of the tropical zone in China [J]. Plant Science Journal, 2018, 36(6): 893 − 898. [17] 张俊洁, 高宾永, 雪原, 等. 近46年洛阳地区气候变化特征分析[J]. 气象与环境科学, 2008, 31(增刊1): 138 − 141. ZHANG Junjie, GAO Binyong, XUE Yuan, et al. Analysis of characteristics of climate change over last 46 years in Luoyang [J]. Meteorological and Environmental Sciences, 2008, 31(suppl 1): 138 − 141. [18] PARK J-H, CHOI E-B, PARK H-C, et al. Intra-annual dynamics of cambial and xylem phenology in subalpine conifers at Deogyusan National Park in the Republic of Korea [J]. Journal of Wood Science, 2021, 67(1): 1 − 10. [19] ROSSI S, DESLAURIERS A, MORIN H. Application of the Gompertz equation for the study of xylem cell development [J]. Dendrochronologia, 2003, 21(1): 33 − 39. [20] DICKSON A, NANAYAKKARA B, SELLIER D, et al. Fluorescence imaging of cambial zones to study wood formation in Pinus radiata D. Don [J]. Trees, 2016, 31(2): 479 − 490. [21] DU Juan, WANG Yichen, CHEN Weifan, et al. High-resolution anatomical and spatial transcriptome analyses reveal two types of meristematic cell pools within the secondary vascular tissue of poplar stem [J]. Molecular Plant, 2023, 16(5): 809 − 828. [22] 刘伟韬, 李俊霞, 赵莹, 等. 水热耦合对沈阳地区油松木质部生长的影响[J]. 应用生态学报, 2021, 32(10): 3468 − 3476. LIU Weitao, LI Junxia, ZHAO Ying, et al. Effects of moisture and heat coupling on xylem growth of Pinus tabuliformis in Shenyang, China [J]. The Journal of Applied Ecology, 2021, 32(10): 3468 − 3476. [23] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length [J]. New Phytologist, 2006, 170(2): 301 − 310. [24] ČUFAR K, CHERUBINI M, GRIČAR J, et al. Xylem and phloem formation in chestnut (Castanea sativa Mill. ) during the 2008 growing season [J]. Dendrochronologia, 2011, 29(3): 127 − 134. [25] JIANG Yuan, ZHANG Yiping, GUO Yuanyuan, et al. Intra-annual xylem growth of Larix principis-rupprechtii at its upper and lower distribution limits on the Luyashan Mountain in north-central China [J]. Forests, 2015, 6(12): 3809 − 3827. [26] TJORVE K M C, TJORVE E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the Unified-Richards family [J/OL]. PloS One, 2017, 12(6): e0178691[2023-10-20]. doi: 10.1371/journal.pone.0178691. [27] ZHANG Yiping, JIANG Yuan, WEN Yan, et al. Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an alpine habitat [J/OL]. Forests, 2019, 10(7): 574[2023-10-20]. doi: 10.3390/f10070574. [28] LIANG E, REN Ping, ZHANG Shengbang, et al. How can Populus euphratica cope with extremely dry growth conditions at 2, 800 ma. s. l. on the northern Tibetan Plateau? [J]. Trees, 2012, 27(2): 447 − 453. [29] MENG Shengwang, FU Xiaoli, ZHAO Bo, et al. Intra-annual radial growth and its climate response for Masson pine and Chinese fir in subtropical China [J]. Trees, 2021, 35(6): 1817 − 1830. [30] MÄKINEN H, JYSKE T, NÖJD P. Dynamics of diameter and height increment of Norway spruce and Scots pine in southern Finland [J]. Annals of Forest Science, 2018, 75(1): 1 − 11. [31] 陈礼敏, 韦小练, 范泽鑫, 等. 西双版纳地区楝径向生长和木质部发生季节动态及其对环境因子的响应[J]. 生态学报, 2023, 43(8): 1 − 11. CHEN Limin, WEI Xiaolian, FAN Zexin, et al. Seasonal radial growth and xylogenesis of Melia azedarach and its response to environmental factors in Xishuangbanna, southwest China [J]. Acta Ecologica Sinica, 2023, 43(8): 1 − 11. [32] LI Xiaoxia, ROSSI S, SIGDEL S R, et al. Warming menaces high-altitude Himalayan birch forests: Evidence from cambial phenology and wood anatomy [J/OL]. Agricultural and Forest Meteorology, 2021, 308/309: 108577[2023-10-20]. doi: 10.1016/j.agrformet.2021.108577. [33] KULMALA L, READ J, NÖJD P, et al. Identifying the main drivers for the production and maturation of scots pine tracheids along a temperature gradient [J]. Agricultural and Forest Meteorology, 2017, 232: 210 − 224. [34] RATHGEBER C B, ROSSI S, BONTEMPS J D. Cambial activity related to tree size in a mature silver-fir plantation [J]. Annals of Botany, 2011, 108(3): 429 − 438. [35] ANTONUCCI S, ROSSI S, LOMBARDI F, et al. Influence of climatic factors on silver fir xylogenesis along the Italian Peninsula [J]. IAWA Journal, 2019, 40(2): 259 − 275. [36] SALOMON R L, PETERS R L, ZWEIFEL R, et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests [J/OL]. Nature Communications, 2022, 13(1): 28[2023-10-20]. doi: 10.1038/s41467-021-27579-9. [37] KIYOMI M. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate [J]. Tree Physiology, 2021, 41(10): 1893 − 1905. [38] ZHENG Zhuangpeng, ZHOU Feifei, FONTI P, et al. Intra-annual wood formation of Cryptomeria fortunei and Cunninghamia lanceolata in humid subtropical China [J]. Frontiers in Ecology and Evolution, 2021, 38(9): 1225 − 1236. [39] 陈佳佳, 周梅, 赵鹏武, 等. 内蒙古大兴安岭南段山杨径向变化特征[J]. 东北林业大学学报, 2022, 50(12): 25 − 30. CHEN Jiajia, ZHOU Mei, ZHAO Pengwu, et al. Radial growth characteristics of Populus davidiana in the southern section of the Daxing’an Mountains in Inner Mongolia [J]. Journal of Northeast Forestry University, 2022, 50(12): 25 − 30. [40] 谭灿灿, 聂稳, 刘逸夫, 等. 3种栎属树种单木生长模型及树皮厚度模型研究[J]. 浙江农林大学学报, 2023, 40(3): 589 − 597. TAN Cancan, NIE Wen, LIU Yifu, et al. Tree growth model and bark thickness model of three Quercus species based on trunk analysis [J]. Journal of Zhejiang A&F University, 2023, 40(3): 589 − 597. [41] 窦啸文, 吴登瑜, 张笑菁, 等. 天目山常绿阔叶林胸高断面积生长量影响因子研究[J]. 浙江农林大学学报, 2023, 40(5): 1063 − 1072. DOU Xiaowen, WU Dengyu, ZHANG Xiaojing, et al. Study on the factors affecting breast-height basal area increment of evergreenbroad-leaved forest in Mount Tianmu [J]. Journal of Zhejiang A&F University, 2023, 40(5): 1063 − 1072. [42] 李文超, 张秋良, 郝帅, 等. 大兴安岭温度梯度下兴安落叶松径向生长对气候的响应差异[J]. 内蒙古林业科技, 2023, 49(1): 1 − 8. LI Wenchao, ZHANG Qiuliang, HAO Shuai, et al. Response difference for radial growth of Larix gmelinii to climate factors under temperature gradient in the greater Xing'an mountains [J]. Journal of Inner Mongolia Forestry Science &Technology, 2023, 49(1): 1 − 8. [43] 刘士玲, 杨保国, 姚建峰, 等. 广西红椎树干径向生长研究[J]. 华南农业大学学报, 2020, 41(5): 82 − 90. LIU Shiling, YANG Baoguo, YAO Jianfeng, et al. Study on stem radial growth of Castanopsis hystrix in Guangxi [J]. Journal of South China Agricultural University, 2020, 41(5): 82 − 90. [44] 牛牧, 陈俊华, 周大松, 等. 川中丘陵区4种乡土阔叶树根系拓扑结构特征[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 125 − 132. NIU Mu, CHEN Junhua, ZHOU Dasong, et al. Topological characteristics of the root systems of four native broad-leaved trees in the central Sichuan hilly region [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(2): 125 − 132. [45] VAVRČÍK H, GRYC V, VICHROVÁ G. Xylem formation in young Norway spruce trees in Drahany highland, Czech Republic [J]. IAWA Journal, 2013, 34(3): 231 − 244. [46] BADER M K F, SCHERRER D, ZWEIFEL R, et al. Less pronounced drought responses in ring-porous than in diffuse-porous temperate tree species [J/OL]. Agricultural and Forest Meteorology, 2022, 327: 109184[2023-10-20]. doi: 10.1016/j.agrformet.2022.109184. [47] BRINKMANN N, EUGSTER W, ZWEIFEL R, et al. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying [J]. Tree Physiology, 2016, 36(12): 1508 − 1519. [48] TUMAJER J, SCHARNWEBER T, SMILJANIC M, et al. Limitation by vapour pressure deficit shapes different intra‐annual growth patterns of diffuse- and ring-porous temperate broad leaves [J]. New Phytologist, 2022, 233(6): 2429 − 2441. [49] WU Min, TIAN Yu, FAN Dayong, et al. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chinese Journal of Plant Ecology, 2022, 46(9): 1086 − 1097. [50] 陈宏基. 川南五种典型植物根系分布及其对输气管道3PE防腐层的影响研究[D]. 雅安: 四川农业大学, 2020. CHEN Hongji. Root Distribution of Five Typical Plants in South Sichuan and Their Influence on Gas Pipeline 3PE Coating [D]. Ya’an: Sichuan Agricultural University, 2020. [51] 王奕丹, 李亮, 刘琪璟, 等. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383 − 393. WANG Yidan, LI Liang, LIU Qijing, et al. Lifespan and morphological traits of absorptive fine roots across six typical tree species in subtropical China [J]. Chinese Journal of Plant Ecology, 2021, 45(4): 383 − 393. [52] 常云妮, 李宝银, 钟全林, 等. 3种功能型林木幼苗生物量分配及其与细根和叶片养分关系[J]. 生态学杂志, 2022, 41(11): 2090 − 2097. CHANG Yunni, LI Baoyin, ZHONG Quanlin, et al. Biomass allocation of three functional types of forest tree seedlings and their relationships with nutrients in fine roots and leaves [J]. Chinese Journal of Ecology, 2022, 41(11): 2090 − 2097. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240574