留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价

马佳燕 马嘉伟 柳丹 傅伟军 叶正钱

马佳燕, 马嘉伟, 柳丹, 傅伟军, 叶正钱. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报. doi: 10.11833/j.issn.20950756.20200309
引用本文: 马佳燕, 马嘉伟, 柳丹, 傅伟军, 叶正钱. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报. doi: 10.11833/j.issn.20950756.20200309
MA Jiayan, MA Jiawei, LIU Dan, FU Weijun, YE Zhengqian. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu plain[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.20950756.20200309
Citation: MA Jiayan, MA Jiawei, LIU Dan, FU Weijun, YE Zhengqian. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu plain[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.20950756.20200309

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价

doi: 10.11833/j.issn.20950756.20200309
基金项目: 浙江省重点研发计划项目(2018C03028)
详细信息
    作者简介: 马佳燕,从事土壤重金属污染评价及修复研究。E-mail: 1025679438@qq.com
    通信作者: 叶正钱,教授,博士,从事土壤肥力与植物营养研究。E-mail: yezhq@zafu.edu.cn
  • 中图分类号: S153;X53

Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu plain

  • 摘要:   目的  进一步了解杭嘉湖平原水稻Oryza sativa主产区嘉兴市稻田土壤重金属污染及水稻生产安全现状。  方法  于2018年选择嘉兴市典型水稻主产区域开展调查分析。在水稻收获期进行土壤和水稻协同采样,测定土壤和大米样品中镉、铅、铬和砷等4种重金属元素质量分数,采用单因子污染指数法和内梅罗综合污染指数法、潜在生态风险指数法及生态风险预警指数法等对水稻土重金属污染水平及污染风险进行评价。  结果  研究区域土壤镉、铅、铬和砷质量分数变幅分别为0.01~1.92、17.60~34.80、47.00~123.00、3.97~9.89 mg·kg−1,平均质量分数分别为0.36、25.78、72.73和7.55 mg·kg−1;土壤重金属镉质量分数超过水稻生产的土壤安全阈值(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)的样本比例占31.82%;4种重金属的潜在生态风险由强至弱依次为镉、砷、铅、铬,区域整体上表现为轻微潜在生态风险;部分土壤镉质量分数超标,但水稻籽粒镉质量分数均没有超标。  结论  研究区稻米各项指标均符合GB 2762−2017《食品中污染物限量》,土壤总体上处于安全水平。在今后的水稻生产管理中仍需加强动态监测,关注土壤镉形态转化和有效性的变化,充分保障水稻粮食生产安全。图1表8参29
  • 图  1  水稻土重金属质量分数分布箱线图

    Figure  1  Box plot of soil heavy metal content distribution in paddy soils

    表  1  土壤pH和有机质状况

    Table  1.   Soil pH and organic matter content

    项目pH有机质/(g·kg−1)项目pH有机质/(g·kg−1)
    最小值4.96 6.84标准差   0.7414.43
    最大值7.9960.97变异系数/%12.0639.91
    平均值6.1536.15
    下载: 导出CSV

    表  2  水稻土和稻米重金属质量分数

    Table  2.   Contents of heavy metals in paddy soils and rice grains

    序号土壤重金属/(mg·kg−1)稻米镉/
    (mg·kg−1)
    序号土壤重金属(mg·kg−1)稻米镉/
    (mg·kg−1)
    11.0728.0069.006.860.056120.1727.7068.007.470.024
    20.1425.6068.007.690.006130.0124.90123.00 7.300.029
    30.2223.8078.007.530.019140.1722.2065.006.950.045
    40.0919.9069.007.640.004150.1127.3069.007.630.061
    50.4517.6063.006.920.024160.1527.6073.007.980.026
    60.3027.9067.008.350.015170.0923.3059.005.890.005
    70.2729.4090.009.640.041180.5623.9061.006.560.030
    80.2429.1069.007.850.018190.0920.3073.007.860.028
    90.1734.2064.007.400.009200.3323.8098.008.190.025
    100.4734.8073.009.890.051210.1821.0047.003.970.049
    110.2924.1061.008.130.009221.9230.7093.008.490.062
    下载: 导出CSV

    表  3  水稻土重金属质量分数空间变异状况及超标率

    Table  3.   Variation of heavy metal contents and exceeding standard rate in paddy soils

    重金属重金属/(mg·kg−1)标准差变异系数/%超标率Ⅰ/%超标率Ⅱ/%
    最小值最大值平均值
    0.011.920.360.41120.1031.8222.73
    17.6034.8025.784.3016.7000
    47.00123.0072.7315.6621.5300
    3.979.897.551.1815.5600
      说明:超标率Ⅰ以水稻生产的安全阈值(GB/T 36869−2018)为参比值;超标率Ⅱ以风险筛选值(GB 15618−2018)为参比值。
    下载: 导出CSV

    表  4  土壤全量镉、有效态镉、稻米镉和土壤pH、有机质的相关性分析

    Table  4.   Correlation analysis of total soil Cd, available Cd, rice grain Cd, soil pH and SOM

    项目土壤全量镉土壤有效态镉稻米镉土壤pH有机质
    土壤全量镉1
    土壤有效态镉0.508*1
    稻米镉−0.0900.1381
    pH0.007−0.169−0.0131
    有机质−0.233−0.1070.296−0.3061
      说明:*表示在0.05水平相关
    下载: 导出CSV

    表  5  水稻土重金属污染指数

    Table  5.   Heavy metal pollution index of paddy soil

    统计指标单因子污染指数综合指数
    最大值  3.840.460.820.522.84
    最小值  0.040.090.240.200.28
    平均值  0.960.250.420.360.81
    标准差  0.840.100.120.080.57
    变异系数/%86.9240.1528.7221.6670.36
    下载: 导出CSV

    表  6  基于污染指数法重金属污染程度占比

    Table  6.   Proportion of heavy metal pollution based on pollution index method

    单因子指数污染等级各污染等级点位占比/%综合指数污染等级各污染等级
    点位占比/%
    P≤1清洁  68.18100100100  Pi≤0.7   安全  63.64
    1<P≤2轻度污染22.72 0 0 00.7< Pi≤1.0警戒  13.64
    2<P≤3中度污染 4.55 0 0 01.0< Pi≤2.0轻度污染18.18
    P>3重度污染 4.55 0 0 02.0< Pi≤3.0中度污染 4.54
    下载: 导出CSV

    表  7  水稻土重金属元素富集系数和地累积指数评价特征值统计

    Table  7.   Evaluation eigen value statistics of heavy metal element enrichment coefficient and geoaccumulation idex in paddy soil

    重金属EE≤11<E≤22<E≤55<E≤2020<E≤40
    变化范围平均值样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%
    0.10~9.862.81418.18731.82731.82418.1800
    0.60~2.131.23836.361359.091 4.5500 00
    0.84~2.401.33627.271568.181 4.5500 00
    0.87~2.131.41313.641881.821 4.5500 00
    重金属IgeoIgeo≤00<Igeo≤11<Igeo≤22<Igeo≤33<Igeo≤4
    变化范围平均值样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%样品数/个比率/%
    −4.51~3.07 −0.1112 54.55627.2729.0914.5514.55
    −1.37~−0.39−0.8422100.0000 00 00 00
    −1.31~0.08 −0.7121 95.451 4.5500 00 00
    −1.52~−0.20−0.6122100.0000 00 00 00
    下载: 导出CSV

    表  8  水稻土重金属潜在生态风险评价

    Table  8.   Potential ecological risk assessment of heavy metals in paddy soil

    统计指标潜在生态危害指数(Er)潜在生态风险
    指数(IR)
    土壤生态风险
    预警指数(IER)
    最大值  115.204.561.645.24121.360.73
    最小值  1.200.900.481.999.08−2.97
    平均值  28.832.470.843.5835.72−2.01
    标准差  25.060.990.240.7825.020.83
    变异系数/%86.9240.1528.7221.6670.01−41.15
    下载: 导出CSV
  • [1] 骆永明. 中国土壤环境污染态势及预防、控制和修复策略[J]. 环境污染与防治, 2009, 31(12): 27 − 31. doi:  10.3969/j.issn.1001-3865.2009.12.021

    LUO Yongming. Trends in soil environmental pollution and the prevention-controlling-remediation strategies in China [J]. Environ Poll Prev, 2009, 31(12): 27 − 31. doi:  10.3969/j.issn.1001-3865.2009.12.021
    [2] 任婧, 袁旭, 卞春梅, 等. 贵阳白云区工业园区周边水稻土重金属含量状况及风险评价[J]. 西南农业学报, 2015, 28(3): 233 − 238.

    REN Jing, YUAN Xu, BIAN Chunmei, et al. Risk assessment on heavy metal pollution of paddy soil around Baiyun industrial park, Guiyang [J]. Southwest China J Agric Sci, 2015, 28(3): 233 − 238.
    [3] ZHU Yuen, ZHAO Ye, SUN Ke, et al. Heavy metals in wheat grain and soil: assessment of the potential health risk for inhabitants in a sewage-irrigated area of Beijing, China [J]. Fresenius Environ Bull, 2011, 20(5): 1109 − 1116.
    [4] ALMASOUD F I, USMAN A R, AL-FARRAL A S. Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis [J]. Arabian J Geosci, 2015, 8(3): 1691 − 1703. doi:  10.1007/s12517-014-1298-x
    [5] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013, 20(2): 292 − 298.

    SONG Wei, CHEN Baiming, LIU Lin. Soil heavy metal pollution of cultivated land in China [J]. Res Soil Water Conserv, 2013, 20(2): 292 − 298.
    [6] 王振中, 张友梅, 邓继福, 等. 重金属在土壤生态系统中的富集及毒性效应[J]. 应用生态学报, 2006, 17(10): 1948 − 1952. doi:  10.3321/j.issn:1001-9332.2006.10.033

    WANG Zhenzhong, ZHANG Youmei, DENG Jifu, et al. Enrichment and toxicity effect of heavy metals in soil ecosystem [J]. Chin J Appl Ecol, 2006, 17(10): 1948 − 1952. doi:  10.3321/j.issn:1001-9332.2006.10.033
    [7] CHAI Yuan, GUO Jia, CHAI Sheli, et al. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, northeast China [J]. Chemosphere, 2015, 134: 67 − 75. doi:  10.1016/j.chemosphere.2015.04.008
    [8] ZHANG Chaosheng. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland [J]. Environ Poll, 2006, 142: 501 − 511. doi:  10.1016/j.envpol.2005.10.028
    [9] 钱力, 张超, 齐鹏, 等. 永康城市土壤重金属污染评价及来源分析[J]. 浙江农林大学学报, 2016, 33(3): 427 − 433. doi:  10.11833/j.issn.2095-0756.2016.03.008

    QIAN Li, ZHANG Chao, QI Peng, et al. Sourcing and evaluating heavy metal pollution in the urban topsoil of Yongkang City [J]. J Zhejiang A&F Univ, 2016, 33(3): 427 − 433. doi:  10.11833/j.issn.2095-0756.2016.03.008
    [10] 王宏. 东洞庭湖湿地土壤重金属的分布特征及风险评价[D]. 长沙: 湖南师范大学, 2012.

    WANG Hong. Distribution Characteristics and Risk Assessment of Heavy Metals in Wetland Soil of Dongting Lake[D]. Changsha: Hunan Normal University, 2012.
    [11] 秦鱼生, 喻华, 冯文强, 等. 成都平原北部水稻土重金属含量状况及其潜在生态风险评价[J]. 生态学报, 2013, 33(19): 6335 − 6344. doi:  10.5846/stxb201305201115

    QIN Yusheng, YU Hua, FENG Wengqiang, et al. Assessment on heavy metal pollution status in paddy soils in the northern Chengdu Plain and their potential ecological risk [J]. Acta Ecol Sin, 2013, 33(19): 6335 − 6344. doi:  10.5846/stxb201305201115
    [12] 赵庆令, 李清彩, 谢江坤, 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015, 34(1): 129 − 137.

    ZHAO Qingling, LI Qingcai, XIE Jiangkun, et al. Characteristics of soil heavy metal pollution and its ecological risk assessment in south Jining District using methods of enrichment factor and index of geoacummulation [J]. Rock Miner Anal, 2015, 34(1): 129 − 137.
    [13] SUN Yuebing, ZHOU Qixing, XIE Xiaokui, et al. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China [J]. J Hazardous Mater, 2010, 174(1/3): 455 − 462.
    [14] 赵科理, 刘杏梅, 徐建明. 浙江省水稻产地环境镉污染分布及其风险评价[J]. 土壤通报, 2009, 40(2): 192 − 197.

    ZHAO Keli, LIU Xingmei, XU Jianming. Pollution distribution and risk assessment of soil Cd in rice-production areas in Zhejiang Province [J]. Chin J Soil Sci, 2009, 40(2): 192 − 197.
    [15] 程街亮, 史舟, 朱有为, 等. 浙江省优势农产区土壤重金属分异特征及评价[J]. 水土保持学报, 2006, 20(1): 103 − 107. doi:  10.3321/j.issn:1009-2242.2006.01.025

    CHENG Jieliang, SHI Zhou, ZHU Youwei, et al. Differential characteristics and appraisal of heavy metals in agricultural soils of Zhejiang Province [J]. J Soil Water Conserv, 2006, 20(1): 103 − 107. doi:  10.3321/j.issn:1009-2242.2006.01.025
    [16] 董良潇. 浙江省农田土壤和农作物重金属污染评价[D]. 温州: 温州大学, 2017.

    DONG Liangxiao. Evaluation of Heavy Metal Pollution in Farmland Soil and Crops in Zhejiang Province[D]. Wenzhou: Wenzhou University, 2017.
    [17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [18] 李春芳, 王菲, 曹文涛, 等. 龙口市污水灌溉区农田重金属来源、空间分布及污染评价[J]. 环境科学, 2017, 38(3): 1018 − 1027.

    LI Chunfang, WANG Fei, CAO Wentao, et al. Source analysis, spatial distribution and pollution assessment of heavy metals insewage irrigation area farmland soil of Longkou City [J]. Environ Sci, 2017, 38(3): 1018 − 1027.
    [19] 陈京都, 戴其根, 许学宏, 等. 江苏省典型区农田土壤及小麦中重金属含量与评价[J]. 生态学报, 2012, 32(11): 3487 − 3496. doi:  10.5846/stxb201105080598

    CHEN Jingdu, DAI Qigen, XU Xuehong, et al. Heavy metal contents and evaluation of farmland soil and wheat in typical area of Jiangsu Province [J]. Acta Ecol Sin, 2012, 32(11): 3487 − 3496. doi:  10.5846/stxb201105080598
    [20] 李倩, 秦飞, 季宏兵, 等. 北京市密云水库上游金矿区土壤重金属含量、来源及污染评价[J]. 农业环境科学学报, 2013, 32(12): 2384 − 2394. doi:  10.11654/jaes.2013.12.011

    LI Qian, QIN Fei, JI Hongbing, et al. Contents, sources and contamination assessment of soil heavy metals in gold mine area of upstream part of Miyun Reservoir, Beijing, China [J]. J Agro-Environ Sci, 2013, 32(12): 2384 − 2394. doi:  10.11654/jaes.2013.12.011
    [21] BERGAMASCHI L, RIZZIO E, VALCUVIA M G, et al. Determination of trace elements and evaluation of their enrichment factors in Himalayan Lichens [J]. Environ Poll, 2002, 120(1): 137 − 144. doi:  10.1016/S0269-7491(02)00138-0
    [22] 汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报, 2007, 23(2): 81 − 88. doi:  10.3969/j.issn.1673-4831.2007.02.017

    WANG Qinghua, DONG Yanxiang, ZHOU Guohua, et al. Soil geochemical baseline and environmental background values of agricultural regions in Zhejiang Province [J]. J Ecol Rural Environ, 2007, 23(2): 81 − 88. doi:  10.3969/j.issn.1673-4831.2007.02.017
    [23] SHEN Feng, LIAO Renmei, ALI A, et al. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China [J]. Ecotoxicol Environ Saf, 2017, 139: 254 − 262. doi:  10.1016/j.ecoenv.2017.01.044
    [24] ISLAM M S, AHMED M K, HABIBULLAH-AL-MAMUN M, et al. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh [J]. Sci Total Environ, 2014, 512/513: 94 − 102.
    [25] 张云芸, 马瑾, 魏海英, 等. 浙江省典型农田土壤重金属污染及生态风险评价[J]. 生态环境学报, 2019, 28(6): 1233 − 1241.

    ZHANG Yunyun, MA Jin, WEI Haiying, et al. Heavy metals in typical farmland soils of Zhejiang Province: levels, sources and ecological risks [J]. Ecol Environ Sci, 2019, 28(6): 1233 − 1241.
    [26] 王美青, 章明奎. 杭州市城郊土壤重金属含量和形态的研究[J]. 环境科学学报, 2002, 22(5): 603 − 608. doi:  10.3321/j.issn:0253-2468.2002.05.012

    WANG Meiqign, ZHANG Mingkui. Concentrations and chemical associations of heavy metals in urban and suburban soils of the Hangzhou City, Zhejiang Province [J]. Acta Sci Circumstant, 2002, 22(5): 603 − 608. doi:  10.3321/j.issn:0253-2468.2002.05.012
    [27] 李永涛, 刘科学, 张池, 等. 广东大宝山地区重金属污染水田土壤的Cu、Pb、Zn、Cd全量与 DTPA浸提态含量的相互关系研究[J]. 农业环境科学学报, 2004, 23(6): 1110 − 1114. doi:  10.3321/j.issn:1672-2043.2004.06.018

    LI Yongtao, LIU Kexue, ZHANG Chi, et al. Relationships between total and DTPA extractable contents of Cu, Pb, Zn, Cd in trace metal-contaminated paddy soils of Dabaoshan, Guangdong [J]. J Agro-Environ Sci, 2004, 23(6): 1110 − 1114. doi:  10.3321/j.issn:1672-2043.2004.06.018
    [28] ZENG Fanrong, MAO Ying, CHENG Wangda, et al. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice [J]. Environ Poll, 2008, 153(2): 309 − 314. doi:  10.1016/j.envpol.2007.08.022
    [29] 程旺大, 张国平, 姚海根, 等. 晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性[J]. 作物学报, 2006, 32(4): 572 − 579.

    CHENG Wangda, ZHANG Guoping, YAO Haigen, et al. Genotypic and environmental variation and their stability of As, Cr, Cd, Ni and Pb concentrations in the grains of Japonica rice [J]. Acta Agromomica Sin, 2006, 32(4): 572 − 579.
  • [1] 付勇, 裴建川, 李梅, 王鹏程, 王洁洁.  多壁碳纳米管和重金属镉的细菌毒性及影响机制 . 浙江农林大学学报, 2020, 37(2): 319-324. doi: 10.11833/j.issn.2095-0756.2020.02.017
    [2] 张延平, 陈振超, 汤富彬, 任传义, 倪张林, 屈明华.  浙、川、湘毛竹主产区冬笋重金属质量分数及健康风险评估 . 浙江农林大学学报, 2018, 35(4): 635-641. doi: 10.11833/j.issn.2095-0756.2018.04.008
    [3] 徐炜杰, 郭佳, 赵敏, 王任远, 侯淑贞, 杨芸, 钟斌, 郭华, 刘晨, 沈颖, 柳丹.  重金属污染土壤植物根系分泌物研究进展 . 浙江农林大学学报, 2017, 34(6): 1137-1148. doi: 10.11833/j.issn.2095-0756.2017.06.023
    [4] 张素, 梁鹏, 吴胜春, 张进, 曹志洪.  节能灯产地竹林土壤重金属污染的时空分布特征 . 浙江农林大学学报, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [5] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [6] 梁立成, 余树全, 张超, 钱力, 齐鹏.  浙江省永康市城区土壤重金属空间分布及潜在生态风险评价 . 浙江农林大学学报, 2017, 34(6): 972-982. doi: 10.11833/j.issn.2095-0756.2017.06.002
    [7] 许佳霖, 武帅, 梁鹏, 张进, 吴胜春.  高虹镇稻米中重金属污染状况及健康风险评价 . 浙江农林大学学报, 2017, 34(6): 983-990. doi: 10.11833/j.issn.2095-0756.2017.06.003
    [8] 钟斌, 陈俊任, 彭丹莉, 刘晨, 郭华, 吴家森, 叶正钱, 柳丹.  速生林木对重金属污染土壤植物修复技术研究进展 . 浙江农林大学学报, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [9] 刘伸伸, 张震, 何金铃, 马友华, 胡宏祥, 张春格.  水生植物对氮磷及重金属污染水体的净化作用 . 浙江农林大学学报, 2016, 33(5): 910-919. doi: 10.11833/j.issn.2095-0756.2016.05.025
    [10] 钱力, 张超, 齐鹏, 余树全.  永康城市土壤重金属污染评价及来源分析 . 浙江农林大学学报, 2016, 33(3): 427-433. doi: 10.11833/j.issn.2095-0756.2016.03.008
    [11] 张伟, 陈蜀蓉, 侯平.  浦阳江流域疏浚前后底泥重金属污染及其潜在生态风险评价 . 浙江农林大学学报, 2016, 33(1): 33-41. doi: 10.11833/j.issn.2095-0756.2016.01.005
    [12] 孙颖, 王旭东, 王莺, 泮吴洁, 陆荣杰, 阮忠强, 屠雯雯.  硅磷配施对水稻土中速效养分和水稻产量的影响 . 浙江农林大学学报, 2015, 32(4): 551-556. doi: 10.11833/j.issn.2095-0756.2015.04.009
    [13] 孙涛, 陆扣萍, 王海龙.  不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展 . 浙江农林大学学报, 2015, 32(1): 140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
    [14] 胡杨勇, 马嘉伟, 叶正钱, 柳丹, 赵科理.  东南景天Sedum alfredii修复重金属污染土壤的研究进展 . 浙江农林大学学报, 2014, 31(1): 136-144. doi: 10.11833/j.issn.2095-0756.2014.01.021
    [15] 宋哲岳, 宋照亮, 单胜道.  施猪粪对水稻土有机碳剖面分布的影响 . 浙江农林大学学报, 2013, 30(2): 157-164. doi: 10.11833/j.issn.2095-0756.2013.02.001
    [16] 刘晓玲, 宋照亮, 单胜道, 叶正钱.  畜禽粪肥施加对嘉兴水稻土总磷、有机磷和有效磷分布的影响 . 浙江农林大学学报, 2011, 28(1): 33-39. doi: 10.11833/j.issn.2095-0756.2011.01.006
    [17] 张圆圆, 窦春英, 姚芳, 叶正钱.  氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响 . 浙江农林大学学报, 2010, 27(6): 831-838. doi: 10.11833/j.issn.2095-0756.2010.06.005
    [18] 苏秀, 朱曦.  鸟击防范研究 . 浙江农林大学学报, 2009, 26(6): 903-908.
    [19] 李冬林, 金雅琴, 张纪林, 阮宏华.  秦淮河河岸带典型区域土壤重金属污染分析与评价 . 浙江农林大学学报, 2008, 25(2): 228-234.
    [20] 高映.  绿色壁垒与中国农产品贸易对策 . 浙江农林大学学报, 2006, 23(1): 98-102.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.20950756.20200309

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/1/1

计量
  • 文章访问数:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-10
  • 修回日期:  2020-11-18

杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价

doi: 10.11833/j.issn.20950756.20200309
    基金项目:  浙江省重点研发计划项目(2018C03028)
    作者简介:

    马佳燕,从事土壤重金属污染评价及修复研究。E-mail: 1025679438@qq.com

    通信作者: 叶正钱,教授,博士,从事土壤肥力与植物营养研究。E-mail: yezhq@zafu.edu.cn
  • 中图分类号: S153;X53

摘要:   目的  进一步了解杭嘉湖平原水稻Oryza sativa主产区嘉兴市稻田土壤重金属污染及水稻生产安全现状。  方法  于2018年选择嘉兴市典型水稻主产区域开展调查分析。在水稻收获期进行土壤和水稻协同采样,测定土壤和大米样品中镉、铅、铬和砷等4种重金属元素质量分数,采用单因子污染指数法和内梅罗综合污染指数法、潜在生态风险指数法及生态风险预警指数法等对水稻土重金属污染水平及污染风险进行评价。  结果  研究区域土壤镉、铅、铬和砷质量分数变幅分别为0.01~1.92、17.60~34.80、47.00~123.00、3.97~9.89 mg·kg−1,平均质量分数分别为0.36、25.78、72.73和7.55 mg·kg−1;土壤重金属镉质量分数超过水稻生产的土壤安全阈值(GB/T 36869−2018《水稻生产的土壤镉、铅、铬、汞、砷安全阈值》)的样本比例占31.82%;4种重金属的潜在生态风险由强至弱依次为镉、砷、铅、铬,区域整体上表现为轻微潜在生态风险;部分土壤镉质量分数超标,但水稻籽粒镉质量分数均没有超标。  结论  研究区稻米各项指标均符合GB 2762−2017《食品中污染物限量》,土壤总体上处于安全水平。在今后的水稻生产管理中仍需加强动态监测,关注土壤镉形态转化和有效性的变化,充分保障水稻粮食生产安全。图1表8参29

English Abstract

马佳燕, 马嘉伟, 柳丹, 傅伟军, 叶正钱. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报. doi: 10.11833/j.issn.20950756.20200309
引用本文: 马佳燕, 马嘉伟, 柳丹, 傅伟军, 叶正钱. 杭嘉湖平原水稻主产区土壤重金属状况调查及风险评价[J]. 浙江农林大学学报. doi: 10.11833/j.issn.20950756.20200309
MA Jiayan, MA Jiawei, LIU Dan, FU Weijun, YE Zhengqian. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu plain[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.20950756.20200309
Citation: MA Jiayan, MA Jiawei, LIU Dan, FU Weijun, YE Zhengqian. Survey and risk assessment of soil heavy metals in the main rice producing areas in Hangjiahu plain[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.20950756.20200309

返回顶部

目录

    /

    返回文章
    返回