-
随着城镇化进程加快,以细颗粒物(PM2.5)为首的大气颗粒物污染越来越严重。大气环境的质量评价和污染防治已成为大气污染研究领域的主要方向之一[1-2]。PM2.5会通过呼吸进入肺部,其粒径小[3]、比表面积大[4],同时携带大量重金属元素和其他有毒物质[5-7]。长期生活在严重污染的大气环境下,人们患心血管、呼吸系统等疾病的风险明显增加[8-9],身体健康受到严重危害[10]。研究表明:铬、钴、镍和砷等易引发细胞癌变[11];过量的锌则会引发贫血和食欲下降[12];镉容易造成细胞癌变和骨质疏松[13];铅对儿童和妊娠妇女的影响极大[14]。绿地在生态系统中具有自净功能,在调节生态平衡、改善环境质量和保护人体健康等方面发挥着积极作用[15]。目前,有关城市绿地与大气颗粒物关系的研究集中在2个方面:一是植物枝干和叶片的滞尘效应[16]。如李超群等[17]研究表明:5种地被植物叶片的滞尘量与叶表面微观结构有关,被毛或边缘有齿的叶片滞尘效果较好。二是植物群落对大气颗粒物的消减作用[18]。如刘宇等[19]发现:江苏省宿迁市不同植物群落类型绿地内PM2.5浓度由大到小依次为草坪、篱草、大阔叶乔草、乔灌草、针叶乔草和小阔叶乔草。近年来,有学者采用ArcGIS对大气中重金属元素含量进行空间分析,发现铜、锌和镉的空间分布特征较为相似,高值出现在车流量大的区域[20]。于瑞莲等[21]分析了福建省泉州市不同功能区大气降尘中重金属含量,发现重金属的生态危害程度从大到小依次为工业区、商业区、交通区、居民区、农业区。以上研究大多集中在城市功能区,而公园绿地、附属绿地等城市绿地内的重金属分布及污染研究鲜有报道。本研究选取杭州市临安区4种城市绿地作为研究对象,分析绿地内PM2.5中重金属的时空变化规律及其影响因素,探究重金属来源,为城市绿地的科学规划和大气污染防治提供参考。
-
杭州市临安区地处浙西中低山丘陵区,呈东西狭长形地貌,境内多高山[22]。属季风型气候,四季分明,温暖湿润,光照充足,雨量充沛。年平均气温16.4 ℃,年平均日照时数1 837.9 h,年平均降水量1 613.9 mm。植被类型为亚热带常绿阔叶林,素有“大树华盖闻九州”之誉的天目山位于临安境内。近年来,随着工业、运输业的快速发展,大气污染问题愈发突出[23-24]。
根据CJJ/T 85−2017《城市绿地分类标准》[25],选取居住绿地、商业绿地、广场绿地和公共绿地等4种绿地作为研究对象,分别位于春天小区、衣锦商业街、五舟广场和浙江农林大学东湖校区。居住绿地、商业绿地和公共绿地植物配植均为乔木-灌木-地被3层结构,其植物种类、郁闭度、种植密度及成熟度等群落结构特征基本一致。春天小区坐落在玲珑山脚,小区四周被城市主干道围合,交通便捷,有3个出入口,绿地率为42.5%。样地位于小区的3号楼与4号楼之间,四周均由高层建筑围合,私密性高,面积约1 500 m2。乔木层植物主要有杜英Elaeocarpus decipiens、乐昌含笑Michelia chapensis、桂花Osmanthus fragrans,灌木层植物有海桐Pittosporum tobira、红花檵木Loropetalum chinense var. rubrum,地被植物有麦冬Ophiopogon japonicus等。衣锦商业街位于临安区中心位置,是重要的商业街区之一,人流及车流量大。样地选择在紧邻浙江农林大学衣锦校区南门处的公共区域,面积约1 800 m2。乔木层植物主要为樟树Cinnamomum camphora、紫楠Phoebe sheareri、荷花玉兰Magnolia grandiflora,灌木层有石楠Photinia serrulata、荚蒾Viburnum dilatatum,地被植物为麦冬。五舟广场位于临安区东北部,是重要的市民活动广场,日常人流量较大。广场以硬质铺装为主,少量点缀紫薇Lagerstroemia indica和杨梅Myrica rubra,四周空旷,总面积约4 500 m2。公共绿地选择在浙江农林大学东湖校区的学院楼4号楼南侧,为师生活动、交流空间,面积约1 600 m2。乔木层植物主要有冬青Ilex chinensis、玉兰Magnolia denudate、鹅掌楸Liriodendron chinense,灌木层为山茶Camellia japonica,地被植物为麦冬。
-
在4个绿地的近中心位置,距离地面1.5 m处各布置1台智能中流量TSP采样器(KC-120H),并安装QMA石英纤维滤纸同步采集空气中的PM2.5。因持续低温、降雪及梅雨季降雨等影响,采样时间选择2017年3月、4月(春季)和2月、12月(冬季),每月分别于月初、月中和月末各1 d采样。每天连续采样8.5 h(8:00−16:30)。要求试验前1周内无降雨、大风等情况发生,采样当天天气晴朗、无风或微风。采样前用锡箔纸包裹滤纸,置于马弗炉(设定温度450 ℃)中灼烧4 h,除去滤纸上原有的有机物及杂质,之后将滤纸静置于恒温恒湿箱(Premium ICH,设定温度25 ℃、相对湿度50%)内48 h。取出后使用电子天平(SI-234,精度0.1 mg)称量和记录滤纸质量,重复称量3次,取平均值作为滤纸采样前的质量。采样完成后将滤纸再次在恒温恒湿条件下处理并称量,记录滤纸质量,方法及步骤同采样前。滤纸前后称得差值即为该时段内采集的PM2.5质量。将采样后的滤纸放置在特氟隆容器中,依次加入去离子水、浓硝酸、氢氟酸和高氯酸消解。通过电感耦合等离子体质谱仪(Elan 9000)检测滤纸上镁、铝、钾、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、砷、镉、锑和铅等17种元素及各元素质量浓度。为确保试验结果的有效性,同步检测空白滤纸上的元素,结果表明空白滤纸上的各元素质量浓度均低于检出限值,因此检测结果有效。
-
富集因子(enrichment factor,FE)是用以定量评价污染程度与污染来源的重要指标,以满足一定条件的元素作为参考元素,以样品中污染元素质量分数与参考元素质量分数的比值与背景区中两者质量分数的比率[26]来表示。公式为:
$${F_{\rm{E}}} = \frac{{{{\left( {{C_{\rm{i}}}/{C_{\rm{R}}}} \right)}_{\text{样品}}}}}{{{{\left( {{C_{\rm{i}}}/{C_{\rm{R}}}} \right)}_{\text{背景}}}}}\text{。}$$ 其中:Ci和CR分别表示污染元素i和参考元素R的质量浓度。铝是常用的参考元素,杭州市锰、锌、钡、铬、铅、镍、铜、钴、砷和镉的土壤背景值分别为346.00、62.10、62.00、49.70、22.40、20.90、15.00、11.60、7.50和0.06 mg·kg−1。当富集因子值小于10,表明元素是非富集的,主要为自然污染;当富集因子值大于10,表明元素已富集,主要为人为污染。
主成分分析是通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分[27]。大气污染物来源广泛,通常多种污染源会存在一定的相关性,找出有一定相关性的污染物重新组合成一个新成分,在此基础上用Spearman相关系数分析污染源的相关性,可以进一步明确污染物的来源。
-
采用Excel 2010统计和整理数据、SPSS 22.0进行Spearman相关性分析、Origin 8.0作图。
-
由图1可知:4种绿地内PM2.5质量浓度冬季平均值为(102.68±9.43) μg·m−3,春季为(48.34±5.13) μg·m−3。2个季节PM2.5质量浓度均超过GB 3095−2012《环境空气质量标准》[28]规定的二级质量浓度限值(35 μg·m−3)和欧洲空气质量准则[29]规定的质量浓度日均值(25 μg·m−3)。在空间上,位于城市道路旁边的商业绿地,春、冬季PM2.5质量浓度平均值最高,为(84.12±6.15) μg·m−3,居住绿地[(76.41±7.30) μg·m−3]和广场绿地[(75.55±8.20) μg·m−3]次之,公共绿地[(65.98±7.40) μg·m−3]最低。
-
春、冬季不同绿地内PM2.5中铬、锰、铜、锌、砷和铅等6种重金属平均质量浓度占所测元素总质量浓度的17.95%,而钒、钴、镍和镉等4种重金属仅占0.56%。10种重金属平均质量浓度为(2.83±0.52)~(429.69±22.59) ng·m−3,其中:锌和铅较高,分别为(429.69±22.59)和(278.23±18.29) ng·m−3,分别占元素总质量浓度的8.65%和5.60%;钒和钴较低,仅为(6.22±0.59)和(2.83±0.52) ng·m−3,分别占元素总质量浓度的0.13%和0.06%(图2和图3)。
由图4可知:4种绿地内重金属总质量浓度平均值不同,冬季为(950.13±90.15) ng·m−3,春季为(843.55±80.70) ng·m−3。春季不同重金属质量浓度为(2.10±0.60)~(459.30±43.00) ng·m−3,商业绿地内锌和铅较高,分别为(459.30±43.00)和(259.70±23.00) ng·m−3,公共绿地内钴最低,仅为(2.10±0.60) ng·m−3;冬季不同重金属质量浓度为(2.85±0.80)~(458.98±40.00) ng·m−3,与春季相似,商业绿地内锌[(458.98±40.00) ng·m−3]和铅[(361.30±35.00) ng·m−3]较高,公共绿地内钴[(2.85±0.80) ng·m−3]最低。4种绿地内,钒、锰、钴、镍、铜、砷、镉和铅的质量浓度均表现为冬季大于春季,与PM2.5质量浓度的季节变化趋势一致,锰、铜、砷和铅季节差异显著(P<0.05),钒、钴、镍和镉的季节差异不显著(P>0.05)。此外,铬和锌的质量浓度季节差异亦不显著(P>0.05)。
图 4 春、冬季绿地内PM2.5中重金属质量浓度
Figure 4. Heavy metal concentrations in PM2.5 in green spaces in spring and winter
在空间上,春、冬季重金属总质量浓度平均值从大到小依次为商业绿地[(1 023.18±94.10) ng·m−3]、居住绿地[(942.20±89.20) ng·m−3]、广场绿地[(861.85±84.05) ng·m−3]、公共绿地[(760.18±80.48) ng·m−3]。10种重金属质量浓度最高值均出现在商业绿地内,最低值均在公共绿地内,其中:锌最高,为(459.14±38.00) ng·m−3;钴最低,仅为(2.48±0.60) ng·m−3。另外,居住绿地和广场绿地内锌质量浓度均最高,分别为(426.94±40.00)和(403.00±38.00) ng·m−3;钴均最低,分别为(3.07±0.80)和(2.65±0.65) ng·m−3;重金属质量浓度从大到小依次均为锌、铅、锰、铬、砷、镉、镍、钒、钴(除铜以外,图5)。
-
富集因子值反映了重金属元素在大气颗粒物中的富集程度,可分析自然来源和人为来源对大气污染的相对贡献[26]。如图6所示:春、冬季绿地内重金属元素的富集因子平均值从大到小依次为镉、铅、锌、砷、铜、铬、镍、钴、锰、钒。由于天气条件和污染排放源不同,钒、锰、钴、镍、铜、砷、镉和铅的富集因子值均呈现为冬季大于春季。钒、锰和钴的富集因子值小于10,表明这3种元素来自自然污染;铬、镍、铜、锌、砷、镉和铅大于10,表明这7种元素来自人为污染。
图 6 不同绿地内PM2.5中重金属元素的富集因子
Figure 6. Enrichment factors of heavy metals in PM2.5 in different green spaces
采用主成分分析法进一步明确绿地内PM2.5中重金属的来源,结果见表1和表2。由表1可知:主成分1的贡献率达63.43%,载荷较高的为铬、锰、铜和锌。研究认为:铬是钢铁冶炼的标志性元素[30],锰为地壳源,铜和锌主要来自机动车尾气排放和轮胎磨损[6, 31]。绿地内铬的富集因子值为24.51~31.10,且与锰、铜和锌呈极显著相关(P<0.01,表2)。主成分1是自然源、道路扬尘、机动车尾气和工业排放组成的复合源。主成分2的贡献率为13.17%,载荷较高的为钒、砷、镉和铅。钒的富集因子值小于10,表明其为自然源,镉与电镀镀种和工艺有很大关系[32],砷和铅为燃煤排放。同时,铅是机动车尾气排放的标志性元素[33]。随着中国全面进入无铅化汽油时代,机动车尾气排放已不再是铅的主要来源[34],因此,砷和铅主要来自燃煤污染,工业排放对主成分2的贡献较大。主成分3的贡献率为8.30%,载荷较高的为镍和锌,镍和锌主要来自机动车尾气和燃油[35],所以主成分3为交通污染源。综上所述,绿地内钒为自然源;铬、锰、铜和锌为自然源、道路扬尘、机动车尾气和工业排放的复合源;砷、镉和铅来自工业源;镍和锌为交通源。
表 1 PM2.5中重金属元素在前3个主成分中的因子荷载
Table 1. Factor loading of heavy metals in PM2.5 in the first three principal components
元素 旋转后主成分因子载荷 元素 旋转后主成分因子载荷 主成分1 主成分2 主成分3 主成分1 主成分2 主成分3 钒 0.193 0.821 0.142 锌 0.873 0.267 0.804 铬 0.915 0.197 0.110 砷 0.478 0.669 0.322 锰 0.711 0.503 0.305 镉 0.271 0.762 −0.507 钴 0.581 0.507 0.512 铅 0.445 0.732 0.414 镍 0.272 0.130 0.896 贡献率/% 63.430 13.170 8.300 铜 0.798 0.327 0.294 累积贡献率/% 63.430 76.600 84.900 表 2 绿地内PM2.5中重金属元素的相关性分析
Table 2. Correlation analysis of heavy metals in PM2.5 in green spaces
钒 铬 锰 钴 镍 铜 锌 砷 镉 铅 钒 1 铬 0.400** 1 锰 0.593** 0.795** 1 钴 0.601** 0.718** 0.769** 1 镍 0.328* 0.366* 0.507** 0.647** 1 铜 0.434** 0.758** 0.795** 0.700** 0.546** 1 锌 0.481** 0.791** 0.726** 0.706** 0.379** 0.777** 1 砷 0.515** 0.602** 0.780** 0.751** 0.431** 0.699** 0.550** 1 镉 0.551** 0.326* 0.390** 0.278 0.206 0.350* 0.391** 0.455** 1 铅 0.625** 0.562** 0.812** 0.841** 0.533** 0.736** 0.594** 0.907** 0.463** 1 说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关 -
4种绿地内重金属总质量浓度平均值与PM2.5质量浓度的季节变化趋势一致,均表现为冬季大于春季。临安地区冬季寒冷,近地层大气稳定,远距离输送的污染物不易扩散,加之植物进入休眠期,滞尘能力下降,因此冬季大气污染较重。春季,随着天气回暖,植物生长迅速,对颗粒物的滞留和吸附能力增强,这对改善空气质量起到积极作用。研究[36]表明:PM2.5质量浓度日变化呈现“早晚高、中午低”的现象,峰值出现在8:00和18:00。绿地内钒、锰、钴、镍、铜、砷、镉和铅的质量浓度均为冬季大于春季,铬和锌的季节差异不显著。雷文凯等[37]研究表明:保定市PM2.5及其重金属质量浓度为秋冬季大于春夏季,这与本研究结果一致。在空间上,由于机动车尾气排放和其他人为活动的影响,春、冬季重金属总质量浓度平均值从大到小为商业绿地[(1 023.18±94.10) ng·m−3]、居住绿地[(942.20±89.20) ng·m−3]、广场绿地[(861.85±84.05 ng·m−3]、公共绿地[(760.18±80.48) ng·m−3]。不同功能区内重金属质量浓度差异较大,生态危害程度从大到小为商业区、居民区、农业区[21]。本研究中10种重金属质量浓度最高值均出现在商业绿地内,与其所处的地理位置有很大关系。商业绿地周边人流、车流量大,早晚高峰明显,道路车辆的增加,导致排放的大气颗粒物浓度升高,其次是早晚温度低、空气湿度大,不利于大气的输送和扩散[36]。田春辉等[38]研究也证实:商业区内的钛、钒、镍和钡污染较其他区域严重。本研究表明:绿地内的重金属主要来自复合源(自然源、道路扬尘、汽车尾气和工业污染)、以燃煤为主的工业源和交通源等。杨怀金等[35]研究发现:成都西南郊区PM2.5中重金属主要来自交通源、工业尘源和生物质燃烧源,而杭州西湖景区PM2.5中重金属主要来自人为污染,其中,机动车尾气和交通的二次扬尘贡献率较高[39]。周雪明等[40]研究得出:北京大气中少量重金属污染为外地排放的一次污染在传输过程中形成的二次污染,说明重金属受气象因素的影响较大,并且具有不稳定性。绿地内镉质量浓度较低,而富集因子最高,表明这种元素存在强烈的人为富集,和人为排放有很大关系,这与TIAN等[41]的观点相似。城市绿地能有效滞留和吸附大气颗粒物。合理增加绿地面积,可有效减轻城市重金属污染,同时,减少工业污染排放,在商业绿地周边控制车流量、推广新能源汽车也能显著降低重金属质量浓度。今后应增加绿地类型和数量开展研究,为改善城市空气质量提供更科学的依据。
Pollution characteristics of heavy metals in PM2.5 in four kinds of green space in Lin’an District of Hangzhou City
-
摘要:
目的 分析城市绿地内细颗粒物(PM2.5)中重金属质量浓度的时空变化规律及其影响因素,可为科学规划城市绿地、改善人居环境质量提供依据。 方法 在杭州市临安区选取居住绿地、商业绿地、广场绿地和公共绿地等4种类型绿地作为研究对象,采用智能中流量TSP采样器采集空气中的PM2.5,通过电感耦合等离子体质谱仪(ICP-MS)检测样品中重金属的组成及质量浓度,分析其来源。 结果 4种绿地内重金属总质量浓度平均值为冬季[(950.13±90.15) ng·m−3]大于春季[(843.55±80.70) ng·m−3],春、冬季重金属总质量浓度平均值从大到小依次为商业绿地[(1 023.18±94.10) ng·m−3]、居住绿地[(942.20±89.20) ng·m−3]、广场绿地[(861.85±84.05) ng·m−3]、公共绿地[(760.18±80.48) ng·m−3]。绿地内的重金属主要来自复合源(自然源、道路扬尘、汽车尾气和工业污染)、以燃煤为主的工业源和交通源等。 结论 合理增加绿地面积,可有效减轻城市重金属污染,在商业绿地周边控制车流量、推广新能源汽车能显著降低重金属质量浓度。图6表2参41 -
关键词:
- 城市绿地 /
- 细颗粒物(PM2.5) /
- 重金属 /
- 时空变化 /
- 污染源
Abstract:Objective This study aims to analyze the spatio-temporal variation of heavy metal concentration in PM2.5 in urban green space and probe into its influencing factors, so as to provide reference for scientific planning of urban green space and improvement of the quality of human settlement environment. Method Four kinds of green space in Lin’an District of Hangzhou were taken as the research objects, including residential green space, commercial green space, square green space and public green space. The intelligent medium volume TSP sampler was used to collect the airborne PM2.5. The component and mass concentration of heavy metals in the samples were detected by the inductively coupled plasma mass spectrometer (ICP-MS), and their sources were analyzed. Result The average concentrations of heavy metals in four kinds of green space were higher in winter [(950.13±90.15) ng·m−3] than those in spring [(843.55±80.70) ng·m−3]. The average concentrations of heavy metals ranging from large to small in these two seasons were commercial green space [(1 023.18±94.10) ng·m−3], residential green space [(942.20±89.20) ng·m−3], square green space [(861.85±84.05) ng·m−3] and public green space [(760.18±80.48) ng·m−3]. The heavy metals in green space mainly came from complex pollution sources (natural sources, road dust, vehicle exhaust and industrial pollution), coal-based industrial sources and traffic sources, etc. Conclusion Reasonable increase of green space area can effectively reduce the heavy metal pollution in cities. Controlling traffic flow around commercial green space and promoting new energy vehicles can significantly lower the heavy metal concentration. [Ch, 6 fig. 2 tab. 41 ref.] -
Key words:
- urban green space /
- PM2.5 /
- heavy metals /
- spatio-temporal variation /
- pollution sources
-
第9次全国森林资源清查数据显示:全国森林覆盖率为22.96%,森林面积达到2.2亿hm2,森林蓄积量超过175.6亿m3[1]。大部分森林碳以活生物量和土壤有机质形式存在,约占生态系统碳密度的89%[2],因此,森林及其土壤碳库在调节全球碳平衡的过程中起着至关重要的作用。基于此,研究森林生物量和碳密度的分配特征及其主要影响因素成为了国内外学者关注的热点问题[3]。
造林年限是决定森林碳密度的重要因素[4]。随着造林年限的增加,森林植被组成和群落结构随之产生变化,进而通过改变林分密度、凋落物量、土壤养分等来影响森林碳库[5]。有研究表明:生物量碳密度随造林年限显著增加,但土壤有机碳(SOC)密度随造林年限的变化存在争议[6−8]。此外,造林年限与林分碳密度之间存在显著正相关性,在森林(包括乔木层、灌木层、草本层和土壤)碳分配中发挥着重要作用[9−11]。土壤有机碳库是陆地生态系统最大的碳库,其碳储量超过了大气和植被中碳储量的总和,对于维持碳平衡[12]至关重要。同时,土壤有机碳是土壤质量、土壤肥力、土壤持水能力和土壤生产力评价[13−14]的重要指标,可直接影响森林的生物量及其固碳潜力[9−11]。相反陆地生态系统的组成、结构和功能也会影响土壤碳库[15],其中造林年限通过改变林分结构,进一步影响土壤养分分配格局。土壤碳库的微小变化都会影响土壤性质、全球碳循环和气候变化[16−17],因此准确估算区域碳分配和碳密度有利于更好地理解森林碳库。
人工林在减缓温室效应和应对气候变化中发挥着重要作用[18]。在中国,马尾松Pinus massoniana因生长迅速且适应性强,常常作为先锋树种被广泛用于植树造林[19]。多时段、分批量地种植马尾松会产生不同龄级的人工林,对后续有效管理马尾松林造成阻碍,但同时也为研究不同造林年限马尾松林碳密度变化规律提供条件。量化马尾松人工林碳密度的变异性和分配模式可以更好地预测未来森林固碳能力[20]。目前还缺乏关于马尾松人工林在不同造林年限下土壤、凋落物和植被碳密度的差异研究。本研究选取造林年限为8、12、22、38 a的马尾松林地为研究对象,系统研究影响土壤和植被之间不同碳分配特征的因素,以期为马尾松人工林系统优化和森林碳汇潜力提供科学依据。
1. 材料与方法
1.1 研究区概况
研究区位于浙江省杭州市淳安县千岛湖镇姥山林场(29°33′30″N,119°02′55″E)。该研究区属于亚热带季风气候区,总体呈现夏季高温多雨,冬季寒冷少雨的特征。年平均气温为17.1 ℃,≥10 ℃的年积温为5 410.0 ℃,年平均日照时数为1 951.0 h,年降水量为1 430.0 mm。平均海拔为150 m,坡度为20°~30°。土壤类型为黄红壤亚类。本研究选择姥山林场中,造林年限分别为8、12、22、38 a的马尾松林。这些样地最初种植密度相同,后续差异来源于马尾松在生长过程中的自然生长和死亡。样地基本概况见表1。
表 1 样地基本概况Table 1 General situation of the sampling plots样地代号 造林年限/a 海拔/m 坡度/(°) 坡向 平均胸径/cm 平均树高/m 密度/(株·hm−2) 2016-1 8 146 10.4 西北 13.3 12.6 1 800 2016-2 8 145 0.5 北坡 14.8 13.5 1 600 2016-3 8 141 16.5 北坡 14.3 13.6 1 700 2012-1 12 139 4.3 东南 14.5 14.8 2 400 2012-2 12 158 2.6 东南 12.0 15.6 2 500 2012-3 12 148 14.7 东南 13.5 9.8 2 200 2002-1 22 148 6.6 西南 19.2 30.9 2 300 2002-2 22 141 11.3 西北 25.2 23.9 2 000 2002-3 22 129 0.5 西北 29.9 25.4 1 900 1986-1 38 139 7.1 东南 33.9 29.0 1 800 1986-2 38 144 6.8 西北 26.5 28.6 1 900 1986-3 38 150 6.1 东北 26.1 23.8 1 800 1.2 试验设计
采用“空间替代时间”的方法[21],选取该区域地形条件相似的4个马尾松人工林造林年限组:幼龄林(8 a)、中龄林(12 a)、近熟林(22 a)、成熟林(38 a)。每个造林年限设3个重复样地,大小为400 m2 (20 m×20 m),共计12个样地。对胸径≥3 cm的马尾松胸径、树高、冠幅等进行每木调查,统计样地内的马尾松株数用于计算植被密度。草本调查样方为2.5 m×2.5 m,记录样方的出现物种的物种名、高度、盖度等数据。选择各样地中胸径与平均胸径相同的马尾松作为标准木,采集标准木上、中、下部位的叶、枝等器官,混合后取500 g带回实验室分析。在样地中挖取土壤剖面,采集0~10和10~30 cm的土样,剔除其中的石块后取500 g带回实验室分析,并用环刀法测定容重。样地理化性质如表2。
表 2 不同造林年限马尾松林地土壤理化性质Table 2 Basic physical and chemical properties of soil at different afforestation ages of P. massoniana造林年限/a 容重/(g·cm−3) 含水率/% pH 碱解氮/(mg·kg−1) 有效磷/(mg·kg−1) 速效钾/(mg·kg−1) 8 1.07±0.16 bc 31.71±7.94 ab 4.96±0.08 b 74.42±25.67 a 53.00±5.07 a 72.17±28.56 ab 12 1.23±0.12 ab 28.67±1.02 c 5.11±0.09 a 65.75±13.28 a 49.53±6.23 a 92.83±21.93 a 22 1.25±0.10 a 30.00±3.76 ab 4.79±0.08 c 63.33±14.42 a 50.48±2.31 a 54.50±8.80 b 38 1.05±0.07 c 36.71±5.50 a 4.93±0.13 b 75.25±9.84 a 51.54±4.83 a 73.50±12.60 ab 说明:数据为平均值±标准差。根据GB/T 26424—2010 《森林资源规划设计调查技术规程》划分造林年限,马尾松1~10 a为幼龄林,11~20 a为中龄林,21~30 a为近熟林,31~50 a为成熟林,≥51 a为过熟林。不同小写字母表示相同理化性质不同造林年限间差异显著(P<0.05)。 1.3 样品分析
采回的植物样品用去离子水洗净后,在烘箱内105 ℃杀青30 min,随后在烘箱内80 ℃烘干至恒量。将烘干后的马尾松样品粉碎,过100目筛后装入塑封袋备用。植物碳质量分数用重铬酸钾-外加热硫酸氧化法进行测定;植物氮、磷、钾采用H2SO4-H2O2消煮法提取,提取液用于进一步测定。氮质量分数用半微量凯氏定氮法测定;磷质量分数用钼锑抗比色法测定,钾质量分数用火焰光度计法测定。
采回的土壤样品置于常温下风干,风干后进一步磨碎,分别过10和100目筛后,用于pH、容重、碱解氮、速效磷、速效钾、全氮、全钾、全磷、有机质等土壤常规性质测定。土壤有机质用重铬酸钾-外加热硫酸氧化法测定;土壤pH用电位法测定,水土质量比为2.5∶1.0;土壤全氮、全磷、全钾采用H2SO4-H2O2、HClO4-H2SO4消煮提取并进一步测定。
1.4 生物量及碳密度估算
1.4.1 生物量模型
采用收获法和建立各器官生物量模型的方法估测生物量[22]。根据马尾松胸径、树高实测结果,选择适合的马尾松生物量方程进行估算[23]。模型最终取值如表3所示。
表 3 马尾松生物量估测方程Table 3 Estimation equation of P. massoniana biomass组分 模型形式 a b r2 枝 W1=a(D2H)b 0.012 7 0.788 6 0.984 8 叶 W2= a(D2H)b 0.028 3 0.601 2 0.919 2 整树 W3= a(D2H)b 0.105 6 0.824 7 0.998 8 说明:W1、W2、W3分别为马尾松树枝、树叶、整株生物量(kg);D为马尾松胸径(cm);H为马尾松树高(m);a、b均为估测模型的参数。 草本层模型与马尾松模型不同,模型如下:
$$ {W}_{\mathrm{h}}=0.054 \;920{{H}^{0.803 \;0}G}^{1.087\; 7} 。 $$ (1) 式(1)中:Wh为单位面积总生物量(kg·m−2);H为草本层平均高(cm);G为草本层盖度。
1.4.2 碳密度模型
植被层各组分(包括乔木、草本和凋落物)碳密度由各自碳质量分数与干生物量质量之积计算所得[24]。土壤碳密度根据式(2)计算[25]:
$$ {S}_{i}={10}^{-2}\times {D}_{\mathrm{S}\mathrm{B}i}{C}_{i}\times {H}_{i} 。 $$ (2) 式(2)中:Si为土壤某一层次内单位面积的土壤碳密度(t·hm−2); DSBi为第i层土壤的容重(g·cm−3);Ci为第i层土壤的含碳率(%);Hi为第i层土壤的土层厚度(cm)。马尾松林碳密度根据植被层各组分与土壤各层碳密度之和计算。
1.5 多元统计方法
采用冗余分析(RDA)探究马尾松林碳密度与各类影响因子之间的相关关系,用结构方程模型(SEM)进一步判断各因子之间的关系强度,解释自变量对因变量的直接效应、间接效应和总效应。
1.6 数据处理
使用Excel 2016和SPSS 21进行数据整理和统计分析;用Duncan新复极差法检验不同造林年限之间的差异显著性,显著性水平设定为0.05;用Pearson相关分析法对马尾松林的碳密度、生物量、基础理化性质进行相关分析;利用Origin 2021软件绘图,利用Canoco 5绘制冗余分析图。
2. 结果与分析
2.1 造林年限对马尾松林生长及生物量的影响
2.1.1 造林年限对马尾松林生长的影响
随着造林年限的增加,胸径(图1A)和树高(图1B)整体呈增加趋势,并在达到成熟阶段之后趋于稳定。造林年限与胸径和树高的决定系数(R2)分别为0.819和0.896。总体来看,造林年限作为影响马尾松林生长状况的主要因素,对提升马尾松林碳密度也至关重要。
2.1.2 不同造林年限马尾松林生物量
不同造林年限的马尾松林乔木层生物量呈现显著差异(P<0.05),乔木层生物量随着造林年限的增大而增大,在38 a (成熟林)时达到最大值,为352.02 t·hm−2 (表4)。枝和叶的生物量呈现先增加后减少的趋势,在造林年限为38 a (成熟林)时达到最大值,分别为64.57和49.79 t·hm−2。总生物量在22 a (近熟林)时达到最大值,显著大于中幼林的生物量(P<0.05),说明马尾松近熟林的生长状况最好。草本层和凋落物层生物量在造林年限为22 a时达到最大值,分别为13.74和5.24 t·hm−2。总体来看,乔木层生物量显著大于草本层、凋落物层的生物量。此外,不同组分和不同造林年限间的生物量差异揭示马尾松在近熟林时生长状态最好,具有较强的固碳能力。
表 4 不同造林年限马尾松林各组分生物量Table 4 Biomass of each component of P. massoniana forests at different afforestation ages造林年限/a 乔木层生物量/(t·hm−2) 草本层生物量/(t·hm−2) 凋落物层生物量/(t·hm−2) 总生物量/(t·hm−2) 枝 叶 整树 8 5.48±0.90 Cc 3.10±0.22 Cc 38.18±13.32 Bb 9.09±1.62 Cc 2.97±1.96 Cab 50.24±14.10 Ab 12 12.61±5.56 Cb 8.35±4.07 Cc 93.06±27.71 Bb 11.50±0.19 Cb 2.45±0.33 Cb 108.00±26.51 Ab 22 64.57±5.54 Ca 49.79±1.70 Ca 310.87±17.88 Ba 13.74±0.36 Da 5.24±2.11 Da 329.84±18.78 Aa 38 6.57±0.79 Bbc 35.55±8.04 Bb 352.02±100.13 Aa 12.74±1.12 Bab 3.74±0.90 Bab 368.51±99.85 Aa 说明:数据为平均值±标准差。不同小写字母表示相同组分不同造林年限间生物量差异显著(P<0.05);不同大写字母表示相同造林年限不同组分间生物量差异显著(P<0.05)。 2.2 不同造林年限马尾松林碳密度情况
由图2可知:乔木层碳密度随造林年限增加而增加,在38 a (成熟林)时达到最大值176.36 t·hm−2,近熟林碳密度显著高于幼龄林和中龄林碳密度(P<0.05)。草本层的碳密度在38 a (成熟林)时达到最大值,为30.10 t·hm−2,显著大于其他造林年限草本层的碳密度(P<0.05)。0~10 cm土层中,不同造林年限马尾松林的土壤碳密度存在显著差异(P<0.05),总体呈现为38 a (成熟林)时达到最大值,为38.60 t·hm−2。10~30 cm土层中,碳密度在38 a (成熟林)时达到最大值,为57.13 t·hm−2。总体上植被和土壤碳密度均在成熟林时达到最大值。这说明随着造林年限的增加,虽然马尾松的生长速度减慢,但是马尾松林的碳密度仍在积累。
2.3 不同造林年限马尾松林植被和土壤碳密度的分配特征
表5显示:马尾松林植被和土壤的碳密度随造林年限的增加存在一定的起伏。随着造林年限的增加,植被和土壤碳密度总体呈现增加的趋势,在38 a (成熟林)中达到最大值。此外植被和土壤碳密度的比值逐渐增大,在22 a造林年限时达到最大值,在马尾松林到达成熟阶段之后,其植被和土壤碳密度达到稳定。由此说明马尾松成熟林阶段,其固碳能力最强。
表 5 马尾松林碳密度及其比值Table 5 Carbon storage and its ratio of P. massoniana forests造林年
限/a马尾松林碳密度/(t·hm−2) 碳密度占比/% 植被 土壤 植被 土壤 8 36.37±17.54 b 87.11±18.27 ab 20.12 79.88 12 57.23±11.89 b 47.84±5.72 d 50.28 49.72 22 167.67±12.87 a 72.98±8.16 bc 68.44 31.56 38 207.15±53.56 a 95.72±11.43 a 65.29 34.71 说明:数据为平均值±标准差。不同小写字母表示同一指标不同造林年限间差异显著(P<0.05)。 2.4 马尾松林碳密度的影响因素
2.4.1 马尾松林碳密度的冗余分析
由冗余分析(图3)可知:轴1和轴2分别解释了总方差的81.46%和2.93%,总解释度为84.39%。土壤有效氮、土壤有效磷、土壤全氮与土壤碳密度呈正相关;土壤容重、坡度、植被密度、土壤全钾、植被覆盖度等与土壤碳密度呈负相关。分析数据显示:土壤全钾、土壤速效钾、坡向为主要贡献因子,分别解释了土壤碳密度的28.70%、27.00%、9.90%。0~10 cm土壤碳密度与土壤容重、植被密度和郁闭度呈显著负相关(P<0.05);0~10 cm土壤碳密度和10~30 cm土壤碳密度与土壤有机碳呈极显著正相关(P<0.001)。植被碳密度总体上与土壤总氮、土壤总磷和土壤速效钾呈负相关;土壤碳密度与植被覆盖度、土壤速效氮成正相关,与土壤全磷、土壤容重、植被密度等呈负相关。从以上分析可知:马尾松林环境因子和土壤氮、土壤钾质量分数对土壤和植被碳密度具有重要影响。
2.4.2 马尾松林碳密度的结构方程分析
马尾松植被碳密度模型的适配度检验结果显示(图4A):R2为0.915,χ2为33.681,自由度(df)为10,拟合优度指数(GFI)为0.829,近似误差均方根(RMSEA)为0.411,表明本研究模型和数据的适配度较高,拟合情况理想,可以满足研究和分析的要求。马尾松植被碳密度与影响因素的结构方程模型路径图如图4A所示。马尾松植被碳密度影响因素中土壤容重和土壤速效钾对碳密度有极显著的影响,其中土壤容重对植被碳密度有显著正影响(P<0.05);土壤速效钾对植被碳密度有极显著负影响(P<0.05)。由图4B可知:容重和全钾的标准化总效应高于其他因子,标准化总效应对植被碳密度的影响大于直接效应。马尾松林土壤碳密度模型的适配度检验结果显示(图4C):R2为0.999,χ2为97.787,df为26,GFI为0.702,RMSEA为0.444,表明本研究中模型和数据的适配度较高、拟合情况理想,可以满足研究和分析的要求。土壤碳密度与影响因素的结构方程模型路径图如图4C所示。植被覆盖率对土壤碳密度均有极显著的正向影响(P<0.05),冠幅、土壤全磷、土壤有机碳、容重等对土壤碳密度有极显著正影响(P<0.01),植被密度、土壤全氮、土壤全钾对土壤碳密度有极显著负影响(P<0.001)。由图4D可知:土壤碱解氮和郁闭度对土壤碳密度的直接效应高于其他因子,标准直接效应对土壤碳密度的影响大于标准总效应。该模型进一步表明,土壤有机碳以及速效养分对土壤碳密度的直接影响大于植被碳密度,植被碳密度的标准间接效应高于直接效应。
3. 讨论
3.1 造林年限对马尾松林生长和生物量的影响
生物量是马尾松林生长的重要属性,受胸径、树高、树种组成等林分特征,坡度、海拔等环境因素以及造林年限等人为因素的影响[26]。已有研究表明,系统掌握树木胸径、树高的生长过程,是评价马尾松林生长状况最直接有效的方法[27]。本研究发现:随着造林年限的增加,马尾松的胸径和树高呈现增长趋势,且生物量在成熟林阶段最高。这与谢伊等[28]的研究结果相同,不同造林年限下林木的生长具有显著差异,造林年限越长,径级越大,生长量越大。究其原因可能是林木的生长多取决于自身个体的大小,随着造林年限的增加,林木个体逐渐增大,导致胸径和树高随之增加,进而提升马尾松生物量。这说明造林年限作为影响马尾松生长状况的关键因素,对提升马尾松林碳密度至关重要。
3.2 造林年限对马尾松林碳密度的分配影响
本研究结果表明:马尾松林碳密度随造林年限增长而显著增加,马尾松林碳密度从大到小依次为成熟林(302.88 t·hm−2)、近熟林(240.66 t·hm−2)、幼龄林(123.49 t·hm−2)、中龄林(105.08 t·hm−2)。中龄林的碳密度比幼龄林小的可能原因有多个:一方面幼龄林生长迅速,新陈代谢旺盛,对养分的需求量大,通过吸收土壤养分来增加其生物量,进而提高植被部分的碳密度[29];另一方面,幼龄林林冠稀疏,光照充足,光合作用效率较高,且生长竞争较小,有利于植被层碳密度的积累[30]。成熟林阶段碳密度最高主要是因为在森林演替过程中,乔木生物量持续增加,最终导致植被碳密度大幅提升,这与郭丽玲等[31]的研究结果一致。
本研究中,马尾松幼龄林的植被碳密度和土壤碳密度分别占马尾松林碳密度的29.45%和70.55%,随造林年限增长植被碳密度的占比逐渐增加,说明植被碳密度对马尾松林碳密度的影响逐渐增加。这与前人研究结果相似,随着造林年限的增加植被碳密度也呈现增加趋势,出现植被碳密度占比更大的可能原因为:植被大量吸收有机质矿化产生的养分导致土壤碳密度降低[32]。此外本研究结果表明:乔木层碳密度在所有地上部分碳库中所占比例最高,其次是草本层,凋落物层碳密度最低。这与前人的研究结果不同,HE等[33]认为:植被生长过程中不断产生的凋落物成为地表重要的碳库,凋落物层的碳密度比草本层的碳密度更大[34]。产生不同的结果可能是由多个因素共同作用导致的:目前对凋落物的组成成分研究较多的是凋落叶,很少有关枝、球果、树皮等的研究[35−37],这可能会导致结果差异;此外气象条件(大风、雪)、林分密度、造林年限等都是影响凋落物碳密度的因素[38]。本研究所处季节并非枝叶脱落季节,且林分密度适度,故出现凋落物碳密度较小的结果。
本研究发现土壤碳密度主要集中于0~10 cm的表层中,且随着造林年限增加土壤碳密度逐渐增加,并在成熟林阶段达到最大值。这与大部分研究结果相似,植物群落会通过各种形式,如凋落物分解,促进土壤碳的积累[39]。随造林年限的增加,凋落物的分解作用和植物呼吸作用等相应增强,植被覆盖度等环境因子随之改变,导致土壤碳密度逐渐增加[40]。
3.3 植被-土壤系统碳密度的控制因素
探讨植被和土壤碳密度的主要影响因素,有助于确定影响马尾松林固碳的主控因子,进一步提高马尾松林固碳能力。本研究发现土壤容重和土壤速效钾对地上植被碳密度有直接影响;所选择的环境因子对土壤碳密度均有显著影响,其中植被覆盖率有最显著的直接正向影响。这与已有的研究结果相似:土壤理化因子(氮、钾等元素)可以通过影响土壤结构和植被生长进而影响林木碳密度[41]。出现该结果的主要原因可能是土壤养分状况好的条件下,凋落物分解快,而土壤养分状况作为森林碳密度的主要影响因素,进一步促进马尾松林碳积累[42]。此外本研究冗余分析和结构方程模型结果表明:植被碳密度与土壤碳密度呈负相关,可能是因为植被通过根系生长等途径从土壤中获取生长所需养分,并分泌特殊物质加速有机质分解[43]。此外,植被也会向土壤输送碳,包括植物残体和根系分泌物,进而促进土壤有机质的分解[44]。
4. 结论
不同造林年限马尾松林植被碳密度和土壤碳密度具有明显的动态变化特征,总体上植被碳密度和土壤碳密度随造林年限增加呈现逐渐增加的趋势,其中成熟阶段马尾松林的固碳能力最强,马尾松林生物量和碳密度在成熟林阶段达到峰值。土壤容重、植被密度、土壤全磷、土壤全钾质量分数及坡度通过植物和土壤系统碳密度之间的平衡来调节生态系统碳密度,其中植被密度和全钾质量分数对马尾松林碳密度影响最大。为提升马尾松林固碳能力以及维持最大生产力,可进行未成熟林补植或过熟林砍伐合理控制马尾松生长状况,通过对中龄林阶段合理施肥提升土壤碳密度、控制马尾松林植被密度等手段促进林木生长,提升马尾松林质量。
-
表 1 PM2.5中重金属元素在前3个主成分中的因子荷载
Table 1. Factor loading of heavy metals in PM2.5 in the first three principal components
元素 旋转后主成分因子载荷 元素 旋转后主成分因子载荷 主成分1 主成分2 主成分3 主成分1 主成分2 主成分3 钒 0.193 0.821 0.142 锌 0.873 0.267 0.804 铬 0.915 0.197 0.110 砷 0.478 0.669 0.322 锰 0.711 0.503 0.305 镉 0.271 0.762 −0.507 钴 0.581 0.507 0.512 铅 0.445 0.732 0.414 镍 0.272 0.130 0.896 贡献率/% 63.430 13.170 8.300 铜 0.798 0.327 0.294 累积贡献率/% 63.430 76.600 84.900 表 2 绿地内PM2.5中重金属元素的相关性分析
Table 2. Correlation analysis of heavy metals in PM2.5 in green spaces
钒 铬 锰 钴 镍 铜 锌 砷 镉 铅 钒 1 铬 0.400** 1 锰 0.593** 0.795** 1 钴 0.601** 0.718** 0.769** 1 镍 0.328* 0.366* 0.507** 0.647** 1 铜 0.434** 0.758** 0.795** 0.700** 0.546** 1 锌 0.481** 0.791** 0.726** 0.706** 0.379** 0.777** 1 砷 0.515** 0.602** 0.780** 0.751** 0.431** 0.699** 0.550** 1 镉 0.551** 0.326* 0.390** 0.278 0.206 0.350* 0.391** 0.455** 1 铅 0.625** 0.562** 0.812** 0.841** 0.533** 0.736** 0.594** 0.907** 0.463** 1 说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关 -
[1] LIANG Xuan, ZOU Tao, GUO Bin, et al. Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC and winter heating [J]. Proc Royal Soc A, 2015, 471. [2] 赵晨曦, 王云琦, 王玉杰, 等. 北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J]. 环境科学, 2014, 35(2): 418 − 427. ZHAO Chenxi, WANG Yunqi, WANG Yujie, et al. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing [J]. Chin J Environ Sci, 2014, 35(2): 418 − 427. [3] 魏复盛, 滕恩江, 吴国平, 等. 我国4个大城市空气PM2.5、PM10污染及其化学组成[J]. 中国环境监测, 2001, 17(7): 1 − 6. WEI Fusheng, TENG Enjiang, WU Guoping, et al. Concentrations and elemental components of PM2.5, PM10 in ambient air in four large Chinese cities [J]. Environ Monit China, 2001, 17(7): 1 − 6. [4] 杨洪斌, 邹旭东, 汪宏宇, 等. 大气环境中PM2.5的研究进展与展望[J]. 气象与环境学报, 2012, 28(3): 77 − 82. YANG Hongbin, ZOU Xudong, WANG Hongyu, et al. Study progress on PM2.5 in atmospheric environment [J]. J Meteorol Environ, 2012, 28(3): 77 − 82. [5] LÜ Senlin, ZHANG Rui, YAO Zhenkun, et al. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere [J]. J Environ Sci, 2012, 24(5): 882 − 890. [6] HU Xin, ZHANG Yun, DING Zhuhong, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China [J]. Atmos Environ, 2012, 57: 146 − 152. [7] LIU Pingping, REN Huarui, XU Hongmei, et al. Assessment of heavy metal characteristics and health risks associated with PM2.5 in Xi’an, the largest city in northwestern China [J]. Air Qual Atmos Health, 2018, 11(9): 1037 − 1047. [8] 齐爱, 张亚娟, 杨惠芳. 大气PM2.5对心血管系统影响及其作用机制研究进展[J]. 环境与健康杂志, 2016, 33(5): 465 − 469. QI Ai, ZHANG Yajuan, YANG Huifang. Adverse effects of atmospheric PM2.5 on cardiovascular system and mechanism: a review of recent studies [J]. J Environ Health, 2016, 33(5): 465 − 469. [9] PANWAR P, PRABHU V, SONI A, et al. Sources and health risks of atmospheric particulate matter at Bhagwanpur, an industrial site along the Himalayan foothills [J]. SN Appl Sci, 2020, 2: 632. doi: 10.1007/s42452-020-2420-1. [10] KHANNA I, KHARE M, GARGAVA P. Health risks associated with heavy metals in fine particulate matter: a case study in Delhi city, India [J]. J Geosci Environ Prot, 2015, 3(2): 72 − 77. [11] 陶俊, 张仁健, 段菁春, 等. 北京城区PM2.5中致癌重金属季节变化特征及其来源分析[J]. 环境科学, 2014, 35(2): 411 − 417. TAO Jun, ZHANG Renjian, DUAN Jingchun, et al. Seasonal variation of carcinogenic heavy metals in PM2.5 and source analysis in Beijing [J]. Environ Sci, 2014, 35(2): 411 − 417. [12] 滕德智, 何作顺. 锌镉毒性研究进展[J]. 微量元素与健康研究, 2012, 29(1): 51 − 53. TENG Dezhi, HE Zuoshun. Progress on toxicity studies of zinc and cadmium [J]. Stud Trace Elem Health, 2012, 29(1): 51 − 53. [13] 董婷, 李天昕, 赵秀阁, 等. 某焦化厂周边大气PM10重金属来源及健康风险评价[J]. 环境科学, 2014, 35(4): 1238 − 1244. DONG Ting, LI Tianxin, ZHAO Xiuge, et al. Source and health risk assessment of heavy metals in ambient air PM10 from one coking plant [J]. Environ Sci, 2014, 35(4): 1238 − 1244. [14] NEEDLEMAN H L. The future challenge of lead toxicity [J]. Environ Health Perspect, 1990, 89: 85 − 89. [15] 彭镇华. 中国城市森林[M]. 北京: 中国林业出版社, 2014. [16] 柴一新, 祝宁, 韩焕金. 城市绿化树种的滞尘效应: 以哈尔滨市为例[J]. 应用生态学报, 2000, 13(9): 1121 − 1126. CHAI Yixin, ZHU Ning, HAN Huanjin. Dust removal effect of urban tree species in Harbin [J]. Chin J Appl Ecol, 2000, 13(9): 1121 − 1126. [17] 李超群, 钟梦莹, 武瑞鑫, 等. 常见地被植物叶片特征及滞尘效应研究[J]. 生态环境学报, 2015, 24(12): 2050 − 2055. LI Chaoqun, ZHONG Mengying, WU Ruixin, et al. Study on leaf characteristics and dust-capturing capability of common ground cover plants [J]. Ecol Environ Sci, 2015, 24(12): 2050 − 2055. [18] 罗曼. 不同群落结构绿地对大气污染物的消减作用研究[D]. 武汉: 华中农业大学, 2013. LUO Man. Study on Air Pollutants Removal Effects of Green Space with Different Community Structures[D]. Wuhan: Huazhong Agricultural University, 2013. [19] 刘宇, 黄旭, 偶春, 等. 夏季不同结构绿地空气PM2.5浓度与气象因子关系[J]. 西北林学院学报, 2015, 30(5): 241 − 245. LIU Yu, HUANG Xu, OU Chun, et al. Relationships between PM2.5 concentrations in different greenbelts and climate factors in summer [J]. J Northwest For Univ, 2015, 30(5): 241 − 245. [20] 耿雅妮, 梁青芳, 杨宁宁, 等. 宝鸡市城区灰尘重金属空间分布、来源及健康风险[J]. 地球与环境, 2019, 47(5): 696 − 706. GENG Yani, LIANG Qingfang, YANG Ningning, et al. Distribution, sources and health risk assessment of heavy metals in dusts of the urban area of the Baoji city [J]. Earth Environ, 2019, 47(5): 696 − 706. [21] 于瑞莲, 胡恭任, 戚红璐, 等. 泉州市不同功能区大气降尘重金属污染及生态风险评价[J]. 环境化学, 2010, 29(6): 1086 − 1090. YU Ruilian, HU Gongren, QI Honglu, et al. Pollution and ecological risk assessment of heavy metals in the dustfall from different functional areas of Quanzhou City [J]. Environ Chem, 2010, 29(6): 1086 − 1090. [22] 邱栩文. 临安市环境保护“十一五”规划研究[D]. 杭州: 浙江大学, 2006. QIU Xuwen. Research on Eleventh Five Years Environmental Planning of Lin’an[D]. Hangzhou: Zhejiang University, 2006. [23] 杭州市统计局. 2017杭州统计年鉴[M]. 北京: 中国统计出版社, 2017. [24] 王维, 侯平, 严淑娴, 等. 杭州临安一次严重大气污染过程的气温与污染物特征[J]. 浙江农林大学学报, 2018, 35(6): 997 − 1006. WANG Wei, HOU Ping, YAN Shuxian, et al. Atmospheric temperature and pollutants on heavy pollution days in Lin’an, Hangzhou [J]. J Zhejiang A&F Univ, 2018, 35(6): 997 − 1006. [25] 中华人民共和国住房和城乡建设部. 城市绿地分类标准: CJJ/T 85−2017[S]. 北京: 中国建筑工业出版社, 2017. [26] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1): 65 − 72. ZHANG Xiuzhi, BAO Zhengyu, TANG Junhong. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry [J]. Geol Sci Technol Inf, 2006, 25(1): 65 − 72. [27] GHOSH S, RABHA R, CHOWDHURY M, et al. Source and chemical species characterization of PM10 and human health risk assessment of semi-urban, urban and industrial areas of West Bengal, India [J]. Chemosphere, 2018, 207: 626 − 636. [28] 中华人民共和国环境保护部. 环境空气质量标准: GB 3095−2012[S]. 北京: 中国环境科学出版社, 2012. [29] World Health Organization. Air Quality Guidelines for Europe[M]. Copenhagen: WHO Library Cataloguing in Publication Data, 2000. [30] LÜ Weiwei, WANG Yanxin, QUEROL X, et al. Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China [J]. Environ Geol, 2006, 51(1): 121 − 132. [31] DUONG T T T, LEE B K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics [J]. J Environ Manage, 2011, 92: 554 − 562. [32] 赵珍丽, 赵委托, 黄庭, 等. 电镀厂周边大气PM10中重金属季节性分布特征及生态风险评价[J]. 环境科学, 2018, 39(1): 18 − 26. ZHAO Zhenli, ZHAO Weituo, HUANG Ting, et al. Seasonal characteristics and ecological risk assessment of heavy metals in PM10 around electroplating plants [J]. Environ Sci, 2018, 39(1): 18 − 26. [33] 谭吉华, 段菁春. 中国大气颗粒物重金属污染、来源及控制建议[J]. 中国科学院研究生院学报, 2013, 30(2): 145 − 155. TAN Jihua, DUAN Jingchun. Heavy metals in aerosol in China: pollution, sources, and control strategies [J]. J Grad Univ Chin Acad Sci, 2013, 30(2): 145 − 155. [34] 朱玉琴, 司云航, 朱忆宁, 等. 我国车用汽油标准现状及发展趋势[J]. 天然气化工, 2014, 39(6): 77 − 81. ZHU Yuqin, SI Yunhang, ZHU Yining, et al. Current situation and development trend of motor gasoline standards in China [J]. Nat Gas Cheml Ind, 2014, 39(6): 77 − 81. [35] 杨怀金, 杨德容, 叶芝祥, 等. 成都西南郊区春季PM2.5中元素特征及重金属潜在生态风险评价[J]. 环境科学, 2016, 37(12): 4490 − 4503. YANG Huaijin, YANG Derong, YE Zhixiang, et al. Characteristics of elements and potential ecological risk assessment of heavy metals in PM2.5 at the southwest suburb of Chengdu in spring [J]. Environ Sci, 2016, 37(12): 4490 − 4503. [36] 刘浩栋, 陈亚静, 李清殿, 等. 城市道路林对细颗粒物(PM2.5)的阻滞作用解析[J]. 浙江农林大学学报, 2020, 37(3): 397 − 406. LIU Haodong, CHEN Yajing, LI Qingdian, et al. Analysis of blocking effects of urban roadside forests on PM2.5 [J]. J Zhejiang A&F Univ, 2020, 37(3): 397 − 406. [37] 雷文凯, 李杏茹, 张兰, 等. 保定地区PM2.5中重金属元素的污染特征及健康风险评价[J]. 环境科学, 2021, 42(1): 38 − 44. LEI Wenkai, LI Xingru, ZHANG Lan, et al. Pollution characteristics and health risk assessment of heavy metals in PM2.5 collected in Baoding [J]. Environ Sci, 2021, 42(1): 38 − 44. [38] 田春辉, 杨若杼, 古丽扎尔·依力哈木, 等. 南京市大气降尘重金属污染水平及风险评价[J]. 环境科学, 2018, 39(7): 3118 − 3125. TIAN Chunhui, YANG Ruozhu, Gulizhaer Yilihamu, et al. Pollution levels and risk assessment of heavy metals from atmospheric deposition in Nanjing [J]. Environ Sci, 2018, 39(7): 3118 − 3125. [39] 沈建东, 周玉强, 王蕴赟, 等. 杭州西湖景区PM2.5中重金属来源及健康风险评价[J]. 环境污染与防治, 2020, 42(2): 199 − 203. SHEN Jiandong, ZHOU Yuqiang, WANG Yunyun, et al. Sources and health risk assessment of heavy metals in PM2.5 of West Lake scenic area in Hangzhou [J]. Environ Poll Control, 2020, 42(2): 199 − 203. [40] 周雪明, 郑乃嘉, 李英红, 等. 2011-2012北京大气PM2.5中重金属的污染特征与来源分析[J]. 环境科学, 2017, 38(10): 4054 − 4060. ZHOU Xueming, ZHENG Naijia, LI Yinghong, et al. Chemical characteristics and sources of heavy metals in fine particles in Beijing in 2011-2012 [J]. Environ Sci, 2017, 38(10): 4054 − 4060. [41] TIAN Hezhong, CHENG Ke, WANG Yan, et al. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China [J]. Atmos Environ, 2012, 50: 157 − 163. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200558