留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同种桉树人工林土壤呼吸速率时空动态及其影响要素

竹万宽 陈少雄 RogerARNOLD 王志超 许宇星 杜阿朋

朱晓宇, 童婉婉, 赵楚, 等. 冬青‘长叶阿尔塔’扦插生根及解剖学研究[J]. 浙江农林大学学报, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
引用本文: 竹万宽, 陈少雄, RogerARNOLD, 等. 不同种桉树人工林土壤呼吸速率时空动态及其影响要素[J]. 浙江农林大学学报, 2018, 35(3): 412-421. DOI: 10.11833/j.issn.2095-0756.2018.03.004
ZHU Xiaoyu, TONG Wanwan, ZHAO Chu, et al. Root formation and anatomical structure of Ilex × altaclerensis ‘Belgica Aurea’ stem cuttings[J]. Journal of Zhejiang A&F University, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
Citation: ZHU Wankuan, CHEN Shaoxiong, Roger ARNOLD, et al. Temporal and spatial dynamics of soil respiration and influencing factors in Eucalyptus plantations[J]. Journal of Zhejiang A&F University, 2018, 35(3): 412-421. DOI: 10.11833/j.issn.2095-0756.2018.03.004

不同种桉树人工林土壤呼吸速率时空动态及其影响要素

DOI: 10.11833/j.issn.2095-0756.2018.03.004
基金项目: 

国家重点研发计划项目 2016YFD0600505

广东省林业科技创新专项资金项目 2013KJCX014-03

广东省林业科技创新专项资金项目 2014KJCX021-04

林业科技创新平台运行补助项目 2017-LYPT-DW-137

详细信息
    作者简介: 竹万宽, 从事桉树人工林生态定位监测研究。E-mail:zwk_2015@163.com
    通信作者: 杜阿朋, 副研究员, 博士, 从事森林生态学研究。E-mail:dapzj@163.com
  • 中图分类号: S714.5

Temporal and spatial dynamics of soil respiration and influencing factors in Eucalyptus plantations

  • 摘要: 为研究不同种桉树Eucalyptus人工林土壤呼吸速率时空变异特征及其影响要素,估算桉树人工林土壤碳排放通量,测定2016年3月-2017年2月时段内5个不同种桉树林及1个湿加松Pinus elliottii×caribaea林土壤呼吸速率,分析桉树人工林土壤呼吸速率时空变化及其与影响要素的相关关系。结果表明:6个林分土壤呼吸速率时间变化明显,均呈单峰曲线格局;土壤呼吸速率与表层土壤温度符合指数模型,与平均体积含水率符合二次多项式模型(P < 0.001),土壤呼吸速率时间变化受土壤温度和体积含水率共同驱动,温、湿度双因素模型可以解释土壤呼吸速率44.8%~83.9%的变异。土壤呼吸速率的空间变异主要受表层土壤容重、叶面积指数、总孔隙度和非毛管孔隙度的影响,相关性均为极显著(P < 0.01);土壤表面二氧化碳累积通量还受到土壤表层有机碳密度影响,相关性显著(P < 0.05)。尾叶桉E. urophylla林和托里桉E. torelliana林的土壤呼吸速率年均值及土壤表面碳排放年累积通量均显著大于其他林分(P < 0.05),两者之间差异不显著。
  • 冬青属Ilex植物多常绿,树冠优美,果实通常红色光亮,长期宿存,是良好的庭园观赏和城市绿化树种,拥有巨大的园林应用潜力。冬青属种子具有种胚后熟的特性[1],常规播种繁殖生长缓慢,且后代性状易发生分离。嫁接繁殖步骤繁琐,操作技术不易掌握,管理要求严格。相比之下,扦插繁殖操作简单,繁殖系数较高,还能保持植物的优良性状。然而,冬青属植物中的很多种类扦插生根困难、成活率低,严重制约了该属植物的推广和应用[2]。金晓玲等[3]研究了34种杂交冬青的生态适应性和扦插成活率后发现:不同品种的冬青扦插成活率存在较大差异,其中光滑冬青Ilex glabra系列栽培品种扦插成活率较高(90.5%~100.0%),美洲冬青I. verticillata系列栽培品种较低(47.5%~64.3%)。生产上常常使用植物生长调节剂处理插穗以获得较高的生根率。胡曼筠等[4]研究发现:经500 mg·L−1 钾盐吲哚丁酸(KIBA)处理的华中枸骨I. centrochinensis生根率最高,雌雄株分别为83.33%和87.50%,比对照明显提高了20.83%。冬青‘长叶阿尔塔’I. × altaclerensis ‘Belgica Aurea’为冬青属常绿小乔木,是欧洲冬青I. aquifolium和加那利冬青I. perado的园艺杂交种,均为雌株[5]。该植物茎绿色,具黄色条纹;叶边缘金黄色不规则,中央有灰绿色斑纹;入秋红果累累,经冬不落,是优良的观干、观叶、观果树种。此外,该树种耐修剪,适应性强,亮丽的色彩很适合与其他彩叶植物搭配种植,极具园林应用前景。但‘长叶阿尔塔’扦插生根较为困难,经萘乙酸(NAA)、吲哚乙酸(IAA)、吲哚丁酸(IBA)、GGR6生根粉处理后生根率均不到40%,生根持续时间较长,生根机制尚不清楚[6]。本研究考察了植物生长调节剂种类和质量浓度、处理方法、基质类型对插穗生根的影响,并从形态解剖学角度探讨了插穗不定根的发生及发育过程,旨在揭示‘长叶阿尔塔’插穗的生根机制,为冬青属植物扦插繁殖技术提供理论基础。

    材料取自宁波高新农业技术实验园区苗圃。从10 a以上生长健壮、无病虫害且无机械损伤的‘长叶阿尔塔’嫁接苗母株上采集当年生半木质化枝条为插穗。插穗长度为8~10 cm,上切口平剪,下切口45° 斜剪,保留3~5个芽及顶端2片1/2成熟叶。本研究在南京林业大学园林实验中心温室的扦插床上进行。扦插前基质均经过消毒处理,插床配置间歇自动喷雾装置,保持扦插环境相对空气湿度为90%,插穗上方3 m处覆盖50%遮阳网。扦插时温室内温度为20~25 ℃。

    1.2.1   试验设计

    以植物生长调节剂种类和质量浓度、处理方法、基质类型为试验因素,每个因素下设3个水平,采用3因素3水平正交试验设计(表1),试验共9个处理,每处理30根插穗,重复3次。

    表 1  ‘长叶阿尔塔’扦插的L9(34)正交试验设计      
    Table 1  L9(34) orthogonal experimental design for cutting of I. × altaclerensis ‘Belgica Aurea’
    处理号植物生长调节剂处理方法基质类型[V(草
    炭)∶V(蛭
    石)∶V(珍珠岩)]
    种类质量浓度/
    (mg∙L−1)
    T1 ABT1生根粉 300 浸泡1 h 3∶3∶4
    T2 ABT1生根粉 500 浸泡1 h 4∶3∶3
    T3 ABT1生根粉 1 000 速蘸10 s 4∶2∶4
    T4 NAA 300 浸泡1 h 4∶3∶3
    T5 NAA 500 浸泡1 h 4∶2∶4
    T6 NAA 1 000 速蘸10 s 3∶3∶4
    T7 IBA 300 浸泡1 h 4∶2∶4
    T8 IBA 500 浸泡1 h 3∶3∶4
    T9 IBA 1 000 速蘸10 s 4∶3∶3
    下载: 导出CSV 
    | 显示表格
    1.2.2   指标观测与数据处理

    春季扦插80 d后统计相关生根指标。观测指标包括:插穗存活率(%)、生根率(%)、生根数量(单个处理的单株平均不定根数量,条)、最长不定根长(单个处理的单株平均最长不定根长,cm)、平均不定根长(单个处理的单株平均根长,cm),并对插条生根部位和特征进行观察记录。计算插穗存活率=存活插穗数/总插穗数×100%;生根率=生根插穗数/总插穗数×100%;根系效果指数=(平均根长×根系数量)/总插穗数[7]。数据采用Excel 2003整理,并用SPSS 24.0软件进行方差分析及多重比较。

    1.2.3   外部形态观察

    插穗扦插前用1 000 mg·L−1的NAA溶液速蘸插穗10 s,扦插基质为珍珠岩,每处理30根插穗,重复3次。自扦插当天开始取样,以后每隔14 d取样1次,每次随机取3根插穗,共取样6次(0 、14、28、42、56、70 d)。观察扦插生根过程中插穗基部形态变化,愈伤组织和不定根的发生情况,并拍照记录,拍照记录后的插穗用于后期解剖学观察。

    1.2.4   解剖学观察

    观察‘长叶阿尔塔’插穗茎段的横切面结构及其在扦插过程中的变化;通过扫描电镜、透射电镜观察扦插过程中各类型愈伤组织的表面形态及内部细胞结构的变化。①石蜡切片。参照周乃富等[8]的方法,对插穗基部1 cm左右的茎段进行切片,并用OLYMPUS显微镜观察并拍照,分析插穗内部不定根的发生发育过程。②扫描电镜。参照FOWKE等[9]的方法,对插穗基部愈伤组织的结构进行扫描电镜观察并拍照(Quanta 200)。③透射电镜。参照WU等[10]的方法,对新鲜愈伤组织材料(0.5 cm3)进行透射电镜观察并拍照(JEM 1400)。

    表2可知:不同处理‘长叶阿尔塔’插穗存活率、生根率、最长根长、根系效果指数4个指标差异极显著(P<0.01)。其中,T9处理插穗存活率达63.98%、生根率达48.83%、最长根长达5.15 cm、根系效果指数达4.90,均极显著高于其他处理(P<0.01)。从表3可知:植物生长调节剂的种类和质量浓度、处理方法水平3的生根率极显著高于水平1与水平2(P<0.01);基质类型水平1与水平2的生根率极显著高于水平3(P<0.01)。综合表2表3可知:‘长叶阿尔塔’插穗经1 000 mg·L−1 IBA溶液速蘸10 s,扦插在V(草炭)∶V(蛭石)∶V(珍珠岩)=3∶3∶4或4∶3∶3的基质中可获得较高的生根率。

    表 2  不同处理对‘长叶阿尔塔’插穗生根的影响
    Table 2  Effects of different treatments on rooting of I.× altaclerensis ‘Belgica Aurea’
    处理号插穗存活率/%生根率/%最长根长/cm根系效果指数
    T122.11±2.25 Bbc12.74±1.37 Dd2.69±0.70 Bbc1.92±0.14 Bbc
    T211.37±1.20 De8.68±0.71 DEde1.31±0.70 BCc1.04±0.19 BCc
    T334.18±3.14 Bc23.62±2.47 Cc2.65±0.75 Bbc2.06±0.16 Bbc
    T45.42±4.72 Def4.25±3.68 Ee1.71±1.61 BCbc1.07±0.96 BCc
    T50.00±0.00 Ef0.00±0.00 Ee0.00±0.00 Cc0.00±0.00 Cc
    T641.61±2.67 Bb36.09±2.94 Bb3.09±1.20 ABb2.55±1.07 Bb
    T716.16±3.12 Ce8.88±1.70 DEde2.66±0.46 Bbc1.81±0.71 Bbc
    T823.67±3.63 Cd12.74±2.21 Dd2.91±0.84 ABbc2.33±0.66 Bbc
    T963.98±6.71 Aa48.83±7.35 Aa5.15±1.02 Aa4.90±0.87 Aa
      说明:同列不同小写字母表示差异显著(P<0.05),同列不同大写字母表示差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格
    表 3  正交试验各因素对插穗生根率的多重比较
    Table 3  Multiple comparison of rooting rate on different fators of orthogonal test
    水平植物生长调节剂处理方法基质类型
    115.01±1.51 Bb8.62±1.51 Bb20.52±1.51 Aa
    213.45±1.51 Bb7.14±1.51 Bb20.59±1.51 Aa
    323.48±1.51 Aa36.18±1.51 Aa10.83±1.51 Bb
      说明:同列不同小写字母表示差异显著(P<0.05),同列不
         同大写字母表示差异极显著(P<0.01)
    下载: 导出CSV 
    | 显示表格

    与扦插前(图1A)相比,扦插14 d时,插穗切口边缘能够观察到少量浅绿色的愈伤组织(图1B);扦插28 d时,插穗切口处表皮开裂,并与木质化部分分离(图1C);扦插42 d时,插穗切口上方1 cm左右的部位出现条状开裂,此时愈伤组织较多,沿着表皮与木质化部分的界限呈环状分布(图1D);扦插56 d时,大部分插穗切口处均形成点状、浅黄色的愈伤组织,少量不定根突破皮层,开始皮外伸长生长­(图1E);扦插70 d时,多数插穗基部均能明显观察到不定根,其生长部位在距插穗下切口上部2 cm内,有些不定根可生长至2 cm左右(图1G);扦插90 d时(不在取样周期内,仅用于外部形态观察),有大量不定根形成,其长度超过5 cm(图1H)。同时,扦插过程中也发现有些插穗基部形成发达的愈伤组织,将切口全部包住(图1F),但并未观察到愈伤组织内长出不定根(图1I)。此外,有些插穗既不长出愈伤组织,也没有形成不定根,也不死亡,出现“假活”现象;也有部分插穗自顶端开始发黑褐化,最终死亡(图1J)。

    图 1  ‘长叶阿尔塔’插穗生根过程的外部形态变化
    Figure 1  Morphologic variations during rooting process of I.×altaclerensis ‘Belgica Aurea’
    2.3.1   插穗扦插前的解剖结构

    扦插前‘长叶阿尔塔’嫩枝插穗的横切面由表皮(Ep)、皮层(Co)、维管柱3部分组成(图2A)。维管柱包括韧皮部(Ph)、维管形成层(Vc)、木质部(Xy)、髓(Pi)等部分;在皮层与韧皮部之间存在由一层或多层纤维细胞组成的环状厚壁组织(Ps),呈连续或不连续的环状排列,被染成红色(图2B)。试验中大量切片观察并未发现插穗茎段横切面内存在潜伏根原基,表明‘长叶阿尔塔’的根原基是在扦插后诱导产生的。

    图 2  ‘长叶阿尔塔’插穗生根过程的解剖结构
    Figure 2  Anatomical structure observation during rooting process of I. × altaclerensis ‘Belgica Aurea’
    2.3.2   不定根的发生过程

    根据解剖观察结果,‘长叶阿尔塔’插穗生根过程可划分为3个时期,即形成层细胞活跃期、不定根原基形成期和不定根形成期。①形成层细胞活跃期:由于植物生长调节剂的诱导,形成层细胞在28 d左右开始旺盛分裂,连续平周分裂产生胞质浓、细胞核大、染色深的薄壁细胞,并有向外扩张的趋势。②不定根原基形成期:根诱导42 d左右,髓射线正对的形成层细胞分裂最旺盛,在髓射线加宽部位和紧靠韧皮部的部位形成一团大小相当、细胞核较大、核仁明显、细胞质较浓的根原基细胞团(图2C)。随后,根原基细胞团不断分裂冲破连续的厚壁组织,并向皮层方向生长,突破皮层的根原基细胞团受到挤压分化形成楔形的根原基(图2D)。③不定根形成期:根原基形成后 (约56 d),朝向表皮一端的细胞团转化为不定根的顶端分生组织,顶端分生组织细胞不断分裂、生长,逐渐突破皮层细胞和表皮(图2E);同时,位于不定根根尖后端的细胞从外向内逐渐分化形成根的维管系统,最终与茎的维管系统相连形成幼根(图2F)。

    2.4.1   扫描电镜观察

    图3A显示同一插穗上2种不同类型的愈伤组织,①为白色、透明、块状的愈伤组织,②为浅黄色、不透明、点状的愈伤组织。白色块状愈伤组织表面有很多凸出且大小均一的球形细胞,细胞间间隙较小,为胚性愈伤组织细胞(图3B图3C),多以细胞团的形式存在(图3D),表面黏液较多,且带有少量絮状附着物(图3E)。从图3F发现:浅黄色点状愈伤组织表面粗糙,细胞大多死亡破裂(图3G),细胞表面有附着物(图3H),在死亡破裂的细胞之间存在间隙,表面存在凹陷(图3I)。

    图 3  ‘长叶阿尔塔’愈伤组织的扫描电镜观察
    Figure 3  Scanning electron microscopic observation on callus of I. × altaclerensis ‘Belgica Aurea’
    2.4.2   透射电镜观察

    同一愈伤组织中既有胚性愈伤组织细胞也有非胚性愈伤组织细胞。胚性愈伤组织细胞质浓厚、细胞器较明显(图4A);非胚性愈伤组织细胞质稀薄,有明显的中央大液泡,几乎观察不到细胞器(图4B)。胚性愈伤组织细胞核大,核仁明显,在靠近细胞膜的胞质区域里有较多的淀粉粒和线粒体,还可观察到内含淀粉粒的叶绿体。淀粉可以为插穗生根提供充足的营养,线粒体较多说明其呼吸作用较强,代谢旺盛(图4C4D4E4F)。同时,仍有部分胚性愈伤组织细胞出现轻微的质壁分离现象(图4G),这可能是老化愈伤组织中的衰老细胞。非胚性愈伤组织细胞的细胞质受到液泡挤压,细胞核等仅分布于细胞壁附近,但仍可观察到明显的核仁(图4H)。

    图 4  ‘长叶阿尔塔’愈伤组织的透射电镜观察
    Figure 4  Transmission electron microscope observation on callus of I. × altaclerensis ‘Belgica Aurea’

    选择最优的植物生长调节剂种类和质量浓度、处理时间等因素组合可以有效提高植物扦插生根率和生根数[11]。研究[12]表明:植物生长调节剂可以促进插穗基部细胞的分生与分化,加速插穗内可溶性糖、淀粉及可溶性蛋白的水解和代谢,使下切口成为营养物质的中心吸收区域;使用植物生长调节剂还可以提高插穗内过氧化物酶(POD)、多酚氧化酶(PPO)、吲哚乙酸氧化酶(IAAO)的活性,调节内源激素水平,活化形成层,促进根原基的形成[13-16]。IBA在促进难生根树种的生根及改善根系品质方面取得了较好的效果[17-18]。本研究中,IBA促进插穗生根效果显著优于ABT1和NAA,这可能是由于IBA被氧化分解的速度慢、传导扩散性能差,作用于插穗基部的时间长,有利于促进不定根的发生[19]。本试验最佳处理的生根率仅为48.83%,今后可结合其生根过程的激素调控、酶活性变化等方面对‘长叶阿尔塔’的生根机制开展更深入探究。

    根据不定根在插穗上的形成部位不同,木本植物插穗生根类型分为皮部生根型、愈伤组织生根型和混合生根型[20]。本研究发现:‘长叶阿尔塔’插穗生根部位多在插穗切口上方2 cm左右的皮部,切口处无愈伤组织或仅有少量愈伤组织,也有少数插穗基部的愈伤组织发达,但仍然从切口上方的皮部形成多条不定根,与金建邦等[21]对欧洲鹅耳枥Carpinus betulus扦插不定根的发生发育研究结果类似。同时,观察‘长叶阿尔塔’插穗茎段的横切面切片后,并未发现潜伏根原基的存在,推测不定根是从扦插后诱导产生的诱生根原基发育而来,与山木通Clematis finetiana[22]、红花槭Acer rubrum[23]等的根原基来源相同。因此,‘长叶阿尔塔’插穗生根类型属于皮部诱导生根型。

    插穗茎段结构是影响不定根发生、发育的“解剖学原因”[24]。对于难生根树种而言,插穗内部的机械组织(包括厚角组织与厚壁组织2类)是根原基形成和发育的阻碍因子[25-26]。树木扦插生根的难易程度与皮层和韧皮部之间的厚壁组织关系密切。多数难生根树种厚壁组织连续且呈环状,如珙桐Davidia involucrata[27]等。若插穗皮层中没有这种组织,或虽有但并不连续,则插穗生根相对容易,如喜树Camptotheca acuminata[28]等。本研究发现‘长叶阿尔塔’1年生插穗茎段皮层与韧皮部之间,存在1~2层由纤维细胞组成的环状厚壁组织,呈连续或不连续状,可能与插穗的发育程度有关;进一步观察发现仅少数根原基能突破连续的环状厚壁组织。此外,‘长叶阿尔塔’插穗生根需经历较长时间,春季56 d左右才能观察到突破表皮的不定根。由于生根进程缓慢,在此过程中插穗新叶、芽的生长消耗了大量的养分,且较长的时间容易导致插穗因病原菌侵害而褐化死亡,降低生根率。因此,为提高插穗生根率,应选择1年生、木质化程度较弱的枝条进行扦插,以减少厚壁组织对插穗生根率的影响。

    扦插后,通常会在插穗基部表皮或表皮与木质化部分交接处形成愈伤组织,可由插穗茎段中的皮层、韧皮部、维管形成层、髓等多个部位的细胞快速分裂而来。插穗愈伤组织与不定根发生发育的关系可概括为以下3种:①愈伤组织的形成是不定根生长发育的物质基础。此类愈伤组织中可以分化形成根原基细胞,在一定条件下可发育形成不定根[29],如洒金柏Platycladus orientalis[30]等多数针叶树种均属于此类。②愈伤组织的产生与不定根形成无直接因果关系、彼此独立[31]。这类愈伤组织通常不能形成根原基,只能分化形成独立的维管束、输导组织等,在插穗与基质之间无机盐、水分等物质交换过程中起着中介作用,如灰毡毛忍冬Lonicera macranthoides[32]等属于此类。③愈伤组织的产生不利于不定根的发生、发育[33]。如高度发达的愈伤组织抑制了白桦Betula platyphylla嫩枝插穗根原基细胞的分化,进而阻碍了不定根的形成[34]。本研究发现:‘长叶阿尔塔’插穗愈伤组织产生与不定根发生、发育彼此独立,适度分化的愈伤组织能够保护切口免受外界病菌侵入,防止插穗内有效物质的流失,还可以充当水分等物质交换的桥梁。但过度分化的愈伤组织会占用插穗内部的营养物质,抑制不定根的形成。

    冬青‘长叶阿尔塔’插穗经1 000 mg·L−1 IBA溶液速蘸10 s,扦插在V(草炭)∶V(蛭石)∶V(珍珠岩)=3∶3∶4或4∶3∶3的基质中可获得较高的生根率,其插穗生根类型属于皮部诱导生根型,根原基起源于髓射线与维管形成层交叉处,环状厚壁组织是阻碍其插穗生根的机械原因。‘长叶阿尔塔’插穗愈伤组织中并未观察到根原基发端细胞,其产生与不定根发生、发育彼此独立,可分为胚性愈伤组织和非胚性愈伤组织,胚性愈伤组织多为白色,其表面细胞体积较小且排列紧密,常成团分布,细胞核大质浓,细胞器丰富;非胚性愈伤组织细胞多为黄色,其表面细胞大多死亡破裂,空泡化明显,几乎没有细胞器。

  • 图  1  不同林分土壤呼吸速率月动态变化

    Figure  1  Monthy variation of soil respiration rate in different stands

    图  2  不同林分土壤温度月动态

    Figure  2  Monthy variation of soil temperature in different stands

    图  3  不同林分土壤湿度月动态

    Figure  3  Monthy variation of soil moisture in different stands

    图  4  不同林分土壤有机碳密度比较

    Figure  4  Comparison of soil organic carbon in different stands

    图  5  不同林分叶面积指数及凋落物有机碳储量

    Figure  5  Comparison of leaf area index (LAI) and litter organic carbon storage in different stands

    表  1  样地基本概况

    Table  1.   Basic situation of sample plots

    林分 林龄/a 平均树高/m 平均胸径/cm 林分密度/(株·hm-2) 坡度/(%) 坡向 海拔/m 林下主要物种
    EU 15 25.38 ± 0.71 26.56 ± 0.81 524 0 平地 119.6 1, 2, 3, 5, 9, 10, 11
    EP 10 16.80 ± 0.69 17.25 ± 0.71 970 0 平地 92.0 2:3:5:7:9
    ET 10 18.00 ± 0.53 19.60 ± 0.56 810 0 平地 85.8 1, 2, 3, 4, 6, 7, 8, 12
    EC 8 15.28 ± 0.64 10.82 ± 0.48 925 0 平地 98.6 3, 10, 11
    EUG 8 23.15 ± 0.76 18.43 ± 0.24 690 12 南坡 113.0 1, 2, 3, 4, 5, 6, 7
    PEC 15 13.73 ± 0.23 20.60 ± 0.62 599 0 平地 104.7 1, 2, 3, 4, 5, 6, 7, 12
    说明:数据为平均值±标准误。物种编号:1.鹅掌柴Scheffera octophya, 2.龙船花Ixora chinensis, 3.盐肤木Rhus chinensis, 4.马樱丹Lantana carnara, 5.白背叶Mallotus apelta, 6.马唐草Digitaria sanguinalis, 7.白花鬼针草Herba bidentis, 8.胜红蓟Ageratum con-yzoides, 9.五节芒Miscanthus floridulus, 10.草芍药Paeonia obovata, 11.蟛蜞菊Wedelia chinensis, 12.荩草Arthraxon hispidus
    下载: 导出CSV

    表  2  不同林分土壤容重、孔隙度及有机碳质量分数

    Table  2.   Comparison of soil bulk density and soil organic carbon content in different stands

    林分 容重/(g·cm-3) 总孔隙度/% 毛管孔隙度/% 非毛管孔隙度/% w有机碳/(g·kg-1)
    0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60
    EU 0.84 ± 0.03 c 0.98 ± 0.02 a 0.99 ± 0.06 a 1.08 ± 0.06 a 62.38 ± 1.74 a 57.42 ± 1.29 a 57.34 ± 1.82 a 56.50 ± 21.63 ab 50.28 ± 0.68 bc 50.33 ± 1.42 a 49.01 ± 1.14 a 52.20 ± 0.99 a 5.01 ± 0.99 c 7.88 ± 2.58 a 6.02 ± 1.45 a 2.72 ± 0.15 a 22.34 ± 1.08 c 18.22 ± 1.10 a 11.36 ± 1.21 c 7.82 ± 0.76 c
    EP 1.07 ± 0.03 a 1.00 ± 0.07 a 1.04 ± 0.04 a 1.01 ± 0.02 a 55.29 ± 1.62 c 58.21 ± 3.39 a 55.03 ± 1.63 a 54.91 ± 0.96 ab 52.30 ± 0.87 ab 48.65 ± 1.09 a 49.86 ± 1.06 a 51.50 ± 1.79 a 10.08 ± 1.01 ab 8.77 ± 1.51 a 7.48 ± 2.54 a 5.02 ± 2.60 a 28.49 ± 1.79 bc 22.10 ± 3.00 a 15.34 ± 3.35 ab 15.34 ± 3.35 ab
    ET 0.89 ± 0.02 bc 0.99 ± 0.07 a 1.05 ± 0.02 a 1.01 ± 0.02 a 60.24 ± 1.10 ab 56.04 ± 1.94 a 57.12 ± 0.82 a 59.07 ± 1.15 a 50.69 ± 0.73 b 48.93 ± 1.35 a 49.54 ± 1.35 a 50.54 ± 1.30 a 6.70 ± 0.37 bc 6.76 ± 1.04 a 4.90 ± 1.37 a 3.75 ± 1.40 a 37.43 ± 3.01 a 37.43 ± 3.01 a 20.86 ± 1.28 a 20.31 ± 0.78 a 17.23 ± 2.04 a
    EC 0.97 ± 0.01 b 0.99 ± 0.02 a 1.04 ± 0.03 a 1.07 ± 0.01 a 59.94 ± 0.93 ab 57.98 ± 3.08 a 55.45 ± 0.32 a 57.56 ± 1.27 ab 49.52 ± 1.52 bc 47.98 ± 1.39 a 52.12 ± 1.10 a 53.31 ± 3.76 a 10.41 ± 1.74 ab 9.99 ± 2.51 a 3.34 ± 0.78 a 4.26 ± 2.49 a 27.70 ± 0.87 bc 27.70 ± 0.87 bc 22.52 ± 0.56 a 15.21 ± 1.92 abc 11.06 ± 1.14 abc
    EUG 0.92 ± 0.04 bc 1.02 ± 0.04 a 1.07 ± 0.03 a 1.03 ± 0.08 a 58.96 ± 1.47 abc 55.53 ± 0.30 a 55.56 ± 0.78 a 56.62 ± 1.78 ab 47.68 ± 0.16 c 47.45 ± 0.80 a 49.14 ± 1.25 a 53.56 ± 3.05 a 11.28 ± 1.50 a 8.08 ± 0.81 a 6.42 ± 1.39 a 3.07 ± 2.23 a 33.09 ± 3.77 ab 33.09 ± 3.77 ab 18.37 ± 13.72 ± 1.33 bc 10.22 ± 1.97 bc
    PEC 0.95 ± 0.03 b 1.07 ± 0.04 a 1.04 ± 0.01 a 0.94 ± 0.02 a 57.39 ± 0.73 bc 55.69 ± 1.01 a 54.44 ± 0.36 a 54.30 ± 1.07 b 53.44 ± 0.49 a 49.89 ± 0.87 a 50.11 ± 0.78 a 52.76 ± 1.86 a 6.80 ± 1.22 bc 6.14 ± 2.20 a 7.01 ± 0.69 a 6.31 ± 0.77 a 26.68 ± 2.02 bc 26.68 ± 2.02 bc 20.77 ± 1.85 a 14.56 ± 2.15 abc 9.70 ± 2.03 bc
    说明:数值为平均值±标准误。同列不同小写字母表示不同林分间差异显著(P < 0.05)
    下载: 导出CSV

    表  3  土壤呼吸速率与土壤温度、湿度的关系

    Table  3.   Relationship between soil respiration rate and soil temperature and moisture

    林分 $f\left( R \right) = a{{\rm{e}}^{bT}} $ $f\left( R \right) = a{h_{\rm{r}}}^2 + b{h_{\rm{r}}} + c $ $f\left( R \right) = a{{\rm{e}}^{bT}}{h_{\rm{r}}}^c $ Q10
    a b R2 r a b c R2 r a b c R2
    EU 0.487 0.069 0.437 0.628** -0.030 1.019 -4.251 0.443 0.507** 0.421 0.042 0.358 0.448 1.99
    EP 0.488 0.053 0.630 0.817** -0.010 0.375 -1.069 0.378 0.568** 0.294 0.044 0.288 0.751 1.70
    ET 1.442 0.035 0.638 0.781** -0.022 0.678 -1.009 0.387 0.432** 1.269 0.029 0.114 0.614 1.42
    EC 0.635 0.044 0.758 0.851** -0.018 0.491 -0.923 0.183 0.173* 0.407 0.042 0.201 0.761 1.55
    EUG 0.381 0.066 0.754 0.893** -0.014 0.480 -1.441 0.509 0.531** 0.270 0.054 0.256 0.839 1.93
    PEC 0.631 0.047 0.798 0.884** -0.013 0.418 -0.769 0.412 0.315** 0.569 0.045 0.067 0.787 1.60
    说明:R2为方程拟合优度, 即决定系数; r为土壤呼吸与土壤温度、湿度经Pearson相关性分析所得相关系数; *表示P<0.05;**表示P<0.01
    下载: 导出CSV

    表  4  土壤呼吸速率与土壤性质、凋落物及叶面积指数的相关性

    Table  4.   Correlation between soil respiration rate and soil properties, litter organic carbon storage and leaf area index (LAI)

    土层/cm 相关性分析
    容重 总孔隙度 毛管孔隙度 非毛管孔隙度 有机碳密度 凋落物有机碳密度 叶面积指数 土壤温度 土壤湿度
    0-10 -0.752** 0.622** 0.024 0.611** 0.434 -0.109 0.681** -0.054 0.211
    10~20 -0.149 0.165 0.434 -0.105 0.327
    20-40 0.161 -0.360 -0.161 -0.149 0.174
    40-60 0.164 -0.453 -0.071 -0.304 0.133
    说明: **表示P<0.01, *表示P<0.05
    下载: 导出CSV
  • [1] 唐罗忠, 葛晓敏, 吴麟, 等.南方型杨树人工林土壤呼吸及其组分分析[J].生态学报, 2012, 32(22):7000-7008.

    TANG Luozhong, GE Xiaomin, WU Lin, et al. Partitoning of autotrophic and heterotrophic soil respiration in southern type poplar plantations[J]. Acta Ecol Sin, 2012, 32(22):7000-7008.
    [2] ZHOU Lingyan, ZHOU Xuhui, SHAO Junjiong, et al. Interactive effects of global change factors on soil respiration and its components:a meta-analysis[J]. Global Change Biol, 2016, 22(9):3157-3169.
    [3] ANDREWS J A, HARRISON K G, MATAMALA R, et al. Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE)[J]. Soil Sci Soc Am J, 1999, 63(2/4):1429-1435.
    [4] ARCHMILLER A A, SAMUELSON L J, LI Yingru. Spatial variability of soil respiration in a 64-year-old longleaf pine forest[J]. Plant Soil, 2016, 403(1/2):419-435.
    [5] MANDE H K, ABDULLAH A M, ARIS A Z, et al. Factors responsible for spatial and temporal variation of soil CO2 efflux in a 50 year recovering tropical forest, Peninsular Malaysia[J]. Environ Earth Sci, 2015, 73(9):5559-5569.
    [6] FANG Chu, MONCRIEFF J B, GHOLZ H L, et al. Soil CO2 efflux and its spatial variation in a Florida slash pine plantation[J]. Plant Soil, 1998, 205(2):135-146.
    [7] GAUMONT-GUAY D, BLACK T A, GRIFFIS T J, et al. Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand[J]. Agric For Meteorol, 2006, 140(1):203-219.
    [8] HARTLEY I P, HEINEMEYER A, EVANS S P, et al. The effect of soil warming on bulk soil vs. rhizosphere respiration[J]. Global Change Biol, 2008, 13(12):2654-2667.
    [9] FERRÉC, CASTRIGNANÒA, COMOLLI R. Assessment of multi-scale soil-plant interactions in a poplar plantation using geostatistical data fusion techniques:relationships to soil respiration[J]. Plant Soil, 2015, 390(1/2):95-109.
    [10] SAIZ G, GREEN C, BUTTERBACH-BAHL K, et al. Seasonal and spatial variability of soil respiration in four Sitka spruce stands[J]. Plant Soil, 2006, 287(1/2):161-176.
    [11] RAICH J W, SCHLESINGER W H. The global dioxide carbon flux in respiration and its relationship to vegetation and climate[J]. Tellus Ser B-Chem Phys Meteorol, 1992, 44(2):81-99.
    [12] ZHAO Ningning, GUGGENBERGER G, SHIBISTOVA O, et al. Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau[J]. Plant Soil, 2014, 384(1/2):289-301.
    [13] CHEN Dima, ZHANG Chenlu, WU Jianping, et al. Subtropical plantations are large carbon sinks:evidence from two monoculture plantations in South China[J]. Agric For Meteorol, 2011, 151(9):1214-1225.
    [14] CORNWELL W K, CORNELISSEN J H C, AMATANGELO K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecol Lett, 2008, 11(10):1065-1071.
    [15] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081):165-173.
    [16] LITTON C M, RAICH J W, RYAN M G. Carbon allocation in forest ecosystems[J]. Global Change Biol, 2007, 13(10):2089-2109.
    [17] 黄雪蔓, 刘世荣, 尤业明.第2代桉树人工纯林和混交林土壤呼吸及其组分研究[J].林业科学研究, 2014, 27(5):575-582.

    HUANG Xueman, LIU Shirong, YOU Yeming. Study on the soil respiration and its components of the second rotation Eucalyptus plantations in subtropical China[J]. For Res, 2014, 27(5):575-582.
    [18] 黄雪蔓. 南亚热带桉树人工林不同经营模式土壤碳动态变化及其调控机制[D]. 北京: 中国林业科学研究院, 2013.

    HUANG Xueman. The Dynamic and Regulation Mechanisms of Soil Carbon in Eucalyptus Plantations in Southern China[D]. Beijing: Chinese Academy of Forestry, 2013.
    [19] 袁渭阳. 短轮伐期巨桉人工林土壤碳转移研究[D]. 雅安: 四川农业大学, 2008.

    YUAN Weiyang. Studies on Soil Carbon Flux in the Short-Rotation Plantation of Eucalyptus grandis[D]. Ya'an: Sichuan Agricultural University, 2008.
    [20] 吴蒙, 马姜明, 梁士楚, 等.桂林尧山桉树及马尾松林秋季土壤碳通量特征[J].广西植物, 2014, 34(6):780-787.

    WU Meng, MA Jiangming, LIANG Shichu, et al. Characteristics on soil carbon flux of Eucalyptus spp. and Pinus massoniana forest in autumn in Yaoshan Mountain of Guilin[J]. Guihaia, 2014, 34(6):780-787.
    [21] 梁启鹏, 余新晓, 庞卓, 等.不同林分土壤有机碳密度研究[J].生态环境学报, 2010, 19(4):889-893.

    LIANG Qipeng, YU Xinxiao, PANG Zhuo, et al. Study on soil organic carbon density of different forest types[J]. Ecol Environ Sci, 2010, 19(4):889-893.
    [22] LUO Yiqi, WAN Shiqiang, HUI Dafeng, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856):622-625.
    [23] 姜艳, 王兵, 汪玉如, 等.亚热带林分土壤呼吸及其与土壤温湿度关系的模型模拟[J].应用生态学报, 2010, 21(7):1641-1648.

    JIANG Yan, WANG Bing, WANG Yuru, et al. Soil respiration in subtropical forests and model simulation of its relationship with soil temperature and moisture content[J]. Chin J Appl Ecol, 2010, 21(7):1641-1648.
    [24] BOWDEN R D, NADELHOFFER K J, BOONE R D, et al. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest[J]. Can J For Res, 1993, 23(7):1402-1407.
    [25] REY A, PEGORARO E, TEDESCHI V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biol, 2002, 8(9):851-866.
    [26] VOSE J M, RYAN M G. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis[J]. Glob Change Biol, 2002, 8(2):182-193.
    [27] 邓东周, 范志平, 王红, 等.土壤水分对土壤呼吸的影响[J].林业科学研究, 2009, 22(5):722-727.

    DENG Dongzhou, FAN Zhiping, WANG Hong, et al. Influences of soil moisture on soil respiration[J]. For Res, 2009, 22(5):722-727.
    [28] 吴蒙. 广西桉树及其他几种林分土壤呼吸特征[D]. 桂林: 广西师范大学, 2014.

    WU Meng. Characteristics on Soil Respiration of Eucalyptus spp. Plantations and Several Other Forests in Guangxi[D]. Guilin: Guangxi Normal University, 2014.
    [29] 王光军, 田大伦, 闫文德, 等.亚热带杉木和马尾松群落土壤系统呼吸及其影响因子[J].植物生态学报, 2009, 33(1):53-62.

    WANG Guangjun, TIAN Dalun, YAN Wende, et al. Soil system respiration and its controlling factors in Cunninghamia lanceolata and Pinus massoniana communities of subtropical China[J]. Chin J Plant Ecol, 2009, 33(1):53-62.
    [30] 陈光水, 杨玉盛, 吕萍萍, 等.中国森林土壤呼吸模式[J].生态学报, 2008, 28(4):1748-1761.

    CHEN Guangshui, YANG Yusheng, LÜ Pingping, et al. Regional patterns of soil respiration in China's forests[J]. Acta Ecol Sin, 2008, 28(4):1748-1761.
    [31] XU Ming, QI Ye. Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra nevadan Forest[J]. Glob Biogeochem Cycl, 2001, 15(3):687-696.
    [32] MOYANO F E, KUTSCH W L, SCHULZE E D. Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field[J]. Soil Biol Biochem, 2007, 39(4):843-853.
    [33] 王希群, 马履一, 贾忠奎, 等.叶面积指数的研究和应用进展[J].生态学杂志, 2005, 24(5):537-541.

    WANG Xiqun, MA Lüyi, JIA Zhongkui, et al. Research and application advances in leaf area index (LAI)[J]. Chin J Ecol, 2005, 24(5):537-541.
    [34] BOND-LAMBERTY B, THOMSON A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464(7288):579-582.
    [35] REICHSTEIN M, REY A, FREIBAUER A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Glob Biogeochem Cycl, 2003, 17(4):1104. doi:10.1029/2003GB002035.
    [36] 王娓, 周晓梅, 郭继勋.东北羊草草原两种主要群落环境因素对土壤呼吸贡献量的影响[J].草业学报, 2002, 11(1):12-16.

    WANG Wei, ZHOU Xiaomei, GUO Jixun. Effect of environmental factors on CO2 release of soil respiration of two main communities in Lymus chinensis grassland in northeastern China[J]. Acta Pratac Sin, 2002, 11(1):12-16.
    [37] 徐洪灵, 张宏, 张伟.川西北高寒草甸土壤理化性质对土壤呼吸速率影响研究[J].四川师范大学学报(自然科学版), 2012, 35(6):835-841.

    XU Hongling, ZHANG Hong, ZHANG Wei. Influence of soil physical and chemical properties on soil respiration rate of alpine meadow in the northwestern plateau of Sichuan Province[J]. J Sichuan Norm Univ Nat Sci, 2012, 35(6):835-841.
    [38] RYAN M G, LAW B E. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73(1):3-27.
    [39] 宋启亮, 董希斌.大兴安岭5种类型低质林土壤呼吸日变化及影响因素[J].东北林业大学学报, 2014, 42(9):77-82.

    SONG Qiliang, DONG Xibin. Diurnal variation and influenced factors of soil respiration in five typical low-quality forest in Daxing'an Mountains[J]. J Northeast For Univ, 2014, 42(9):77-82.
    [40] 王建国. 黄土高原水蚀风蚀交错区土壤呼吸及其影响因素研究[D]. 杨凌: 西北农林科技大学, 2011.

    WANG Jianguo. Affecting Factors of Soil Respiration in the Water-wind Erosion Crisscross Region[D]. Yangling: Northwest A&F University, 2011.
    [41] 杨玉盛, 董彬, 谢锦升, 等.森林土壤呼吸及其对全球变化的响应[J].生态学报, 2004, 24(3):583-591.

    YANG Yusheng, DONG Bin, XIE Jinsheng, et al. Soil respiration of forest ecosystems and its respondence to global change[J]. Acta Ecol Sin, 2004, 24(3):583-591.
    [42] 王国兵, 郝岩松, 王兵, 等.土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J].北京林业大学学报, 2006, 28(增刊2):73-79.

    WANG Guobing, HAO Yansong, WANG Bing, et al. Influence of land-use change on soil respiration and soil microbial biomass[J]. J Beijing For Univ, 2006, 28(suppl 2):73-79.
    [43] 韩营营, 黄唯, 孙涛, 等.不同林龄白桦天然次生林土壤碳通量和有机碳储量[J].生态学报, 2015, 35(5):1460-1469.

    HAN Yingying, HUANG Wei, SUN Tao, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing'an Mountain, China[J]. Acta Ecol Sin, 2015, 35(5):1460-1469.
    [44] 刘绍辉, 方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 1997, 17(5):469-476.

    LIU Shaohui, FANG Jingyun. Effect factors of soil respiration and the temperature's effects on soil respiration in the global scale[J]. Acta Ecol Sin, 1997, 17(5):469-476.
    [45] XU Ming, QI Ye. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California[J]. Glob Change Biol, 2001, 7(6):667-677.
    [46] XU Xia, ZHOU Yan, RUAN Honghua, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China[J]. Soil Biol Biochem, 2010, 42(10):1811-1815.
    [47] 陈灿, 江灿, 范海兰, 等.凋落物去除/保留对杉木人工林林窗和林内土壤呼吸的影响[J].生态学报, 2017, 37(1):102-109.

    CHEN Can, JIANG Can, FAN Hailan, et al. Effects of removing/keeping litter on soil respiration in and outside the gaps in Chinese fir plantation[J]. Acta Ecol Sin, 2017, 37(1):102-109.
    [48] 雷蕾, 肖文发, 曾立雄, 等.马尾松林土壤呼吸组分对不同营林措施的响应[J].生态学报, 2016, 36(17):5360-5370.

    LEI Lei, XIAO Wenfa, ZENG Lixiong, et al. Responses of soil respiration and its components to forest management in Pinus massoniana stands[J]. Acta Ecol Sin, 2016, 36(17):5360-5370.
    [49] 梁国华, 吴建平, 熊鑫, 等.南亚热带不同演替阶段森林土壤呼吸对模拟酸雨的响应[J].生态学杂志, 2016, 35(1):125-134.

    LIANG Guohua, WU Jianping, XIONG Xin, et al. Response of soil respiration to simulated acid rain in three successional subtropical forests in southern China[J]. Chin J Ecol, 2016, 35(1):125-134.
  • [1] 曹立, 王维枫, 马雪红, 王祥福, 李玉, 李丽, 于水强.  间伐对秦岭松栎混交林土壤异养呼吸的影响 . 浙江农林大学学报, 2024, 41(1): 22-29. doi: 10.11833/j.issn.2095-0756.20230193
    [2] 吕文强, 董天燕, 白富文.  喀斯特农田土壤呼吸对干湿交替的响应特征 . 浙江农林大学学报, 2024, 41(4): 760-768. doi: 10.11833/j.issn.2095-0756.20230522
    [3] 竹万宽, 许宇星, 王志超, 杜阿朋.  尾巨桉人工林土壤呼吸对林下植被管理措施的响应 . 浙江农林大学学报, 2023, 40(1): 164-175. doi: 10.11833/j.issn.2095-0756.20220138
    [4] 樊宇翔, 杨波, 李艳梅, 王邵军, 张路路, 张昆凤, 解玲玲, 肖博, 王郑钧, 郭志鹏.  蚂蚁活动对小果野芭蕉群落土壤呼吸季节动态的影响 . 浙江农林大学学报, 2023, 40(3): 502-510. doi: 10.11833/j.issn.2095-0756.20220533
    [5] 陈炎根, 胡艳静, 黄莎, 刘波, 吴继来, 王懿祥.  不同间伐强度对杉木人工林土壤呼吸速率的短期影响 . 浙江农林大学学报, 2023, 40(5): 1054-1062. doi: 10.11833/j.issn.2095-0756.20220704
    [6] 韦菊娴, 王聪, 何斌, 尤业明, 黄雪蔓.  世界桉树林土壤微生物研究综述 . 浙江农林大学学报, 2022, 39(5): 1144-1154. doi: 10.11833/j.issn.2095-0756.20210701
    [7] 朱文见, 张慧, 王懿祥.  采伐对森林土壤呼吸影响的研究进展 . 浙江农林大学学报, 2021, 38(5): 1000-1011. doi: 10.11833/j.issn.2095-0756.20210365
    [8] 林雨萱, 哀建国, 宋新章, 李全, 张君波.  模拟氮沉降和磷添加对杉木林土壤呼吸的影响 . 浙江农林大学学报, 2021, 38(3): 494-501. doi: 10.11833/j.issn.2095-0756.20200326
    [9] 杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平.  元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征 . 浙江农林大学学报, 2020, 37(5): 849-859. doi: 10.11833/j.issn.2095-0756.20190647
    [10] 何姗, 刘娟, 姜培坤, 周国模, 王会来, 李永夫, 吴家森.  经营管理对森林土壤有机碳库影响的研究进展 . 浙江农林大学学报, 2019, 36(4): 818-827. doi: 10.11833/j.issn.2095-0756.2019.04.023
    [11] 许宇星, 王志超, 竹万宽, 杜阿朋.  雷州半岛3种速生人工林下土壤生态化学计量特征 . 浙江农林大学学报, 2018, 35(1): 35-42. doi: 10.11833/j.issn.2095-0756.2018.01.005
    [12] 戴奥娜, 刘肖肖, 王兵, 戴伟.  丝栗栲林下土壤有机碳及其组分的时空年变化特征 . 浙江农林大学学报, 2018, 35(3): 405-411. doi: 10.11833/j.issn.2095-0756.2018.03.003
    [13] 郭帅, 徐秋芳, 沈振明, 李松昊, 秦华, 李永春.  雷竹林土壤氨氧化微生物对不同肥料的响应 . 浙江农林大学学报, 2014, 31(3): 343-351. doi: 10.11833/j.issn.2095-0756.2014.03.003
    [14] 梁晶, 方海兰, 郝冠军, 孙倩.  上海城市绿地不同植物群落土壤呼吸及因子分析 . 浙江农林大学学报, 2013, 30(1): 22-31. doi: 10.11833/j.issn.2095-0756.2013.01.004
    [15] 张涛, 李永夫, 姜培坤, 周国模, 刘娟.  土地利用变化影响土壤碳库特征与土壤呼吸研究综述 . 浙江农林大学学报, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [16] 黄石德.  降水和凋落物对木荷马尾松混交林土壤呼吸的影响 . 浙江农林大学学报, 2012, 29(2): 218-225. doi: 10.11833/j.issn.2095-0756.2012.02.011
    [17] 唐洁, 李志辉, 汤玉喜, 吴敏, 李永进, 王胜.  洞庭湖区滩地不同土地利用类型土壤呼吸动态 . 浙江农林大学学报, 2011, 28(3): 439-443. doi: 10.11833/j.issn.2095-0756.2011.03.014
    [18] 叶耿平, 刘娟, 姜培坤, 周国模, 吴家森.  集约经营措施对毛竹林生长季土壤呼吸的影响 . 浙江农林大学学报, 2011, 28(1): 18-25. doi: 10.11833/j.issn.2095-0756.2011.01.004
    [19] 孙达, 黄芳, 蔡荣荣, 秦华, 庄舜尧, 张妙仙, 曹志洪.  集约经营雷竹林土壤磷素的时空变化 . 浙江农林大学学报, 2007, 24(6): 670-674.
    [20] 蔡荣荣, 黄芳, 孙达, 秦华, 杨芳, 庄舜尧, 周国模, 曹志洪.  集约经营雷竹林土壤有机质的时空变化 . 浙江农林大学学报, 2007, 24(4): 450-455.
  • 期刊类型引用(7)

    1. 杨鸿玉,孙茂理,陈涛,冯士令,周莉君,丁春邦. 芽苗砧嫁接与扦插油茶营养器官显微结构的比较. 植物资源与环境学报. 2025(01): 42-51 . 百度学术
    2. 谢言兰,宋晓慧,丁婷,李霞,李魁印. 不同激素处理对小果荨麻扦插生根及相关生理指标的影响. 湖南农业科学. 2025(01): 21-27 . 百度学术
    3. 袁振安,杜文婷,刘国华,毛霞,洑香香. 东京四照花嫩枝扦插繁殖及生根过程中生理指标的动态变化. 浙江农林大学学报. 2024(03): 624-633 . 本站查看
    4. 钱家连,李迎超,许慧慧,王茜,秦爱丽,任俊杰,王利兵,于海燕. 不同年龄栓皮栎嫩枝扦插生根及解剖学分析和酶活性变化. 浙江农林大学学报. 2023(01): 107-114 . 本站查看
    5. 樊靖,孙丽娜,张俊林,彭志声,彭悠悠,袁虎威. 金橡树叶冬青组织培养和快速繁殖. 中南农业科技. 2023(07): 30-34 . 百度学术
    6. 王因花,燕丽萍,孔雨光,吴德军,任飞,梁静. 绒毛白蜡嫩枝扦插生根的解剖学特征与内源激素变化. 中南林业科技大学学报. 2023(11): 28-35+52 . 百度学术
    7. 陈霞,蒋淑磊,党风梅,白霄霞,赵玉芬. 生根剂和插条部位对挪威槭‘缤纷秋色’不定根形成的影响. 黑龙江农业科学. 2023(12): 44-49 . 百度学术

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.03.004

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2018/3/412

图(5) / 表(4)
计量
  • 文章访问数:  2996
  • HTML全文浏览量:  630
  • PDF下载量:  344
  • 被引次数: 9
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-06-23
  • 刊出日期:  2018-06-20

不同种桉树人工林土壤呼吸速率时空动态及其影响要素

doi: 10.11833/j.issn.2095-0756.2018.03.004
    基金项目:

    国家重点研发计划项目 2016YFD0600505

    广东省林业科技创新专项资金项目 2013KJCX014-03

    广东省林业科技创新专项资金项目 2014KJCX021-04

    林业科技创新平台运行补助项目 2017-LYPT-DW-137

    作者简介:

    竹万宽, 从事桉树人工林生态定位监测研究。E-mail:zwk_2015@163.com

    通信作者: 杜阿朋, 副研究员, 博士, 从事森林生态学研究。E-mail:dapzj@163.com
  • 中图分类号: S714.5

摘要: 为研究不同种桉树Eucalyptus人工林土壤呼吸速率时空变异特征及其影响要素,估算桉树人工林土壤碳排放通量,测定2016年3月-2017年2月时段内5个不同种桉树林及1个湿加松Pinus elliottii×caribaea林土壤呼吸速率,分析桉树人工林土壤呼吸速率时空变化及其与影响要素的相关关系。结果表明:6个林分土壤呼吸速率时间变化明显,均呈单峰曲线格局;土壤呼吸速率与表层土壤温度符合指数模型,与平均体积含水率符合二次多项式模型(P < 0.001),土壤呼吸速率时间变化受土壤温度和体积含水率共同驱动,温、湿度双因素模型可以解释土壤呼吸速率44.8%~83.9%的变异。土壤呼吸速率的空间变异主要受表层土壤容重、叶面积指数、总孔隙度和非毛管孔隙度的影响,相关性均为极显著(P < 0.01);土壤表面二氧化碳累积通量还受到土壤表层有机碳密度影响,相关性显著(P < 0.05)。尾叶桉E. urophylla林和托里桉E. torelliana林的土壤呼吸速率年均值及土壤表面碳排放年累积通量均显著大于其他林分(P < 0.05),两者之间差异不显著。

English Abstract

朱晓宇, 童婉婉, 赵楚, 等. 冬青‘长叶阿尔塔’扦插生根及解剖学研究[J]. 浙江农林大学学报, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
引用本文: 竹万宽, 陈少雄, RogerARNOLD, 等. 不同种桉树人工林土壤呼吸速率时空动态及其影响要素[J]. 浙江农林大学学报, 2018, 35(3): 412-421. DOI: 10.11833/j.issn.2095-0756.2018.03.004
ZHU Xiaoyu, TONG Wanwan, ZHAO Chu, et al. Root formation and anatomical structure of Ilex × altaclerensis ‘Belgica Aurea’ stem cuttings[J]. Journal of Zhejiang A&F University, 2022, 39(2): 347-355. DOI: 10.11833/j.issn.2095-0756.20210283
Citation: ZHU Wankuan, CHEN Shaoxiong, Roger ARNOLD, et al. Temporal and spatial dynamics of soil respiration and influencing factors in Eucalyptus plantations[J]. Journal of Zhejiang A&F University, 2018, 35(3): 412-421. DOI: 10.11833/j.issn.2095-0756.2018.03.004
  • 土壤是生态圈中的巨大碳库,其碳储量是陆地植被碳库和大气碳库的2~3倍[1];土壤呼吸是土壤碳的主要输出方式,对区域和全球尺度上碳收支的调配至关重要[2],其微小的变化都可能引起大气二氧化碳体积分数的较大变化[3],因此,土壤呼吸对生态系统结构和功能的影响都极其重要。土壤呼吸具有很强的时空异质性[4],受到生物和非生物因子的共同影响[5-10];不同的植被类型会形成群落结构和物种组成差异较大的生态系统,进而使得土壤呼吸受到生态系统生产力、碳分配格局、凋落物和群落小气候的影响而产生变异[11-16]。桉树Eucalyptus是中国华南地区广泛栽植的树种之一,栽植量仅次于杉木Cunninghamia lanceolata和马尾松Pinus massoniana;中国桉树人工林面积居世界第3位,仅次于巴西和印度[17]。桉树速生丰产,用途广泛,经济价值很高;与其他树种相比,桉树人工林碳汇功能更加明显,因而相关研究也颇具活力。目前,对桉树人工林土壤呼吸的研究主要集中在经营模式不同造成的土壤碳排放差异[18],林龄引起的碳转移差异[19-20]等方向,对不同种桉树人工林土壤呼吸及其影响要素的研究尚未见报道。本研究选取雷州半岛5个不同种桉树人工林和1个湿加松Pinus elliottii × caribaea林为研究对象,期望揭示不同种桉树人工林土壤呼吸速率的时空动态变化、土壤呼吸速率与影响要素的关系特征及土壤呼吸时空差异的主要影响要素等,为准确估算桉树人工林土壤碳收支状况提供数据支持。

    • 研究地位于雷州半岛北部,南方国家级林木种苗示范基地境内(21°20′~21°30′N,109°22′~111°38′E)。该地区平均海拔为150.4 m,属于海洋性季风气候;土壤为玄武岩风化发育的砖红壤,土壤肥力中等;年平均气温为23.1 ℃,最热月(7月)平均气温为28.8 ℃,最冷月(1月)平均气温为15.6 ℃;年均降水量为1 567.0 mm,5-7月为雨季,多午后雷阵雨和台风带来的暴雨;年相对湿度为80%,年日照时数为1 937.0 h。2016年5-6月对尾叶桉E. urophylla(EU),粗皮桉E. pellita(EP),托里桉E. torelliana(ET),赤桉E. camaldulensis(EC),尾巨桉E. urophylla × grandis(EUG)和湿加松(PEC)6个林分开展野外调查,林地地势平坦,立地条件相似。样地概况见表 1

      表 1  样地基本概况

      Table 1.  Basic situation of sample plots

      林分 林龄/a 平均树高/m 平均胸径/cm 林分密度/(株·hm-2) 坡度/(%) 坡向 海拔/m 林下主要物种
      EU 15 25.38 ± 0.71 26.56 ± 0.81 524 0 平地 119.6 1, 2, 3, 5, 9, 10, 11
      EP 10 16.80 ± 0.69 17.25 ± 0.71 970 0 平地 92.0 2:3:5:7:9
      ET 10 18.00 ± 0.53 19.60 ± 0.56 810 0 平地 85.8 1, 2, 3, 4, 6, 7, 8, 12
      EC 8 15.28 ± 0.64 10.82 ± 0.48 925 0 平地 98.6 3, 10, 11
      EUG 8 23.15 ± 0.76 18.43 ± 0.24 690 12 南坡 113.0 1, 2, 3, 4, 5, 6, 7
      PEC 15 13.73 ± 0.23 20.60 ± 0.62 599 0 平地 104.7 1, 2, 3, 4, 5, 6, 7, 12
      说明:数据为平均值±标准误。物种编号:1.鹅掌柴Scheffera octophya, 2.龙船花Ixora chinensis, 3.盐肤木Rhus chinensis, 4.马樱丹Lantana carnara, 5.白背叶Mallotus apelta, 6.马唐草Digitaria sanguinalis, 7.白花鬼针草Herba bidentis, 8.胜红蓟Ageratum con-yzoides, 9.五节芒Miscanthus floridulus, 10.草芍药Paeonia obovata, 11.蟛蜞菊Wedelia chinensis, 12.荩草Arthraxon hispidus
    • 土壤呼吸速率测定时间为2016年3月至2017年2月。2016年1月,于6个林地中分别随机设置6个2 m × 2 m的小样方。在每个小样方的对角线交叉位置设置1个内径为20 cm,高12 cm的土壤环作为固定样点,将土壤环底端朝下垂直于地表插入土壤中,保留环顶部距离土壤表面3 cm。安装时应尽量做到一次到位,避免反复操作造成的土壤扰动;同时保证后续监测过程中土壤环位置恒定。安装2个月后,用LI-8100A土壤碳通量自动测定系统(LI-COR)连接20 cm呼吸气室,于每个月中下旬选择无降雨天气测定土壤呼吸速率。开始测定前需检查土壤环安放是否正常,并剪除土壤环内可见植物。测定频率为1次·月-1·林分-1,测定时间为从8:00至18:00,测定间隔为1 h,3次·重复-1。利用仪器自身配置的土壤温度和水分传感器探针同步测定表层土壤(10 cm)温度和土壤湿度(0~10 cm平均体积含水率),以下均称为土壤温度、土壤湿度。

    • 于2016年7月,在各林地土壤呼吸样方附近分别再设置6个1 m × 1 m凋落物小样方。剪除小样方内植物活体后收集地表全部凋落物,混合均匀并标记;除去动物粪便、石砾和昆虫等杂物,用牛皮纸包裹,在65 ℃烘箱中烘干直至质量不变;机械磨碎过筛,待测。在每个凋落物样方下挖取土壤剖面,划分土壤深度0~10,10~20,20~40和40~60 cm等4层[21]进行单独取样。环刀(100 cm3)法采集自然状态下土壤样品,测定土壤容重、孔隙度和持水量等性质。同时每层另取约300 g土壤样品去除根、石头等杂物后按质量比混合均匀,装袋标记后带回实验室,风干,粉碎过100目筛。用重铬酸钾氧化-容量法测定土壤和凋落物有机碳质量。同期采用Hemiview冠层分析系统在各个凋落物样方处测定叶面积指数(LAI),3次·重复-1,测定均在晴天无风的清晨、傍晚或阴天进行,以减少散射造成的误差。

    • 土壤呼吸速率与土壤温度的关系采用指数经验模型描述[22]:$f\left( R \right) = a{{\rm{e}}^{bT}} $。土壤呼吸速率与土壤湿度的关系采用二次项模型描述[23]:$ f\left( R \right) = a{h_{\rm{r}}}^2 + b{h_{\rm{r}}} + c$。土壤呼吸速率与土壤温、湿度双变量模型采用指数符合模型描述[23]:$ f\left( R \right) = a{{\rm{e}}^{bT}}{h_{\rm{r}}}^c$。各式中:fR)为土壤呼吸速率(μmol·m-2·s-1);T为表层土壤温度(℃);hr为土壤湿度(%);abc为方程拟合参数。

      温度敏感性指数Q10采用指数模型描述[24-25]Q10=e10b

      土壤呼吸速率与土壤容重、孔隙度、有机碳密度、凋落物有机碳储量和叶面积指数的相关性分析根据各桉树林分2016年7月实测数据进行处理,用于确定引起桉树林分土壤呼吸空间变异的主要因素。

      观测期间各林分土壤表面碳排放累积通量(g·m-2·a-1)估算方法:以1 h为步长,通过温度单变量和温度、湿度双变量指数模型与连续动态监测的土壤温度、湿度数据建立方程,估计土壤呼吸连续数据累加获得。

      数据分析利用统计软件SPSS 19.0。图或表均由Excel 2007处理获得。

    • 在观测期内,6个林分土壤呼吸速率的月变化特征明显,均呈现单峰曲线趋势(图 1)。各月之间平均土壤呼吸速率均存在显著性差异(P<0.001)。不同林分土壤呼吸速率随月份逐渐上升,在2016年5-7月出现最高值;之后逐渐下降,在2016年12月至翌年2月出现最低值。由LSD多重比较可知,观测期内6个林分土壤呼吸速率均值EU为(3.46 ± 0.41)μmol·m-2·s-1,EP为(2.15 ± 0.18)μmol·m-2·s-1,ET为(3.72 ± 0.20)μmol·m-2·s-1,EC为(2.14 ± 0.15)μmol·m-2·s-1,EUG为(2.34 ± 0.21)μmol·m-2·s-1,PEC为(2.33 ± 0.17)μmol·m-2·s-1;EU和ET之间不存在显著差异(P>0.05),但两者均显著大于其他林分(P<0.05),EP,EC,EUG和PEC之间无显著差异。

      图  1  不同林分土壤呼吸速率月动态变化

      Figure 1.  Monthy variation of soil respiration rate in different stands

    • 6个林分土壤温度月变化表现为单峰曲线趋势(图 2),12个月份间平均土壤温度具有极显著差异(P<0.01)。观测期初期,土壤的温度不断升高,各林分土壤温度在6月达到最大值。2016年7月至翌年2月,土壤温度逐渐降低,各林分土壤温度在翌年2月达到最小值。观测期内各林分平均土壤温度分别为EU为(27.11 ± 0.37)℃,EP为(27.33 ± 0.40)℃,ET为(26.54 ± 0.38)℃,EC为(27.10 ± 0.43)℃,EUG为(26.61 ± 0.40)℃,PEC为(26.46 ± 0.42)℃,均无显著差异(P>0.05)。各林分土壤湿度月变化表现为双峰曲线趋势(图 3)。观测初期先升高后降低,在5-7月达到谷值,之后出现回升趋势。观测期内平均土壤湿度分别为EU为14.93% ± 0.45%,EP为14.46% ± 0.29%,ET为13.22% ± 0.31%,EC为11.65% ± 0.30%,EUG为15.13% ± 0.43%,PEC为12.80% ± 0.50%。EU,EP和EUG三者间差异不显著,但均显著高于其他林分(P<0.05);ET和PEC差异显著(P<0.01),且均显著高于EC(P<0.05)。

      图  2  不同林分土壤温度月动态

      Figure 2.  Monthy variation of soil temperature in different stands

      图  3  不同林分土壤湿度月动态

      Figure 3.  Monthy variation of soil moisture in different stands

    • 表 2可知:土壤容重仅在表层(0~10 cm)出现差异,其中EU显著大于其他林分(P<0.05);ET和PEC无显著差异,但均显著大于EP(P<0.05);EP,EC和EUG之间无显著差异。土壤总孔隙度、毛管孔隙度和非毛管孔隙度均为表层土壤不同林分间差异最大,深层土壤差异较小。土壤有机碳质量分数除10~20 cm土层外其他均存在不同程度的差异性,且均表现为ET最大,EU最小。

      表 2  不同林分土壤容重、孔隙度及有机碳质量分数

      Table 2.  Comparison of soil bulk density and soil organic carbon content in different stands

      林分 容重/(g·cm-3) 总孔隙度/% 毛管孔隙度/% 非毛管孔隙度/% w有机碳/(g·kg-1)
      0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60 0~10 10~20 20~40 40~60
      EU 0.84 ± 0.03 c 0.98 ± 0.02 a 0.99 ± 0.06 a 1.08 ± 0.06 a 62.38 ± 1.74 a 57.42 ± 1.29 a 57.34 ± 1.82 a 56.50 ± 21.63 ab 50.28 ± 0.68 bc 50.33 ± 1.42 a 49.01 ± 1.14 a 52.20 ± 0.99 a 5.01 ± 0.99 c 7.88 ± 2.58 a 6.02 ± 1.45 a 2.72 ± 0.15 a 22.34 ± 1.08 c 18.22 ± 1.10 a 11.36 ± 1.21 c 7.82 ± 0.76 c
      EP 1.07 ± 0.03 a 1.00 ± 0.07 a 1.04 ± 0.04 a 1.01 ± 0.02 a 55.29 ± 1.62 c 58.21 ± 3.39 a 55.03 ± 1.63 a 54.91 ± 0.96 ab 52.30 ± 0.87 ab 48.65 ± 1.09 a 49.86 ± 1.06 a 51.50 ± 1.79 a 10.08 ± 1.01 ab 8.77 ± 1.51 a 7.48 ± 2.54 a 5.02 ± 2.60 a 28.49 ± 1.79 bc 22.10 ± 3.00 a 15.34 ± 3.35 ab 15.34 ± 3.35 ab
      ET 0.89 ± 0.02 bc 0.99 ± 0.07 a 1.05 ± 0.02 a 1.01 ± 0.02 a 60.24 ± 1.10 ab 56.04 ± 1.94 a 57.12 ± 0.82 a 59.07 ± 1.15 a 50.69 ± 0.73 b 48.93 ± 1.35 a 49.54 ± 1.35 a 50.54 ± 1.30 a 6.70 ± 0.37 bc 6.76 ± 1.04 a 4.90 ± 1.37 a 3.75 ± 1.40 a 37.43 ± 3.01 a 37.43 ± 3.01 a 20.86 ± 1.28 a 20.31 ± 0.78 a 17.23 ± 2.04 a
      EC 0.97 ± 0.01 b 0.99 ± 0.02 a 1.04 ± 0.03 a 1.07 ± 0.01 a 59.94 ± 0.93 ab 57.98 ± 3.08 a 55.45 ± 0.32 a 57.56 ± 1.27 ab 49.52 ± 1.52 bc 47.98 ± 1.39 a 52.12 ± 1.10 a 53.31 ± 3.76 a 10.41 ± 1.74 ab 9.99 ± 2.51 a 3.34 ± 0.78 a 4.26 ± 2.49 a 27.70 ± 0.87 bc 27.70 ± 0.87 bc 22.52 ± 0.56 a 15.21 ± 1.92 abc 11.06 ± 1.14 abc
      EUG 0.92 ± 0.04 bc 1.02 ± 0.04 a 1.07 ± 0.03 a 1.03 ± 0.08 a 58.96 ± 1.47 abc 55.53 ± 0.30 a 55.56 ± 0.78 a 56.62 ± 1.78 ab 47.68 ± 0.16 c 47.45 ± 0.80 a 49.14 ± 1.25 a 53.56 ± 3.05 a 11.28 ± 1.50 a 8.08 ± 0.81 a 6.42 ± 1.39 a 3.07 ± 2.23 a 33.09 ± 3.77 ab 33.09 ± 3.77 ab 18.37 ± 13.72 ± 1.33 bc 10.22 ± 1.97 bc
      PEC 0.95 ± 0.03 b 1.07 ± 0.04 a 1.04 ± 0.01 a 0.94 ± 0.02 a 57.39 ± 0.73 bc 55.69 ± 1.01 a 54.44 ± 0.36 a 54.30 ± 1.07 b 53.44 ± 0.49 a 49.89 ± 0.87 a 50.11 ± 0.78 a 52.76 ± 1.86 a 6.80 ± 1.22 bc 6.14 ± 2.20 a 7.01 ± 0.69 a 6.31 ± 0.77 a 26.68 ± 2.02 bc 26.68 ± 2.02 bc 20.77 ± 1.85 a 14.56 ± 2.15 abc 9.70 ± 2.03 bc
      说明:数值为平均值±标准误。同列不同小写字母表示不同林分间差异显著(P < 0.05)
    • 6个林分总有机碳密度(图 4)依次为EU 6.16 kg·m-2,EP 8.08 kg·m-2,ET 9.65 kg·m-2,EC 7.38 kg·m-2,EUG 7.37 kg·m-2,PEC 7.16 kg·m-2;ET与EP无显著差异,但显著高于其他4个林分(P<0.05)。表层土壤有机碳密度ET林分显著高于其他林分(P<0.05);10~20 cm土层有机碳密度6个林分间均无显著差异;20~40 cm土层ET显著高于EU(P<0.05),但两者与其他林分均无显著差异;40~60 cm土层ET与EP无显著差异,但ET显著高于其他林分(P<0.05),EP与EC,EUG无显著差异,但EP显著高于EU和PEC(P<0.05)。

      图  4  不同林分土壤有机碳密度比较

      Figure 4.  Comparison of soil organic carbon in different stands

    • 图 5可知:6个林分叶面积指数为0.95~1.37,EU和ET差异不显著,但均显著高于其他林分(P<0.05);EP显著高于PEC(P<0.05),其他差异不显著。不同桉树林凋落物有机碳密度为0.40~0.85 kg·m-2,PEC为0.43 kg·m-2,EU,EP和EUG三者间无显著差异,但均显著高于EC(P<0.05);EP显著高于ET和PEC(P<0.05),ET与PEC差异不显著。

      图  5  不同林分叶面积指数及凋落物有机碳储量

      Figure 5.  Comparison of leaf area index (LAI) and litter organic carbon storage in different stands

    • Person相关性分析表明(表 3),在观测期内各林分土壤呼吸速率与土壤温度均为极显著正相关(P<0.01);与土壤湿度均为负相关关系,除EC为显著外其他林分均为极显著。各林分一致表现出土壤呼吸速率与土壤温度的相关性高于他与土壤湿度的相关性,说明土壤温度对土壤呼吸速率的影响比湿度更大。土壤呼吸速率与土壤温度、湿度的指数关系、二次多项式关系均达到极显著水平(P<0.001)。土壤温度、湿度双因子模型在EU,EP,EC和EUG林分中拟合度较单一因子高,说明土壤呼吸速率受到土壤温度、湿度的综合作用。决定系数R2越大表明模型的拟合程度越好,其百分数可以用来解释影响因子对土壤呼吸速率的变异程度。由表 4可知:土壤温度解释不同种桉树林分土壤呼吸速率43.7%~75.8%的变异,均低于PEC(79.8%)。土壤湿度解释不同种桉树林分土壤呼吸速率18.3%~50.9%的变异,而PEC为41.2%。土壤温度、湿度双因子对桉树林分土壤呼吸变异的解释能力为44.8%~83.9%,对照PEC为78.7%。桉树林分土壤呼吸的温度敏感性Q10值为1.42~1.99,PEC为1.60。

      表 3  土壤呼吸速率与土壤温度、湿度的关系

      Table 3.  Relationship between soil respiration rate and soil temperature and moisture

      林分 $f\left( R \right) = a{{\rm{e}}^{bT}} $ $f\left( R \right) = a{h_{\rm{r}}}^2 + b{h_{\rm{r}}} + c $ $f\left( R \right) = a{{\rm{e}}^{bT}}{h_{\rm{r}}}^c $ Q10
      a b R2 r a b c R2 r a b c R2
      EU 0.487 0.069 0.437 0.628** -0.030 1.019 -4.251 0.443 0.507** 0.421 0.042 0.358 0.448 1.99
      EP 0.488 0.053 0.630 0.817** -0.010 0.375 -1.069 0.378 0.568** 0.294 0.044 0.288 0.751 1.70
      ET 1.442 0.035 0.638 0.781** -0.022 0.678 -1.009 0.387 0.432** 1.269 0.029 0.114 0.614 1.42
      EC 0.635 0.044 0.758 0.851** -0.018 0.491 -0.923 0.183 0.173* 0.407 0.042 0.201 0.761 1.55
      EUG 0.381 0.066 0.754 0.893** -0.014 0.480 -1.441 0.509 0.531** 0.270 0.054 0.256 0.839 1.93
      PEC 0.631 0.047 0.798 0.884** -0.013 0.418 -0.769 0.412 0.315** 0.569 0.045 0.067 0.787 1.60
      说明:R2为方程拟合优度, 即决定系数; r为土壤呼吸与土壤温度、湿度经Pearson相关性分析所得相关系数; *表示P<0.05;**表示P<0.01

      表 4  土壤呼吸速率与土壤性质、凋落物及叶面积指数的相关性

      Table 4.  Correlation between soil respiration rate and soil properties, litter organic carbon storage and leaf area index (LAI)

      土层/cm 相关性分析
      容重 总孔隙度 毛管孔隙度 非毛管孔隙度 有机碳密度 凋落物有机碳密度 叶面积指数 土壤温度 土壤湿度
      0-10 -0.752** 0.622** 0.024 0.611** 0.434 -0.109 0.681** -0.054 0.211
      10~20 -0.149 0.165 0.434 -0.105 0.327
      20-40 0.161 -0.360 -0.161 -0.149 0.174
      40-60 0.164 -0.453 -0.071 -0.304 0.133
      说明: **表示P<0.01, *表示P<0.05
    • 对5个桉树林分土壤呼吸速率与土壤性质、凋落物有机碳密度、叶面积指数和土壤温度、湿度的相关性分析表明,土壤呼吸速率与表层土壤容重、总孔隙度和非毛管孔隙度呈极显著相关(P<0.01),说明土壤呼吸速率与表层土壤物理性质关系密切,与土壤有机碳质量分数、凋落物有机碳质量分数均无显著相关性,与叶面积指数呈极显著正相关(P<0.01),且随叶面积指数呈线性增加趋势,模型拟合度达到R2=0.468,与土壤温度、湿度相关性均不显著。

    • 各林分土壤表面碳排放通量:EU为(1 333.42 ± 8.19)g·m-2·a-1,EP为(804.18 ± 3.82)g·m-2·a-1,ET为(1 408.94 ± 5.23)g·m-2·a-1,EC为(804.98 ± 4.55)g·m-2·a-1,EUG为(893.31 ± 5.97)g·m-2·a-1和PEC为(891.15 ± 4.95)g·m-2·a-1。其中EU和ET无显著差异,但均显著高于其他林分(P<0.05)。相关性分析表明:各林分7月土壤表面碳排放通量与表层土壤容重存在极显著负相关关系(P<0.01),与表层土壤总孔隙度和非毛管孔隙度存在极显著正相关关系(P<0.01),与表层土壤有机碳密度呈显著正相关关系(P<0.05),相关系数分别为0.743,0.693,0.644和0.484。

    • 土壤二氧化碳主要来源于微生物分解土壤有机质和植物根系呼吸,土壤温度会影响土壤微生物活性和植物呼吸酶的活性,进而影响土壤呼吸速率[25-26];而土壤微生物和植物根系的生命活动直接受到土壤含水率的调控[27],因而土壤含水率对土壤呼吸的影响也是十分重要的。本研究中6个林分的土壤呼吸速率月变化一致,均表现为单峰曲线格局,与土壤温度月变化符合极显著的指数关系,与土壤体积含水率月变化符合极显著的二次多项式关系(P<0.001)。6个林分土壤呼吸最大值出现在5-7月,比其他亚热带林分[17, 23, 28-29]的7-8月要早,可能是由于研究区土壤温度从5月即开始接近年均最大值,升温早于其他地区,导致土壤呼吸变化提前;最小值出现在土壤温度、湿度均接近年均最小值的12月和翌年1-2月,与其他亚热带林分相似。

      Q10可以反映土壤呼吸对土壤温度的敏感程度。陈光水等[30]的研究表明:中国森林土壤呼吸Q10值为1.33~5.53,平均值为2.65。本研究结果为1.42~1.99,与之相符合,但处于偏低水平。吴蒙[28]对桂林尧山桉树的研究发现:20年生桉树Q10值为2.53,4年生桉树为2.41,均比本研究结果高;原因可能是研究区年均温度较高,土壤呼吸温度敏感性与土壤温度存在显著负相关关系[31],导致土壤呼吸温度敏感性低于其他地区。

    • 土壤呼吸作用的物质基础源于光合作用,植物根系呼吸作用要依赖于植物地上部分光合产物的分配;研究发现土壤呼吸速率与植被净初级生产力存在显著正相关关系[32],叶面积的大小及分布直接影响着林分对光能的截获和利用,进而影响林分生产力[33]。本研究发现:5个桉树林分的土壤呼吸速率随叶面积指数的增大呈线性增加趋势,与BOND-LAMBERTY等[34]研究结果相同,认为两者之间存在极显著正相关关系。REICHSTEIN等[35]也证实了标准条件下的土壤呼吸速率与叶面积指数之间也存在很强的相关性。

      土壤孔隙度的大小与土壤通透性有关,会影响土壤有机质的分解速率和规模,进而影响土壤呼吸速率[36],是指示土壤结构优劣的一个重要指标。土壤容重反映了土壤呼吸排放通道的顺畅程度[37]。本研究中5个桉树林分的土壤呼吸速率与土壤表层(0~10 cm)容重呈极显著负相关,这是因为土壤是多孔系统,植物根系和土壤微生物呼吸释放的二氧化碳多聚集在这些空隙中,容重越大,孔隙度会相应减小,进而阻碍了气体扩散的物理学进程[38]。本研究中,土壤呼吸速率与土壤总孔隙度呈极显著正相关关系,与宋启亮等[39]、王建国[40]的研究结果相似。土壤呼吸速率与土壤非毛管孔隙度呈极显著正相关,推测原因是非毛管孔隙具有通气透水性,有利于土壤微生物的呼吸作用,从而有助于土壤有机质的分解。

      异氧呼吸在土壤呼吸中所占的比例范围因地域不同变异较大,热带和温带森林为30%~83%,寒冷地区为7%~50%[41]。土壤有机碳作为异氧呼吸的物质基础,其对土壤呼吸的影响不容忽视。本研究中5个桉树林分土壤呼吸速率与土壤有机碳质量分数呈正相关性,与王国兵等[42]研究结果相似。土壤表面碳排放通量与土壤表层有机碳密度呈显著正相关,与韩营营等[43]对白桦Betula platyphylla天然次生林的研究结果一致;推测其原因可能是研究区位于热带地区,表层土壤温度较高,适宜土壤微生物的代谢活动,且表层土壤有机碳密度较高,微生物异氧呼吸有更多的物质来源,因而促进了土壤二氧化碳的释放[44-46]

      本研究中所有林分土壤呼吸速率年均值为2.14~3.72 μmol·m-2·s-1,比华南地区杉木(2.13 μmol·m-2·s-1[47]和马尾松人工林(2.07 μmol·m-2·s-1)要高;除EU(3.46 μmol·m-2·s-1)和ET(3.72 μmol·m-2·s-1)外,其他4个林分均低于雷蕾等[48]、梁国华等[49]对马尾松人工林的研究结果亦低于中国森林土壤呼吸年通量平均值(约2.58 μmol·m-2·s-1[30]。由于EU和ET林分具较高的叶面积指数,叶面积指数表征林分生产力,因此光合作用强度高于其他4个林分,根呼吸强度亦高于其他4个林分,故叶面积指数可能是EU和ET林分土壤呼吸高于其他林分的主导因素。研究发现:5个桉树林分土壤呼吸速率与表层土壤容重、总孔隙度及非毛管孔隙度与土壤呼吸均存在极显著相关关系,故可认为土壤呼吸速率空间异质性受到多因素综合影响。

参考文献 (49)

目录

/

返回文章
返回