-
古树名木是指在人类历史过程中保存下来的具有重要科研、历史、文化价值的树木,是环境的重要组成部分,更是珍贵的不可再生的自然和文化遗产[1]。其文化价值体现在它是区域自然变化及社会发展历史的重要足迹[2],是研究区域自然地理变迁中植被区系及其演化的活化石[3],也是研究古代地理和气候的重要依据[4]。自乡村振兴战略提出以来,各地区都把古树名木、古村落、古民居纳入了重点保护对象,这既是对古树名木重要性的体现,同时也说明古树名木集多重价值于一体的综合性作用越来越受到关注。2016年,国家绿化委员会启动全国第二次古树名木普查,建档立户,大多数古树名木重新确立了身份信息。在古树名木普查和乡村振兴战略中最关键的因素是确定古树的树龄,因古树划分标准严格按照自身生长年龄划分,100~299 a为三级古树;300~499 a为二级古树;≥500 a以上的为一级古树。而名木不受年龄限制,且多数树龄有较为清楚的记载。目前,对古树树龄的鉴定主要有文献追踪法、14C交叉定年法、生长锥测定法、CT扫描法等[5-7],但这些方法存在误差大、成本高、耗时长、破坏性大等缺陷,且树龄较大的古树树干部分存在不同程度的空心、腐烂症状,对树心和年轮取样会造成困难。相关学者对古树树龄的估算研究较少,大多数只分析古树资源特征和分布格局[8],古树的资源现状和利用[9],也有学者通过分析梵净山周边地区孑遗植物的古树生长情况与地理分布格局,来解释孑遗植物生境及避难所的具体位置,并提出就地保护策略[10],而对如何快速、准确估算古树树龄的探索相对缺乏。古树树龄的持续性增长得益于健康的生长环境,无病虫害,还有适合的土壤、水热、光照等是影响古树生理发育的关键因素,而这些因素在地理实体中表现较为密切,不同海拔、不同地理坐标下古树的生长环境差异性较大。古树自身不同生态特征也直观反映古树树龄的大小,如古树的冠幅、胸围和树高不同,其树龄也不尽相同。基于此,本研究对广安市古树名木资源进行了调查,并利用最小二乘法(OLS)模型、地理加权回归模型(GWR)、多元线性回归模型(MRL)等分析了古树树龄与自身生态特征(树高、胸围、平均冠幅)、生长环境(海拔、坡度)之间的回归强度,以期为准确、快捷估算古树树龄提供科学依据。
-
广安市(30°01′~30°84′N,105°56′~107°29′E)位于四川省东部,海拔为195~1 657 m,坡度为0~68°,属典型的川东丘陵地貌区(图1)。该区植被资源丰富,截止目前森林覆盖率达38.5%。古树名木资源有享誉全省的黄桷树Ficus virens var. sublanceolata、银杏Ginkgo biloba、桢楠Phoebe zhennan等。全市古树名木资源主要为黄桷,共计638株,树龄为100~1 500 a,平均树龄为161 a;银杏46株,最小树龄37 a,最大树龄达1 000 a,平均树龄为150 a;柏木Cupressus funebris 32株,树龄为120~350 a,平均树龄为317 a;皂荚Gleditsia sinensis 15株,最小树龄为100 a,最大树龄为250 a,平均树龄为134 a。
-
以广安市2017年古树名木普查数据为基准,结合实地调查、复核校正数据为最终研究数据。树高采用深达威手持式激光测距望远镜(SW-1200A)测定,精度±1.00 m;胸围、冠幅采用专业测量皮尺、大型游标卡尺测定,精度分别为±0.50 cm、±0.05 mm。树龄根据LY/2738−2016[11]的文献追踪法、年轮与直径回归估测、针测仪测定法、访谈估测法的顺序测定。
-
数字高程模型(DEM)来源于91卫图助手企业版,空间分辨率为30 m,坐标投影GCS WGS 1984。交通、水系数据来源于地理数据空间云(www.gscloud.cn)。地理经纬度、海拔、坡度信息采用GPS测定。
-
标准差椭圆分布又称利菲弗方向性分布,是定量分析点要素空间分布的常用方法[12]。由方位角、主轴(长轴)、和辅轴(短轴)等要素构成[13]。主轴长半轴代表数据的分布方向,辅轴短半轴代表数据分布的范围。若长短半轴差值越大,则标准差椭圆形状就越扁,数据分布的方向性就越明显,同时,椭圆面积大小可直观反映要素的空间格局集中程度。主要计算公式参见文献[14-15]。
-
地理加权回归是一种用于建模空间变化关系的线性回归的局部形式,作为若干空间回归技术中的一种,越来越多的用于地理学及其他学科。该模型的优点在于能够反映参数在不同空间的非平稳性,使变量间的关系可以随空间位置的变化而变化,其结果更符合客观实际,能真实反映局部变化情况[16-18]。本研究将在最小二乘法(OLS)模型诊断的基础上选择最优模型表达式,借鉴相关文献[19]对模型优化表达。
-
利用筛选后的数据,以树龄为因变量,树高、平均冠幅、胸围、海拔和坡度作为自变量,研究因变量对自变量的影响程度。其模型表达式如:
$y = \sum\limits_{i = 1}^n {{\xi _n}} {x_n} = {\xi _0} + {\xi _1}{x_1} + $ $ {\xi _2}{x_2} +\cdots+ {\xi _n}{x_n}$ 。其中:y表示树龄,${x_1},{x_2},\cdots,{x_n}(n = 5)$ 分别表示树高、胸围、平均冠幅、海拔和坡度,${\xi _0}$ 为常数项或截距,${\xi _1},\cdots,{\xi _n}$ 为回归系数。 -
研究区黄桷树638株,占到全部树种数量的79.85%;银杏46株,占5.75%;柏木32株,占4%;皂荚和桂花分别为15、14株,其他树种均小于10株。根据数据样本容量,选择信息量最大的黄桷树作为建模基础数据,而研究区原始古树名木数据作为空间分布的数据来源。对638株黄桷树的树龄、树高、胸围、平均冠幅、海拔和坡度进行描述性统计分析,并进行异常值剔除,最终得到494株分析样本(表1)。
表 1 广安市古树资源数据处理前后描述性统计表
Table 1. Descriptive statistics of ancient tree resources before and after data processing in Guang’an City
指标 处理前(n=638) 处理后(n=494) 树龄/a 树高/m 胸围/cm 平均冠幅/m 海拔/m 坡度/(°) 树龄/a 树高/m 胸围/cm 平均冠幅/m 海拔/m 坡度/(°) 均值 161.18 55.02 306.64 15.47 350.4 5.11 149.43 53.88 312.15 14.81 347.60 1.18 标准差 78.05 33.89 186.64 6.17 62.94 11.58 45.53 34.40 178.08 5.36 59.42 2.84 偏度 7.03 0.41 0.94 0.51 0.09 3.58 0.99 0.49 0.61 0.18 0.10 2.28 峰度 100.05 −0.65 0.70 0.08 0.04 16.53 0.06 −0.58 −0.61 −0.65 −0.13 3.77 -
根据古树名木生长位置信息、生长势和周边景观类型,利用ArcGIS 10.6分析古树名木的空间密度和分布方向。由图2A~D可知:古树名木的密集区集中在邻水中部、华蓥南部、前锋中部、广安南部、岳池东部和南部以及武胜南部,且密集区域涵盖了所有政府驻地所在点。稀疏区主要位于华蓥山脉两侧过渡区及岳池县西北部。
-
古树名木总体分布以西北的岳池县,横穿广安市、前锋区、华蓥市到东南的邻水县,乡村长轴为0.047,短轴为0.025,扁率为0.469,表明在乡村生长场所主要以东西经向分布;城市生长场所长、短轴分别为0.025、0.010,扁率达0.619,可知古树名木城市生长场所方向性明显。同时,乡村、城市分布面积分别是3 711.687和779.567 km2,说明古树名木80%以上分布在乡村。从生长坡位可知:古树名木主要分布在平地,其次为中部和上部,但坡位分布方向差异较大,上、下、中、山脊、脊部南北纬向分布特别明显,而下部、中部和平地主要以东西经向分布为主。
-
生长势和生长环境是评价古树名木生态状况的2个重要指标。研究区古树名木总体上正常株大于衰弱株,其面积分别为3 407.952和2 746.480 km2。空间分异上正常株主要位于华蓥山山脉东西两侧,涵盖邻水县、华蓥山、前锋和广安南部区;衰弱株则分布在西北方向的岳池、武胜县。其扁率分别为0.490、0.257,表明正常株空间分布方向性更明显。生长环境好的以南北纬向分布,其扁率为−1.142;生长环境中、差的以东西经向分布明显,扁率分别为0.549、0.203。
-
由图2A~2F可知:标准差椭圆覆盖了东南部的大洪河水系、中部的渠江流域、及西部的嘉陵江流域,古树名木沿河分布密集;西部沿邻水县的垫邻高速(垫江—邻水)、304省道分布;中部沿304省道、遂广高速(遂宁—广安)、银昆高速(银川—昆明)分布;西部沿岳广华快速通道、G75兰海高速(兰州—海口)分布。海拔、坡度均是长半轴大于短半轴,方位角分别为117.491°、118.757°,扁率分别为0.498和0.587,表明在海拔和坡度上以高海拔的垂直地带性带状分布明显,同时,东南部高海拔区明显多于西南部低海拔区,经向差异较为突出。
-
标准差椭圆法显示:古树名木涵盖了研究区政府驻地、红色旅游地以及大部分乡镇府所在地,呈以政府驻地为中心向外扩散的圈层结构,尤其是三级古树圈层结构明显(图2A~F);主要原因是古树名木作为城市生态景观、乡村旅游振兴和红色旅游观光的植被载体具有重大的经济、文化和历史价值,其主体具有多元价值性。同时,也是人类活动变迁、气候变化的重要生态足迹指示器。
-
由表2可知:OLS模型和GWR模型的决定系数(R2)分别为0.249、0.282,GWR模型比OLS模型精度提高了13%,而且阿凯克信息准则(AICc)和Sigma值均比OLS模型小。可见,选择GWR模型,精度更优[20]。因此,本研究对古树树龄估算采用了GWR模型,效果明显优于OLS模型。
表 2 OLS模型和GWR模型结果统计
Table 2. Statistical table of results of OLS model and GWR model
模型 Sigma值 决定系数(R2) 阿凯克信息准则(AICc) OLS 0.636 0.249 5 180.298 GWR 0.485 0.282 5 100.239 -
GWR模型回归系数在空间上的变化趋势,可通过样点因变量与各个解释变量之间的空间变异强弱表现出来[21]。结合ArcGIS 10.6中分级色彩,采用自然间断点分级法对GWR模型回归系数进行空间展示(图3A~F)。标准化残差显示:GWR模型残差值在[−2.5,2.5]变动,且大部分区域残差值为[−0.5,0.5],说明整体模型模拟效果较好。
-
树高对树龄呈正相关,相关系数为0.111(表3),空间上呈团簇状分布,差异较为明显(图3B)。前锋区、华蓥市、邻水县北部受树高影响较大,而以华蓥山脉为界的东南部树龄受树高影响较小。中部广安区树高对树龄的回归系数为0.26~1.50,且向西呈递减趋势,到西南部的武胜县树高对树龄的影响又达到最大值。
表 3 古树生态学特征的Pearson相关性分析
Table 3. Pearson correlation analysis of ecological characteristics of ancient trees
指标 树龄 树高 胸围 平均冠幅 海拔 坡度 树龄 1.000 0.111 ** 0.174 ** 0.203 ** −0.012 0.016 树高 0.111 ** 1.000 0.201** 0.457 ** −0.066 0.181** 胸围 0.174** 0.201** 1.000 0.429 ** −0.217** −0.189 ** 平均冠幅 0.203 ** 0.457 ** 0.429 ** 1.000 0.016 0.011 海拔 −0.012 −0.066 −0.217** 0.016 1.000 0.043 坡度 0.016 0.181** −0.189 ** 0.011 0.043 1.000 说明:*表示在0.05水平上相关显著,**表示在0.01水平上相关极显著 -
胸围对树龄呈正相关。胸总体呈低海拔区域向高海拔区域递减,西部总体大于东部,北部大于南部,这与Pearson相关性分析高度一致,海拔与胸围呈显著负相关关系(表3)。
-
平均冠幅对树龄呈高度的正相关关系(表3)。区域间差异较为明显,华蓥山山脉区域的平均冠幅总体影响程度低于西南部的武胜县和岳池县,广安区和岳池县交界处海拔较高地段平均冠幅对树龄影响也较大。表明平均冠幅随着海拔的增加对古树树龄影响的程度在减弱。这与OLS模型中,平均冠幅与树龄、海拔的相关关系极度吻合,同时,与胸围对树龄的空间影响趋同。
-
海拔单一因素对树龄影响较小,总体呈负弱相关关系(表3)。从图3E可知:海拔对树龄的回归系数为−2.12~3.06,广安东部、前锋北部、武胜、岳池区域海拔与树龄呈正相关关系,该区域属研究区内海拔低点,而东部华蓥山脉海拔较高地段普遍回归系数较低。表明海拔对古树树龄的影响较弱、甚至是负相关关系。
-
坡度与树龄呈正相关关系,相关系数为0.016(表3),华蓥山中部、广安区北部坡度较大区域尤其明显。而武胜地势平坦、坡度较小区域回归系数较弱。表明一定坡度区域对古树生长存续、树龄增加起到积极作用。主要原因是坡度大的区域土壤透水性较好,人类活动影响较小,完全保留了古树自然生长发育、自然新陈代谢和自然生态更新的过程。
-
采用Origin进行多元回归分析显示:树龄(y)与树高(x1)、胸围(x2)、平均冠幅(x3)、海拔(x4)和坡度(x5)的回归方程为
$y = 118.742 + 0.343{x_1} + 0.573{x_2} + 1.267{x_3} - 0.016{x_4} + 0.026{x_5}$ 。多元回归方程自变量标准误均小于0.5,且全部通过5%水平下的t检验,说明模型符合多元回归分析的精度要求。平均冠幅与树龄呈正相关关系。而海拔与回归方程呈负相关关系,树高、胸围、坡度均与树龄回归呈正相关关系。表明古树这一特定时期的综合性景观产物,在积极的人为干扰下,对古树的延续、发育和保护起到了明显促进作用。同时,在实地调查中发现:海拔较低、人口密集区域,古树受到当地政府和相关管理机构重视,对古树做了不同程度的保护措施,如砌树池、土壤改良、松土、挂牌等;而高海拔人口稀少地区古树保护工作较少,部分古树存在树洞空心、树兜腐烂、枝残叶落的衰弱现象,无法及时保护和治理,导致较大年龄的古树自然死亡。 -
多元线性回归模型(MLR)进行拟合发现:MLR模型的拟合度R2为0.799,拟合精度较高,高于GWR模型的0.502(图4A~B)。MLR模型和GWR模型对300 a以下的树龄拟合效果较好。表明在树龄总体年龄不大(小于300 a)的情况下,模型对树龄的估算精确度较高。
-
广安市古树名木以政府驻地、交通走廊、水系河流分布为主;乡村古树总量大于城市,地形分布上以平地居多,名木集中分布于红色旅游地。GWR模型综合模拟效果优于OLS模型。且各解释变量回归系数强度空间差异明显,尤其是平均冠幅、胸围、树高对树龄回归响应较强,其中平均冠幅是最大影响因素;海拔与树龄为负相关关系,而坡度与树龄呈正相关趋势。树龄与树高、胸围、平均冠幅、海拔、坡度的多元线性回归方程符合精度要求,且MLR模型各系数回归强度与GWR模型高度一致,模拟精度较高,2种模型都能较好地模拟树龄300 a以下的古树。
Age estimation and spatial distribution characteristics of ancient and famous trees in Guang’an City, Sichuan Province
-
摘要:
目的 广安市古树名木众多。研究古树名木地理分布特征、树龄与生长环境及生态因子间的关系,对古树名木保护具有重要意义。 方法 利用标准差椭圆了解古树名木分布特征,通过地理加权回归模型(GWR)和多元线性回归模型(MLR)模拟树高、胸围、平均冠幅、海拔和坡度对树龄的回归强度。 结果 ①广安市古树名木沿水系、山脉、交通线呈线状分布;政府驻地、红色旅游区向外扩散呈圈层结构;乡村多于城市,平地占主导;正常株多于衰弱株,生长环境适中;高海拔区多于低海拔区,垂直差异明显。②地理加权回归模型优于普通最小二乘法模型(OLS),平均冠幅、胸围、树高是影响树龄的关键因素,坡度对树龄影响较小,海拔与树龄呈负相关关系。③多元线性回归模型相关系数比地理加权回归模型高0.297,各解释变量与回归变量的系数强度同地理加权回归模型高度一致,且对300 a以下的古树树龄估算精度较高。 结论 标准差椭圆可定量分析古树名木的空间分布特征,地理加权回归模型和多元线性回归模型可准确估算古树树龄。图4表3参21 Abstract:Objective To better protect and preserve the ancient and famous trees in Guang’an City, this study is focused on the geographical distribution characteristics of them and the relationship between tree age, growth environment and ecological factors, which is of vital importance. Method First, the standard deviation ellipse was used to summarize the distribution characteristics of ancient and famous trees. Then, the geographically weighted regression model(GWR) and multivariable linear regression model (MLR)were employed to simulate the regression intensity of tree height, chest circumference, average crown width, altitude and slope to tree age. Result (1) The ancient and famous trees in Guang’an are distributed in a linear pattern along the water system, mountains and traffic lines while in a circular structure along the government residence and the red tourist destinations; more are distributed in the countryside than in the city with flat land as the dominant habitat; there are more normal plants than weak ones with a moderately favorable growing environment; more are distributed in the high-altitude areas than in the low-altitude areas with a significant vertical difference. (2) GWR works better than the ordinary least squares model (OLS); the average crown width, chest circumference and tree height are the key factors that affect tree age; the slope has little effect on tree age and altitude has a negative correlation with tree age. (3) The correlation coefficient of MLR is 0.297 higher than that of GWR. The coefficient intensity of each explanatory variable and regression variable is highly consistent with that of GWR, and the accuracy of estimating the age of ancient trees under 300 a is higher. Conclusion With the employment of standard deviation ellipse, geographically weighted regression model and multivariable linear regression model, the distribution characteristics of ancient and famous trees are better summarized, providing decision-making basis for the estimation of the age of ancient trees and the protection of ancient and famous trees. [Ch, 4 fig. 3 tab. 21 ref.] -
近年来,人类对土地和矿物资源的过度开发利用以及对农药和化肥的不合理使用,破坏了原生态土壤[1-2],引起了土壤质量严重下降,甚至导致了土壤污染,其中重金属是土壤污染的主要来源之一[3]。农田中土壤重金属具有潜伏性强、难去除、毒害性高等特点,不仅可以通过积累影响土壤和农产品质量,阻碍植物生长,还可以通过食物链被人体吸收,威胁人体健康[1, 4]。果园土壤作为生产果品的载体,其中有毒有害重金属不仅会对树体生长和果实产量产生影响,而且会影响果品质量安全并带来生态风险。
麦尔哈巴·图尔贡等[5]研究发现:镉是吐鲁番盆地葡萄Vitis vinifera种植园土壤中污染水平及生态风险级别最高的重金属,而且受不合理施肥影响最大。王敏等[6]研究认为:早期铜矿开采以及长期过度施肥,特别是磷肥和有机肥的过度施用是香榧Torreya grandis‘Merrillii’多种重金属超标的重要原因。潜在生态风险评价表明:浙江省会稽山脉附近的香榧集中种植区土壤整体处于轻度危害状态,其中以镉的潜在风险最大[6]。ZINICOVSCAIA等[7]研究摩尔多瓦苹果Malus pumila种植园土壤中37种元素的富集情况,并通过计算富集因子、污染因子、地累积指数和污染负荷指数等评价重金属元素对土壤污染的生态风险,发现矿区土壤中的砷等处于严重超标状态,而且具有较高的潜在生态风险等级。DONG等[8]对白水县苹果种植园土壤中8种重金属元素进行测定,并采用单因素污染指数、内梅罗综合指数和潜在生态风险指数等方法评价土壤重金属存在的潜在风险,发现随着经营年限的增加,苹果园土壤中镍、铜、砷和汞的含量逐渐升高,表明人工干预促进了土壤重金属的积累,存在严重的生态风险性。YAN等[9]以重庆市黔江地区5个猕猴桃Actinidia chinensis品种为研究对象,测定了土壤和果实中8中重金属元素的含量,结果发现:猕猴桃种植园重金属从岩石向土壤,从土壤向果实迁移显著,其中锌和铬是果实中超标较严重的元素,存在中等潜在生态风险。由此可知:果园土壤重金属污染来源多样,危害极大,不仅是人类目前面临的重要环境问题之一,而且对食品安全具有极大威胁[10]。
柿Diospyros kaki适应性强,分布范围广,为中国重要的传统木本粮食树种,也是国家目前重点支持的特色经济林树种之一[11]。河南省柿栽培历史悠久,是中国柿主产区之一,柿产量长期位居中国前3位。位于太行山区的济源市、安阳市和三门峡市是河南省柿的主产区,占据该省总产量的72.0%,已成为当地农村经济发展和农民增收的支柱之一。但果农在生产中,为了追求产量,过度使用化肥和农药,引起土壤质量明显退化。另外,济源市、安阳市和三门峡市均为重要的矿产区,农业生产和矿产开采提高了土壤重金属污染风险,对柿产品带来潜在安全隐患和生态安全风险[12]。为探讨河南省柿主产区土壤重金属污染情况及生态风险,本研究调查了河南省柿主产区代表性果园土壤样品,测定其中砷、镉、铬、铜、铅和汞等6种重金属元素的质量分数;采用污染负荷指数、潜在生态风险指数和生态风险预警指数法,对柿园土壤重金属来源及潜在生态风险进行评估,以期为河南省柿主产区土壤环境安全评价和重金属污染防治提供科学依据,为其他柿产区土壤重金属研究提供参考。
1. 材料和方法
1.1 研究区域概况
研究区域属于豫西北的太行低山丘陵地区(33°31′~36°21′N,110°21′~114°59′E),平均海拔为705.0 m。该区气候属暖温带季风性大陆气候,光热资源较丰富,年平均气温为14.1 ℃,年平均日照时数为2 370.0 h,年平均降水量为600 mm,年平均蒸发量为1700 mm,无霜期为200 d,年辐射总量为518 kJ·cm−2。山体以沉积岩为主,土壤以褐土为主,pH 7.0~8.5。
1.2 样品采集与检测
2020年11月柿果采收后,在济源、安阳和三门峡等3个河南省柿主产区,选取正常经营、果树病虫害较轻、果品质量上乘的果园90个(每个产区30个)。在每个果园中间位置设置1个25 m×25 m的样地,并在样地内按照“对角线五点采样法”采集200 g土样,采样深度为0~20 cm。将采集的样品装入清洁自封袋,记录采样点的立地条件、土壤情况、农户施药和施肥管理情况等[13]。
土样在室内常温下风干,拣出杂物,磨碎并充分混合,过100目尼龙筛后用于检测土壤样品中的砷、汞、镉、铬、铜与铅的质量分数及土壤pH[14]。测试过程中加入国家标准土壤参比物质(GSS-12)进行质量控制,各重金属的回收率均在国家标准参比物质的允许范围内[1]。各个参数以每个果园5个点的平均值代表该果园的表征值。
1.3 土壤重金属污染及生态风险评价方法
以河南省太行山果树种植园土壤重金属的背景值(重金属砷、汞、铅、镉、铬、铜的背景值分别为7.79、0.049、19.60、0.374、63.80、19.70 mg·kg−1,以下简称“背景值”)为评价依据[15],采用单因子污染指数(contamination factor,CF)和污染负荷指数(pollution load index,IPL)对柿园土壤重金属进行污染评价[16]。以GB 15618—2018《土壤环境质量 农用地土壤污染风险管控标准(试行)》中的国家农用地土壤污染风险筛选值[重金属砷、汞、铅、镉、铬、铜污染风险筛选值(pH>7.5)分别为25.00、3.400、170.00、0.600、250.00、100.00 mg·kg−1,简称“筛选值”]为评价依据[14],采用综合潜在生态风险指数(potential ecological risk index,IR)评价土壤重金属污染的潜在生态风险,并采用生态风险预警指数(ecological risk warning index,IER)对土壤生态风险进行预警评估[1, 3, 13],其中砷、汞、铅、镉、铬、铜的毒性系数分别为10.0、40.0、5.0、30.0、2.0和5.0,潜在生态风险指数分级标准[17]见表1。
表 1 土壤重金属污染评价指标及其分级标准Table 1 Evaluation indexes and grading standards of soil heavy metal pollutionCF IPL 污染等级 E IR 风险等级 IER 预警等级 (0, 1] (0, 1] 无 (0, 40] (0, 150] 轻微 (−∞, 0] 无需 (1, 2] (1, 2] 轻度 (40, 80] (150, 300] 中等 (0, 1] 预警 (2, 3] (2, 3] 中度 (80, 160] (300, 600] 较强 (1, 3] 轻度 (3, +∞) (3, +∞) 重度 (160, 320] (600, 1200] 很强 (3, 5] 中度 (320, +∞) (1200, +∞) 极强 (5, +∞) 重度 说明:CF为单因子污染指数;IPL为污染负荷指数;E为各重金属单项潜在生态风险指数;IR综合潜在生态风险指数;IER为生态风险 预警指数 1.4 数据处理
采用Excel 2019对数据进行初步整理和计算,采用SPSS 20.0进行数据统计分析和K-S正态分布检验,属于正态分布的数据用Pearson相关性分析,非正态分布的用Spearman进行相关性分析。
2. 结果与分析
2.1 河南省柿主产区土壤重金属质量分数特征
由表2可知:砷和汞质量分数在安阳产区土壤中最高,分别为13.84和0.105 mg·kg−1,三门峡产区土壤中砷质量分数仅为2.34 mg·kg−1;铅和镉质量分数在济源产区土壤中最高,分别为54.80和0.492 mg·kg−1;铬和铜质量分数在三门峡产区土壤中最高,分别为53.10和38.01 mg·kg−1,分别是济源产区的1.36和1.30倍。这说明6种重金属在河南省3个柿主产区土壤中的积累特征不同。与背景值相比,砷仅在三门峡产区低于背景值,汞在3个主产区均高于背景值,且汞在整个主产区高达背景值的2.00倍;铅在三门峡和济源产区是背景值的2.00~3.00倍;镉仅在济源产区超过背景值,而铜在3个主产区均高于背景值,其中在三门峡产区最高,为背景值的2.00倍。6种重金属质量分数平均值在3个主产区均低于筛选值,但砷在安阳产区,铅和镉在济源和三门峡产区以及铬和铜在安阳和三门峡产区均存在某些柿园大于筛选值,处于污染状态,其中镉在济源产区甚至高达筛选值的3.07倍。这说明不同重金属在3个产区的积累程度不同。方差分析表明:砷、铅、镉和铬在3个主产区的F值分别为59.70、6.60、8.50、5.85,说明它们的积累程度均达极显著差异(P<0.01)。
表 2 河南柿主产区土壤重金属质量分数统计Table 2 Statistics of the heavy metals in soils from the main D. kaki producing area in Henan Province产区 参数 质量分数/(mg·kg−1) 产区 参数 质量分数/(mg·kg−1) 砷 汞 铅 镉 铬 铜 砷 汞 铅 镉 铬 铜 安阳产区 均值 13.84 0.105 16.87 0.167 46.34 29.79 济源产区 均值 13.33 0.092 54.80 0.492 39.15 29.24 标准差 6.70 0.072 5.57 0.076 24.33 19.70 标准差 3.67 0.087 55.75 0.516 8.25 10.64 极小值 1.55 0.020 5.34 0.000 17.09 2.56 极小值 2.97 0.015 7.04 0.048 14.82 6.10 极大值 25.12 0.373 25.45 0.335 93.87 111.04 极大值 21.36 0.399 276.45 1.839 51.07 53.14 三门峡产区 均值 2.34 0.099 37.74 0.277 53.10 38.01 整个主产区 均值 9.84 0.099 36.47 0.312 46.20 32.35 标准差 2.30 0.097 42.18 0.131 9.38 19.72 标准差 7.01 0.085 42.97 0.336 16.63 17.50 极小值 1.22 0.032 9.64 0.081 35.29 18.71 极小值 1.22 0.015 5.34 0.000 14.82 2.56 极大值 14.12 0.543 204.00 0.847 87.12 128.90 极大值 25.12 0.543 276.45 1.839 93.87 128.90 2.2 河南省柿主产区土壤重金属质量分数的变异系数及频率分布
土壤重金属质量分数变异分为小(0~0.15)、中(0.16~0.35)和高(>0.36)等3类[18-19]。由表3可知:6种重金属在河南省杮主产区的变异均达到高度等级,仅砷在济源、铅在安阳、铬在济源和三门峡产区为中等变异。这说明6种重金属元素在河南省柿主产区的空间变异程度较高,分布存在一定的随机性。依据Grubbs准则剔除90个果园土壤重金属数据异常值[3],然后绘制河南省柿主产区土壤6种重金属质量分数的频次分布图(图1)。砷和铬的偏度和峰度均在[−1, 1]附近,且中位数都较接近均值(表3),铬总体符合的近正态分布,砷存在一定的偏正态分布。汞、铅、镉和铜的中位值都小于均值,且偏度分别为2.72、3.32、2.60和2.95,说明样本的铅、镉质量分数左偏,为右尾分布,表明多数柿园土壤的铅、镉质量分数较低,也印证了河南省柿主产区重金属空间分布变异较大的特征。
表 3 河南省柿主产区土壤重金属变异系数和分布频次Table 3 Coefficients of variation and frequency distribution of the heavy metals in soils from the main producing area of D. kaki of Henan Province参数 产区 砷 汞 铅 镉 铬 铜 变异系数 安阳产区 0.48 0.69 0.33 0.45 0.53 0.66 济源产区 0.28 0.94 1.02 1.05 0.21 0.36 三门峡产区 0.98 0.98 1.12 0.47 0.18 0.52 整个主产区 0.71 0.86 1.18 1.08 0.36 0.54 中位数 整个主产区 11.41 0.08 22.42 0.21 44.72 29.47 偏度 整个主产区 0.25 2.72 3.32 2.60 0.77 2.95 峰度 整个主产区 −0.98 9.79 12.94 6.74 1.23 13.60 2.3 河南省柿主产区土壤重金属来源分析
相关性分析法可以用来解析土壤中重金属来源[3]。对河南省柿主产区土壤重金属质量分数的Pearson相关分析(表4)表明:铅与汞、镉、铜,以及汞与镉表现为极显著相关(P<0.01)。铜与砷、镉、铬,以及砷与铬达显著相关(P<0.05)。推断铅和汞、镉、铜可能来自相同的途径,铜与砷、镉、铬的来源也有很大的相似性。整体而言,铅和铜可能是这6种重金属积累的主导元素,或是诱导其他元素在土壤中积累的主要元素,而6种元素间也呈现出相互伴随的复杂积累效应。
表 4 河南省柿主产区土壤重金属之间相关系数矩阵Table 4 Correlations matrix of the heavy metals in soils from the main producing area of D. kaki of Henan Province重金属 pH 砷 汞 铅 镉 铬 铜 pH 1.000 砷 0.177 1.000 汞 −0.119 0.105 1.000 铅 −0.116 0.123 0.410** 1.000 镉 −0.184 0.170 0.397** 0.784** 1.000 铬 −0.191 −0.237* 0.176 0.006 −0.042 1.000 铜 −0.085 −0.209* 0.085 0.299** 0.218* 0.264* 1.000 说明:* 表示显著相关(P<0.05),** 表示极显著相关(P<0.05) 土壤重金属质量分数数据经KMO和巴特力(Bartlett)检验及因子分析和主成分分析表明:第1主成分可解释总方差的37.1%,主要包括铅、镉和汞,其中铅的载荷更是高达0.900;第2主成分可解释34.4%的总方差,其中铬和铜是主要变量,两者载荷分别为0.730和0.608 (表5)。主成分散点图表明(图2):汞、铅和镉以及铬和铜分别具有高度相似的同源性。这与相关性分析的结果一致。
表 5 河南省柿主产区土壤重金属主成分分析Table 5 Principal component analysis of the heavy metals in soils from the main producing area of D. kaki of Henan Province项目 因子 砷 汞 铅 镉 铬 铜 方差贡献率/% 累计贡献率/% 因子载荷 第1主成分 0.173 0.648 0.900 0.880 0.124 0.418 37.1 37.1 第2主成分 −0.726 0.006 −0.078 −0.173 0.730 0.608 34.4 71.5 2.4 河南省柿主产区土壤重金属污染分析
根据分级标准对河南省柿主产区土壤重金属进行污染评价。结果(表6)可知:3个产区土壤单因子污染指数(CF)最大的重金属分别为:安阳汞(2.13)、济源铅(2.80)和三门峡汞(2.02)。另外,安阳产区所有柿园均处于无镉污染状态,76.67%的柿园也处于无铬污染状态,而砷和汞的污染比例均高达83.33%,其中重度污染的比例达到13.33%。济源产区柿园砷、铅和汞的污染比例较高,其中铅的重度污染比例高达30%。三门峡产区大部分柿园表现为无污染或仅轻度污染,但也分别有16.67%、13.33%和6.67%的柿园处在汞、铅和铜的重度污染状态。从整个主产区来看,汞和铜是最主要的重金属污染元素,镉和铬最低。
表 6 不同区域单因子污染指数值及污染等级样点百分比Table 6 Percentages of sites at different pollution levels in the total sample sites各重金属污染指数 安阳产区 济源产区 平均值 标准差 无/% 轻度/% 中度/% 重度/% 平均值 标准差 无/% 轻度/% 中度/% 重度/% CF,砷 1.78 0.86 16.67 50.00 20.00 13.33 1.71 0.47 6.67 63.33 30.00 0 CF,汞 2.13 1.46 16.67 36.67 33.33 13.33 1.87 1.76 43.33 26.67 13.33 16.67 CF,铅 0.86 0.28 63.33 36.67 0 0 2.80 2.84 10.00 53.33 6.67 30.00 CF,镉 0.45 0.20 100 0 0 0 1.32 1.38 66.67 3.33 13.33 16.67 CF,铬 0.73 0.38 76.67 23.33 0 0 0.61 0.13 100 0 0 0 CF,铜 1.51 1.00 30.00 53.33 10.00 6.67 1.48 0.54 20.00 63.33 16.67 0 IPL 0.95 0.34 76.67 20.00 3.33 0 1.32 0.70 50.00 36.67 10.00 3.33 各重金属污染指数 三门峡产区 整个主产区 平均值 标准差 无/% 轻度/% 中度/% 重度/% 平均值 标准差 无/% 轻度/% 中度/% 重度/% CF,砷 0.30 0.29 96.67 3.33 0 0 1.26 0.90 40.00 38.89 16.67 4.44 CF,汞 2.02 1.97 26.67 46.67 10.00 16.67 2.01 1.73 28.88 36.67 18.89 15.56 CF,铅 1.93 2.15 30.00 53.33 3.33 13.33 1.86 2.19 34.45 47.78 3.33 14.44 CF,镉 0.74 0.35 96.67 3.33 0 0 0.83 0.90 87.78 2.22 4.44 5.56 CF,铬 0.83 0.15 96.67 3.33 0 0 0.72 0.26 91.11 8.89 0 0 CF,铜 1.93 1.00 3.33 73.33 16.67 6.67 1.64 0.89 17.78 63.34 14.44 4.44 IPL 0.96 0.35 50.00 50.00 0 0 1.08 0.52 58.89 35.56 4.44 1.11 土壤重金属污染负荷指数(IPL)表明(表6):河南省柿主产区IPL为1.08,说明河南省柿主产区土壤整体处于重金属轻度污染状态,其中济源产区IPL值最大(1.32),安阳和三门峡表现为无污染。从污染等级的比例来看,安阳产区无污染柿园最多,达到76.67%,济源产区土壤重金属污染程度最高。
2.5 河南省柿主产区土壤重金属污染的生态风险分析
以筛选值作参比标准,计算河南省柿主产区各柿园土壤重金属潜在生态风险指数(E)及综合潜在生态风险指数(IR) [3]。结果发现:在3个产区,汞的生态风险指数最高,达80.31,铬最低(仅1.45),说明汞处于较强风险的等级。3个产区的IR最大值为济源产区的581.24,最小值为三门峡产区126.99。这说明:3个产区均为轻微生态风险等级,其中济源产区风险最高,三门峡产区最低,但各产区均出现了处于中等及较强生态风险等级的柿园(表7)。
表 7 不同区域潜在生态风险指数及污染等级样点百分比Table 7 Percentages of sites at different risk levels in the total sample sites各重金属
风险指数安阳产区 济源产区 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% E砷 17.76 8.60 100 0 0 0 0 17.11 4.71 100 0 0 0 0 E汞 85.25 58.44 20.00 33.33 36.67 10.00 0 74.86 70.39 43.33 26.67 23.33 3.33 3.33 E铅 4.30 1.42 100 0 0 0 0 13.98 14.22 96.67 3.33 0 0 0 E镉 13.44 6.07 100 0 0 0 0 39.50 41.40 66.67 10 23.33 0 0 E铬 1.45 0.76 100 0 0 0 0 1.23 0.26 100 0 0 0 0 E铜 7.56 5.00 100 0 0 0 0 7.42 2.70 100 0 0 0 0 IR 129.77 63.51 73.33 23.33 3.33 0 0 154.10 121.43 66.67 23.33 10 0 0 各重金属
风险指数三门峡产区 整个主产区 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% 平均值 标准差 轻微/% 中等/% 较强/% 很强/% 极强/% E砷 3.00 2.95 100 0 0 0 0 12.63 9.00 100 0 0 0 0 E汞 80.83 78.84 26.67 46.67 16.67 6.67 3.33 80.31 69.07 30.00 35.56 25.56 6.67 2.22 E铅 9.63 10.76 96.67 3.33 0 0 0 9.30 10.96 97.78 2.22 0 0 0 E镉 22.22 10.48 96.67 3.33 0 0 0 25.05 26.92 87.78 4.44 7.78 0 0 E铬 1.66 0.29 100 0 0 0 0 1.45 0.52 100 0 0 0 0 E铜 9.65 5.00 100 0 0 0 0 8.21 4.44 100 0 0 0 0 IR 126.99 85.31 76.67 20.00 3.33 0 0 136.95 92.95 72.22 22.22 5.56 0 0 2.6 河南省柿主产区土壤重金属生态风险预警分析
土壤生态风险预警分析是基于环境生态风险评估中而发展来的,它更侧重于对土壤系统、农林植物及其产品可能存在的生态风险研究,具有精准、定量和定性评价的优点[3]。以筛选值作参比标准,计算河南省柿主产区土壤重金属污染生态风险预警等级(IER),结果如表8。整个主产区IER平均值为2.33,为轻度预警,其中济源产区IER最大(3.79),为中度预警,三门峡和安阳产区均为轻度预警等级。6种重金属中,仅汞在安阳和三门峡产区以及铅在济源产区表现为轻度预警等级,且这2种重金属均存在处于重度预警的柿园,其中济源产区处于汞和铅重度预警的柿园高达20%。这也与各元素在整个主产区的CF、IPL、E以及IR等的格局基本一致。
表 8 不同区域生态风险预警指数及预警级别样点百分比Table 8 Percentages of sites at different warning levels in the total sample sites各重金属
预警指数安阳产区 济源产区 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% IER,砷 0.78 0.86 16.67 50.00 33.33 0 0 0.71 0.47 6.67 63.33 30.00 0 0 IER,汞 1.13 1.46 16.67 36.67 36.67 6.67 3.33 0.87 1.76 43.33 26.67 23.33 0 6.67 IER,铅 −0.14 0.28 63.33 36.67 0 0 0 1.80 2.84 10.00 53.33 16.67 6.67 13.33 IER,镉 −0.55 0.20 100 0 0 0 0 0.32 1.38 66.67 3.33 26.67 3.33 0 IER,铬 −0.27 0.38 76.67 23.33 0 0 0 −0.39 0.13 100 0 0 0 0 IER,铜 0.51 1.00 30.00 53.33 13.33 3.33 0 0.48 0.54 20.00 63.33 16.67 0 0 IER 1.45 2.36 33.33 13.33 33.33 10.00 10.00 3.79 6.14 33.33 23.33 6.67 10.00 26.67 各重金属
预警指数三门峡产区 整个主产区 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% 平均值 标准差 无需/% 预警/% 轻度/% 中度/% 重度/% IER,砷 −0.70 0.29 96.67 3.33 0 0 0 0.26 0.90 40.00 38.89 21.11 0 0 IER,汞 1.02 1.97 26.67 46.67 16.67 6.67 3.33 1.01 1.73 28.89 36.67 25.56 4.44 4.44 IER,铅 0.93 2.15 30.00 53.33 6.67 0 10 0.86 2.19 34.44 47.78 7.78 2.22 7.78 IER,镉 −0.26 0.35 96.67 0 3.33 0 0 −0.17 0.90 87.78 1.11 10.00 1.11 0 IER,铬 −0.17 0.15 96.67 3.33 0 0 0 −0.28 0.26 91.11 8.89 0 0 0 IER,铜 0.93 1.00 3.33 73.33 20.00 3.33 0 0.64 0.89 17.78 63.33 16.67 2.22 0 IER 1.75 3.98 43.33 23.33 13.33 6.67 13.33 2.33 4.51 36.67 20.00 17.78 8.89 16.67 3. 讨论
3.1 河南省柿主产区土壤重金属来源
土壤重金属来源主要有成土母质和人类活动[20],其中人类活动引起的土壤污染主要包括工业废弃物、肥料和农药以及采用重金属超标的水灌溉农田等[21-22]。河南省柿整个主产区土壤中铅、铜、汞和砷质量分数约为背景值的1.26~2.01倍,铬和镉均低于背景值,说明铅、铜、汞和砷受人为因素影响更大,也有可能是土壤本身理化性质不同[20]。在一定区域内,相关性强的重金属可能具有相同来源途径[23-25]。从相关分析与主成分分析结果来看,铅、镉和汞之间分别呈现为极显著性相关,铬和铜呈现为显著性相关,说明铅、镉、汞三者以及铜与铬两者可能具有相同的来源,这与河南省典型工业区周边农田[13]、新疆地区辣椒Capsicum annuum种植基地[3]以及吉林省果树基地[21]等研究结果一致。
汞和铅是燃煤排放的标志物,空气中的汞和铅以大气沉降的方式进入土壤[13]。铅和铜是农药、化肥以及农家有机肥等的标志性元素之一[2],也是电池等工业生产的废气原料[13]。河南省3个柿主产区土壤6种重金属质量分数及其主要特征差异较大,这说明各产区重金属来源存在较大差异,这种差异可能是人类活动的差异引起的[25]。砷受人类活动,特别是农药和水肥影响较大[7, 26]。安阳是河南省重工业基地之一,冶金建材、煤炭化工以及化肥农药生产等是安阳市的主产业,也是导致安阳产区土壤重金属砷和汞质量分数较高的主要原因。济源市有铅都之称,铅和铜分别是济源和三门峡的支柱产业,导致了济源产区土壤铅等重金属质量分数升高,而铅、锌、砷和镉等也是近10 a来国内金属冶炼引起的土壤污染的高浓度重金属[27]。安阳和济源农药和农家肥的施用量约为三门峡的1.8倍,灌溉水中砷和汞含量严重超标,当地政府把治理水中重金属砷作为重中之重的民生项目。安阳是全国重要的化肥生产基地,域内有多个国家重点化肥、化工生产企业,安阳产区的果园施肥以复合肥为主。济源产区的果园在生产中施用了较多的腐熟不彻底的牲畜粪便等农家肥,而且使用了含有较多无机砷的杀菌剂和除草剂。以上这些人类活动都对土壤中砷和铜等重金属的富集具有重要的促进作用[7, 25-26],也与3个产区土壤重金属含量特征相一致。
3.2 河南省柿主产区土壤重金属污染及风险特征
虽然60%的柿园土壤处于铜、汞、铅和砷污染状态,但从土壤重金属污染负荷指数来看,河南省柿主产区目前处于轻度污染(1.0<IPL<2.0)状态,其中济源产区污染较为严重,砷是该产区重金属污染贡献最大的元素之一。这与砷是河南省典型工业城市土壤重金属污染最重要的元素的结论一致[13]。总体来看,6种重金属在各个产区的污染程度不同,但汞是安阳和三门峡产区重金属污染最主要的来源,铅是济源产区污染最严重的重金属元素。不同重金属元素在吐鲁番盆地葡萄园土壤[5]以及新疆焉耆盆地辣椒地土壤[3]的污染特征也不同,这可能是各产区土壤背景值及人类活动特征不同有关[6]。
汞是6种重金属中生态风险等级最高的元素,表现为较强的风险等级(E>80),70%的柿园处于汞污染的中等风险及以上等级,镉次之。但济源产区23.33%的柿园均处于镉较强污染风险等级之上,在3个主产区中最高。各元素对IR和IER的贡献率与各元素的污染程度并不完全一致,如镉污染程度相对较低,但济源产区重金属污染风险等级最高,这不仅与不同产区的人为干扰活动存在差异相关[28],还可能与不同重金属元素毒性系数相差较大有关。一般来说,元素毒性系数越高,其潜在生态风险指数越大[17];各元素的背景值及国家标准值也是重要影响因素[29]。另外,有些重金属虽然在土壤中的污染程度较高,但其容易伴随其他颗粒物迁移进入土壤中矿化埋藏[30],使其对生物的毒性降低,从而降低了潜在生态风险[5, 28]。
4. 结论
河南省柿主产区土壤砷主要受农业生产活动的影响,汞、铅和铜则受工业活动影响较大。河南省整个柿主产区土壤重金属污染为轻微风险等级,生态风险预警属于轻度预警等级,但济源产区土壤重金属污染水平、潜在生态风险程度与生态风险预警等级均达到中等水平。汞是河南省柿主产区土壤污染程度最严重的重金属,也是生态风险等级和预警级别最高的重金属元素。
-
表 1 广安市古树资源数据处理前后描述性统计表
Table 1. Descriptive statistics of ancient tree resources before and after data processing in Guang’an City
指标 处理前(n=638) 处理后(n=494) 树龄/a 树高/m 胸围/cm 平均冠幅/m 海拔/m 坡度/(°) 树龄/a 树高/m 胸围/cm 平均冠幅/m 海拔/m 坡度/(°) 均值 161.18 55.02 306.64 15.47 350.4 5.11 149.43 53.88 312.15 14.81 347.60 1.18 标准差 78.05 33.89 186.64 6.17 62.94 11.58 45.53 34.40 178.08 5.36 59.42 2.84 偏度 7.03 0.41 0.94 0.51 0.09 3.58 0.99 0.49 0.61 0.18 0.10 2.28 峰度 100.05 −0.65 0.70 0.08 0.04 16.53 0.06 −0.58 −0.61 −0.65 −0.13 3.77 表 2 OLS模型和GWR模型结果统计
Table 2. Statistical table of results of OLS model and GWR model
模型 Sigma值 决定系数(R2) 阿凯克信息准则(AICc) OLS 0.636 0.249 5 180.298 GWR 0.485 0.282 5 100.239 表 3 古树生态学特征的Pearson相关性分析
Table 3. Pearson correlation analysis of ecological characteristics of ancient trees
指标 树龄 树高 胸围 平均冠幅 海拔 坡度 树龄 1.000 0.111 ** 0.174 ** 0.203 ** −0.012 0.016 树高 0.111 ** 1.000 0.201** 0.457 ** −0.066 0.181** 胸围 0.174** 0.201** 1.000 0.429 ** −0.217** −0.189 ** 平均冠幅 0.203 ** 0.457 ** 0.429 ** 1.000 0.016 0.011 海拔 −0.012 −0.066 −0.217** 0.016 1.000 0.043 坡度 0.016 0.181** −0.189 ** 0.011 0.043 1.000 说明:*表示在0.05水平上相关显著,**表示在0.01水平上相关极显著 -
[1] 贾恒锋, 牟玉梅, 旦增罗布, 等. 西藏尼木县古树年龄鉴定及生长历史分析[J]. 应用生态学报, 2018, 29(7): 2401 − 2410. JIA Hengfeng, MOU Yumei, DANZENG Luobu, et al. Age investigation and growth history analysis of old trees in Nyemo County of Tibet, China [J]. Chin J Appl Ecol, 2018, 29(7): 2401 − 2410. [2] 米锋, 李吉跃, 张大红, 等. 北京地区林木损失额的价值计量研究: 有关古树名木科学文化价值损失额计量方法的探讨[J]. 北京林业大学学报, 2006, 28(增刊 2): 141 − 148. MI Feng, LI Jiyue, ZHANG Dahong, et al. The quantitative estimation of forest tree loss in Beijing: discuss on the computation method of measuring the loss of antique and rare tress, scientific culture value [J]. J Beijing For Univ, 2006, 28(suppl 2): 141 − 148. [3] 邢福武. 中国的珍稀植物 [M]. 长沙: 湖南教育出版社, 2005: 54 − 55. [4] FRITTS H C. Tree Rings and Climate[M]. Caldwell: The Blackburn Press, 2001: 132 − 139. [5] 孟宪宇. 测树学 [M]. 2版. 北京: 中国林业出版社, 1996. [6] 吴祥定. 树木年轮与气候变化 [M]. 北京: 气象出版社, 1990. [7] 王懿祥, 戴文圣, 白尚斌, 等. 古树名木调查方法的改进[J]. 浙江林学院学报, 2006, 23(5): 549 − 553. WANG Yixiang, DAI Wensheng, BAI Shangbin, et al. Improved survey method of ancient and famous trees [J]. J Zhejiang For Coll, 2006, 23(5): 549 − 553. [8] 谢丽宏, 黄钰辉, 温小莹, 等. 广东省新丰江水库古树资源特征与分布格局[J]. 林业与环境科学, 2017, 33(4): 34 − 38. XIE Lihong, HUANG Yuhui, WEN Xiaoying, et al. Resource characteristics and distribution patten of ancient trees in Xinfengjiang reservoir, Guangdong Province [J]. For Environ Sci, 2017, 33(4): 34 − 38. [9] 卢紫君, 刘锡辉, 涂慧萍. 广州市中心城区古树名木的资源现状与开发利用[J]. 林业与环境科学, 2017, 33(1): 77 − 80. LU Zijun, LIU Xihui, TU Huiping. The resources and utilization of ancient and famous trees in central districts of Guangzhou City [J]. For Environ Sci, 2017, 33(1): 77 − 80. [10] LIAO Hongying, REN Mingxun. Distribution patterns of long-lived individuals of relict plants around Fanjingshan Mountain in China: implications for in situ conservation[J]. Collectanea Botanica, 2015, 34: e002. doi: 10.3989/collectbot.2015.v34.002. [11] 国家林业局. 古树名木普查技术规范: Y/2738−2016 [S]. 北京: 中国标准出版社, 2016. [12] 周婷, 牛安逸, 马姣娇, 等. 国家湿地公园时空格局特征[J]. 自然资源学报, 2019, 34(1): 26 − 39. ZHOU Ting, NIU Anyi, MA Jiaojiao, et al. Spatio-temporal pattern of national wetland parks [J]. J Nut Resour, 2019, 34(1): 26 − 39. [13] 蒋金亮, 徐建刚, 吴文佳, 等. 中国人-地碳源汇系统空间格局演变及其特征分析[J]. 自然资源学报, 2014, 29(5): 757 − 768. JIANG Jinliang, XU Jiangang, WU Wenjia, et al. Patterns and dynamics of China’s Human-nature carbon source-sink system [J]. J Nut Resour, 2014, 29(5): 757 − 768. [14] 赵璐, 赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 2014, 34(8): 979 − 986. ZHAO Lu, ZHAO Zuoquan. Projecting the spatial variation of economic based on the specific ellipses in China [J]. Sci Geogr Sin, 2014, 34(8): 979 − 986. [15] FISCHER M M, GETIS A. Handbook of Applied Spatial Analysis[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2010: 27-149. [16] FORTHCOMING A S, CARLTON M, BRONSON C. The geography of parameter space: an investigation of spatial non-stationarity [J]. Geogr Inf Syst, 1996, 10(5): 605 − 627. [17] ANSELIN L. The local indicators of spatial association: LISA [J]. Geogr Anal, 1995, 27(2): 93 − 115. [18] 李记, 徐爱俊. 古树名木旅游最优路线设计与实现[J]. 浙江农林大学学报, 2018, 35(1): 153 − 160. LI Ji, XU Aijun. Design and implementation of the optimal tourist route of ancient trees [J]. J Zhejiang A&F Univ, 2018, 35(1): 153 − 160. [19] 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3): 533 − 544. JIANG Zhenlan, YANG Yusheng, SHA Jinming. Application of GWR model in hyperspectral prediction of soil heavy metals [J]. Acta Geogr Sin, 2017, 72(3): 533 − 544. [20] BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted regression-modelling spatial non-stationarity [J]. J Royal Stat Soc, 1998, 47(3): 431 − 443. [21] 杨晴青, 刘倩, 尹莎, 等. 秦巴山区乡村交通环境脆弱性及影响因素: 以陕西省洛南县为例[J]. 地理学报, 2019, 74(6): 1236 − 1251. YANG Qingqing, LIU Qian, YIN Sha, et al. Vulnerability and influencing factors of rural transportation environment in Qinling-Daba mountainous areas: a case study of Luonan county in Shaanxi Province [J]. Acta Geogr Sin, 2019, 74(6): 1236 − 1251. 期刊类型引用(5)
1. 李巧云,赵航航,杨婵,李鹏飞,齐文博,宋凤敏. 汉江上游农田土壤微塑料与重金属污染特征及生态风险评价. 环境科学. 2025(01): 419-429 . 百度学术
2. 张妍,赵新雷,冯雪珍,郭亚娇. 河南荥阳市耕地土壤重金属分布特征及来源解析. 岩矿测试. 2024(02): 330-343 . 百度学术
3. 孙经宇,孙向阳,李素艳,王晨晨,岳宗伟. 北京市通州区绿地土壤重金属源解析及风险评价. 浙江农林大学学报. 2024(03): 517-525 . 本站查看
4. 张明,王磊,潘国林. 安徽砀山梨园土壤重金属分布特征及污染评价. 信阳农林学院学报. 2024(03): 92-97 . 百度学术
5. 张亚男,张中瑞,魏丹,朱航勇,张耕,余斐,丁晓纲. 河源市紫金县森林土壤重金属分布特征及污染评价. 林业与环境科学. 2022(04): 70-74 . 百度学术
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190585