-
土壤养分异质性在自然界中普遍存在,主要表现在土壤中包含许多大小不同、形状各异的养分富集区域,且养分含量各不相同[1]。引起养分异质性分布的因素很多,除了土壤自身的异质理化性质外,还包括动物的排泄物、植物凋落物理化性质的差异以及微生物活动等[2]。由于不同植物对养分异质性的响应不同,土壤养分异质性可能会对植物间的竞争关系造成一定的影响[3−5]。研究表明:与本地植物间的竞争关系是决定外来植物能否成功入侵的关键因素之一[6]。与本地植物相比,入侵植物更能从环境异质性中获益[7−8],因此,土壤养分异质性可能会促进外来植物的入侵[9−10]。
节节麦Aegilops tauschii属于禾本科Poaceae山羊草属Aegilops植物,为世界十大恶性杂草之一。野生节节麦种群广泛分布于欧亚大陆中部的干旱及半干旱地区[11],在长期的传播及适应过程中,该物种已经扩散至从叙利亚、土耳其北部到中国西部等欧亚大陆中部广泛的地理区域[12]。节节麦作为小麦Triticum aestivum的野生近缘种之一,在出苗时间、苗期特征及生长习性等方面均与小麦接近,不仅会竞争光照、水及肥等资源,还是小麦条锈病的替代宿主,因此极易造成小麦的减产甚至绝收。自1955年在河南省新乡地区首次采集到其标本至今,节节麦已入侵扩散至中国的陕西、河南及山东等小麦主产省[13],并已严重威胁到小麦的生产安全[13−14]。节节麦具有较强的生存能力,且对土壤养分条件的适应性强[15−16]。目前,有关养分异质性对节节麦和小麦生长及竞争影响的研究尚未见有报道。为此,本研究探讨土壤养分异质性对节节麦与小麦竞争关系的影响,以期为节节麦入侵危害机制研究提供参考。
-
与同质性土壤相比,无论种内还是种间竞争,土壤养分异质性均明显促进了小麦和节节麦株高及叶面积的增加(图2)。其中,种内竞争条件下,异质性土壤中小麦的株高和叶面积分别较同质性土壤中增加了29.80%、20.09%,明显小于节节麦的39.29%、39.37%;而种间竞争条件下,异质性土壤中小麦的株高及叶面积分别较同质性土壤中增加了23.88%、21.63%,同样明显小于节节麦的26.58%、25.35%。此外,仅有在种内竞争条件下,异质性土壤中节节麦株高的增加与同质性土壤差异显著(P<0.05)。
图 2 土壤养分异质性与种间竞争对小麦和节节麦株高及叶面积的影响
Figure 2. Effect of soil nutrient heterogeneous and interspecific competition on the plant height and leaf area of T. aestivum and A. tauschii
无论是种内竞争还是种间竞争,土壤养分异质性均促进了小麦和节节麦单株分蘖数的增加,但均未达到显著水平(图3)。其中,在种内和种间竞争条件下,异质性土壤中小麦的单株分蘖数分别较同质性土壤中增加了27.78%、24.39%,小于节节麦的41.43%、30.00%。
图 3 土壤养分异质性与种间竞争对小麦和节节麦单株分蘖数的影响
Figure 3. Effect of soil nutrient heterogeneous and interspecific competition on the tillers per plant of T. aestivum and A. tauschii
如图4所示:无论是种内竞争还是种间竞争,土壤养分异质性促进了小麦和节节麦总生物量的增加,且与同质性土壤相比,均达到了显著水平(P<0.05)。其中,在种内和种间竞争条件下,土壤养分异质性促使小麦的总生物量分别增加了132.51%、123.81%,小于节节麦的133.06%、131.42%。
图 4 土壤养分异质性与种间竞争对小麦和节节麦总生物量的影响
Figure 4. Effect of soil nutrient heterogeneous and interspecific competition on total biomass of T. aestivum and A. tauschii
无论是种内还是种间竞争,与同质性土壤相比,异质性土壤中小麦和节节麦的根冠比均略有下降,但均未达到显著水平(图5)。其中,在种内和种间竞争下,土壤养分异质性促使小麦的根冠比分别下降了21.17%、17.74%,大于节节麦的20.53%、25.11%。
-
从表1可知:无论是在同质性土壤还是异质性土壤中,节节麦和小麦的相对产量及节节麦的相对产量总和均小于1。节节麦的竞争平衡指数值均大于0,且异质性土壤中的竞争平衡指数较同质性土壤中有所增加,但未达到显著水平。
表 1 不同土壤类型下节节麦与小麦的竞争关系
Table 1. Competitive relationship between A. tauschii and T. aestivum under soil nutrient heterogeneity
土壤类型 Ra Rb 相对产量总和 竞争平衡指数 同质性 0.921±0.022 a 0.901±0.016 a 0.911±0.011 a 0.022±0.001 a 异质性 0.914±0.041 a 0.867±0.014 a 0.891±0.022 a 0.053±0.015 a 说明:数值为平均值±标准误,同列不同小写字母表示不同土壤养分间差异显著(P<0.05)
Effects of soil nutrient heterogeneity on competition between Aegilops tauschii and Triticum aestivum
-
摘要:
目的 土壤养分异质性在自然界中广泛存在,会对植物间的竞争关系造成影响。分析土壤养分异质性对入侵植物竞争能力的影响,可为其入侵危害研究提供参考。 方法 以入侵杂草节节麦Aegilops tauschii及其主要危害作物小麦Triticum aestivum为试材,设置同质性及异质性养分条件,结合de Wit取代实验方法,依据株高、叶面积及生物量等指标,探讨了土壤养分异质性对节节麦生长发育及其与小麦竞争关系的影响。 结果 ①土壤养分异质性促进了小麦和节节麦幼苗株高、叶面积及单株分蘖数的增加,2种植物总生物量增加显著(P<0.05)。②种间竞争条件下,异质性土壤中节节麦的根冠比降幅最大,表明节节麦通过将更多的生物量分配至地上以加大对小麦的竞争抑制作用。③从竞争平衡指数可知:异质性土壤中节节麦的竞争平衡指数大于0,并较同质性土壤中略有增加,表明土壤养分异质性一定程度上促进了节节麦对小麦的竞争作用。 结论 土壤养分异质性促进了节节麦幼苗的生长发育,并提高了其对小麦的竞争抑制作用。因此认为,土壤养分异质性会进一步加剧节节麦对小麦的危害程度。图5表1参46 Abstract:Objective Soil nutrient heterogeneity widely exists in nature, and affects competition among different plant species. This study aims to explore the effects of soil nutrient heterogeneity on competitiveness of invasive plants, so as to provide reference for the study of invasion hazards. Method The invasive plant Aegilops tauschii and its main endangered crop Triticum aestivum were used as test materials. Under the conditions of homogenous and heterogeneous nutrients, de Wit substitution experiment was carried out to investigate the impact of soil nutrient heterogeneity on the growth and development of A. tauschii and its competition with T. aestivum, based on plant height, leaf area and biomass. Result (1) Soil nutrient heterogeneity promoted the increase of plant height, leaf area and tiller number per plant of A. tauschii and T. aestivum seedlings. In particular, the total biomass of the two plants increased significantly (P<0.05). (2) Under the condition of interspecific competition, the root-shoot ratio of A. tauschii in heterogeneous soil decreased the most, indicating that A. tauschii increased its inhibition on T. aestivum competition by allocating more biomass to the ground surface. (3) Competition balance index showed that the competitiveness of A. tauschii in heterogeneous soil was above 0, and slightly increased compared with that in homogeneous soil, indicating that soil nutrient heterogeneity enhanced the competition of A. tauschii on T. aestivum. Conclusion Soil nutrient heterogeneity promotes the growth of A. tauschii seedling, and enhances its competitive inhibition on T. aestivum. [Ch, 5 fig. 1 tab. 46 ref.] -
Key words:
- heterogeneity /
- soil nutrient /
- Aegilops tauschii /
- competition /
- Triticum aestivum
-
表 1 不同土壤类型下节节麦与小麦的竞争关系
Table 1. Competitive relationship between A. tauschii and T. aestivum under soil nutrient heterogeneity
土壤类型 Ra Rb 相对产量总和 竞争平衡指数 同质性 0.921±0.022 a 0.901±0.016 a 0.911±0.011 a 0.022±0.001 a 异质性 0.914±0.041 a 0.867±0.014 a 0.891±0.022 a 0.053±0.015 a 说明:数值为平均值±标准误,同列不同小写字母表示不同土壤养分间差异显著(P<0.05) -
[1] 官玉婷, 秦天健, 牛雨欣, 等. 土壤养分异质性和种间竞争对互花米草和芦苇生长繁殖特性的影响[J]. 生态学杂志, 2018, 37(10): 2896 − 2904. GUAN Yuting, QIN Tianjian, NIU Yuxin, et al. Effects of soil nutrient heterogeneity and interspecific competition on growth and reproductive traits of Spartina alterniflora and Phragmites australis [J]. Chinese Journal of Ecology, 2018, 37(10): 2896 − 2904. [2] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients [J]. New Phytologist, 2004, 162(1): 9 − 24. [3] HUTCHINGS M J, JOHN E A, WIJESINGHE D K. Toward understanding the consequences of soil heterogeneity for plant populations and communities [J]. Ecology, 2003, 84(9): 2322 − 2334. [4] van der WAAL C, de KROON H, HEITKÖNIG I M A, et al. Scale of nutrient patchiness mediates resource partitioning between trees and grasses in a semi-arid savanna [J]. Journal of Ecology, 2011, 99(5): 1124 − 1133. [5] MOMMER L, van RUIJVEN J, JANSEN C, et al. Interactive effects of nutrient heterogeneity and competition: implications for root foraging theory? [J]. Functional Ecology, 2012, 26(1): 66 − 73. [6] GOLIVETS M, WALLIN K F. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants [J]. Ecology Letters, 2018, 21(5): 745 − 759. [7] WANG Yongjian, MÜLLER-SCHÄRER H, van KLEUNEN M, et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives [J]. New Phytologist, 2017, 216(4): 1072 − 1078. [8] CHEN Duo, ALI A, YONG Xiaohui, et al. A multi-species comparison of selective placement patterns of ramets in invasive alien and native clonal plants to light, soil nutrient and water heterogeneity [J]. Science of the Total Environment, 2019, 657: 1568 − 1577. [9] DAVIS M A, PELSOR M. Experimental support for a resource-based mechanistic model of invisibility [J]. Ecology Letters, 2001, 4(5): 421 − 428. [10] MELBOURNE B A, CORNELL H V, DAVIES K F, et al. Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? [J]. Ecology Letters, 2007, 10(1): 77 − 94. [11] van SLAGEREN M W. Wild Wheats: a Monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae) [M]. Wageningen: Wageningen Agricultural University, 1994. [12] MATSUOKA Y, TAKUMI S, KAWAHARA T. Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae) [J/OL]. BMC Evolutionary Biology, 2015, 15: 213[2022-05-20]. doi: 10.1186/s12862-015-0496-9. [13] 张朝贤, 李香菊, 黄红娟, 等. 警惕麦田恶性杂草节节麦蔓延危害[J]. 植物保护学报, 2007, 34(1): 103 − 106. ZHANG Chaoxian, LI Xiangju, HUANG Hongjuan, et al. Alert and prevention of the spreading of Aegilops tauschii, a worst weed in wheat field [J]. Journal of Plant Protection, 2007, 34(1): 103 − 106. [14] ZHAO Bin, WU Tingting, MA Shanshan, et al. TaD27-B gene controls the tiller number in hexaploid wheat [J]. Plant Biotechnology Journal, 2020, 18(2): 513 − 525. [15] WANG Ning, CHEN Hao. Increased nitrogen deposition increased the competitive effects of the invasive plant Aegilops tauschii on wheat [J/OL]. Acta Physiologiae Plantarum, 2019, 41: 176[2022-05-20]. doi: 10.1007/s11738-019-2968-9. [16] 王宁, 袁美丽, 陈浩. 增施氮肥对节节麦与小麦苗期竞争的影响[J]. 中国土壤与肥料, 2018(5): 57 − 63. WANG Ning, YUAN Meili, CHEN Hao, et al. Effects of increased nitrogen application on the competitive performance of Aegilops tauschii and wheat at seedling stage [J]. Soils and Fertilizers Sciences in China, 2018(5): 57 − 63. [17] GENG Yupeng, PAN Xiaoyun, XU Chengyuan, et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener [J]. Acta Oecologica, 2006, 30(3): 380 − 385. [18] CAHILL Jr J F, MCNICKLE G G, HAAG J J, et al. Plants integrate information about nutrients and neighbors [J/OL]. Science, 2010, 328(5986): 1657[2022-05-18]. doi: 10.1126/science.1189736. [19] 肖强, 叶文景, 朱珠, 等. 利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法[J]. 生态学杂志, 2005, 24(6): 711 − 714. XIAO Qiang, YE Wenjing, ZHU Zhu, et al. A simple non-destructive method to measure leaf area using digital camera and Photoshop software [J]. Chinese Journal of Ecology, 2005, 24(6): 711 − 714. [20] 王俊峰, 冯玉龙. 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J]. 植物生态学报, 2004, 28(6): 781 − 786. WANG Junfeng, FENG Yulong. The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants [J]. Chinese Journal of Plant Ecology, 2004, 28(6): 781 − 786. [21] de WIT C T. On competition [J]. Verslagen van Landouwkundige Onderzoekingen, 1960, 66: 1 − 82. [22] FOWLER N. Competition and coexistence in a North Carolina grassland: Ⅱ. the effects of the experimental removal of species [J]. The Journal of Ecology, 1981, 69(3): 843 − 854. [23] WILSON J B. Shoot competition and root competition [J]. Journal of Applied Ecology, 1988, 25(1): 279 − 296. [24] QIAN Yongqiang, LUO Dong, GONG Gu, et al. Effects of spatial scale of soil heterogeneity on the growth of a clonal plant producing both spreading and clumping ramets [J]. Journal of Plant Growth Regulation, 2014, 33(2): 214 − 221. [25] HE Weiming, ALPERT P, YU Feihai, et al. Reciprocal and coincident patchiness of multiple resources differentially affect benefits of clonal integration in two perennial plants [J]. Journal of Ecology, 2011, 99(5): 1202 − 1210. [26] WANG Zhengwen, van KLEUNEN M, DURING H J, et al. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments [J/OL]. PLoS One, 2013, 8(3): e58602[2022-05-20]. doi: 10.1371/journal.pone.0058602. [27] GORCHOV D L, TRISEL D E. Competitive effects of the invasive shrub, Lonicera maackii (Rupr. ) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings [J]. Plant Ecology, 2003, 166(1): 13 − 24. [28] 朱鹏锦, 杨莉, 师生波, 等. 模拟氮沉降对青藏高原地区油菜幼苗期生长和生理特性的影响[J]. 生物学杂志, 2012, 29(5): 56 − 59. ZHU Pengjin, YANG Li, SHI Shengbo, et al. Morphological and physiological responses of Brassica napus L. to mimic nitrogen deposition in the Tibetan Plateau [J]. Journal of Biology, 2012, 29(5): 56 − 59. [29] ZHOU Jian, DONG Bicheng, ALPERT P, et al. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides [J]. Annals of Botany, 2012, 109(4): 813 − 818. [30] GAO Ying, XING Fu, JIN Yongjun, et al. Foraging responses of clonal plants to multi-patch environmental heterogeneity: spatial preference and temporal reversibility [J]. Plant and Soil, 2012, 359(1/2): 137 − 147. [31] 彭恒, 桂富荣, 李正跃, 等. 白茅对紫茎泽兰的竞争效应[J]. 生态学杂志, 2010, 29(10): 1931 − 1936. PENG Heng, GUI Furong, LI Zhengyue, et al. Competition effect of Imperata cylindrica to Ageratina adenophora [J]. Chinese Journal of Ecology, 2010, 29(10): 1931 − 1936. [32] 房锋. 节节麦(Aegilops tauschii Coss. )生态适应性[D]. 北京: 中国农业科学院, 2012. FANG Feng. Ecological Adaptability of Tausch’sgoatrass (Aegilops tauschii Coss. ) [D]. Beijing: Chinese Academy of Agricultural Science, 2012. [33] 王宁, 袁美丽, 王磊, 等. 入侵植物节节麦表型可塑性及竞争能力对模拟氮沉降的响应[J]. 草地学报, 2018, 26(6): 1428 − 1434. WANG Ning, YUAN Meili, WANG Lei, et al. The response of phenotypic plasticity and competitive ability of Aegilops tauschii Coss. to simulated nitrogen deposition [J]. Acta Agrestia Sinica, 2018, 26(6): 1428 − 1434. [34] HUTCHINGS M J, WIJESINGHE D K. Performance of a clonal species in patchy environments: effects of environmental context on yield at local and whole-plant scales [J]. Evolutionary Ecology, 2008, 22(3): 313 − 324. [35] LIANG Jinfeng, YUAN Weiying, GAO Junqin, et al. Soil resource heterogeneity competitively favors an invasive clonal plant over a native one [J]. Oecologia, 2020, 193(1): 155 − 165. [36] 袁伟影, 冯进, 张晓雅, 等. 入侵植物南美蟛蜞菊和本土蟛蜞菊生长对土壤养分的响应[J]. 生态学杂志, 2017, 36(4): 962 − 970. YUAN Weiying, FENG Jin, ZHANG Xiaoya, et al. Reponses of growth of Wedelia trilobata and W. chinensis to soil nutrients [J]. Chinese Journal of Ecology, 2017, 36(4): 962 − 970. [37] CHEN Baoming, SU Jinquan, LIAO Huixuan, et al. A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions [J]. Annals of Botany, 2018, 121(3): 561 − 569. [38] AERTS R, CHAPIN III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns [J]. Advances in Ecological Research, 1999, 30: 1 − 67. [39] BLOOM R G, MALLIK A U. Indirect effects of black spruce (Piceamariana) cover on community structure and function in sheep laurel (Kalmia angustifolia) dominated heath of eastern Canada [J]. Plant and Soil, 2004, 265(1/2): 279 − 293. [40] AIKIO S, MARKKOLA A M. Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities [J]. Evolutionary Ecology, 2002, 16(1): 67 − 76. [41] SHIPLEY B, MEZIANE D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation [J]. Functional Ecology, 2002, 16(3): 326 − 331. [42] SIEMANN E, ROGERS W E. Changes in light and nitrogen availability under pioneer trees may indirectly facilitate tree invasions of grasslands [J]. Journal of Ecology, 2003, 91(6): 923 − 931. [43] WEIGELT A, JOLLIFFE P. Indices of plant competition [J]. Journal of Ecologoy, 2010, 91(5): 707 − 720. [44] GIBSON D J, CONNOLLY J, HARTNETT D C, et al. Designs for greenhouse studies of interactions between plants [J]. Journal of Ecology, 1999, 87(1): 1 − 16. [45] FRANSEN B, de KROON H, BERENDSE F. Soil nutrient heterogeneity alters competition between two perennial grass species [J]. Ecology, 2001, 82(9): 2534 − 2546. [46] GAO Fanglei, HE Qiaosheng, ZHANG Yidan, et al. Effects of soil nutrient heterogeneity on the growth and invasion success of alien plants: a multi-species study [J/OL]. Frontiers in Ecology and Evolution, 2021, 8: 619861[2022-05-20]. doi: 10.3389/fevo.2020.619861. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220370