-
同一植物长期生长在异质环境条件下,经过自然选择和适应过程,在形态结构与生理代谢方面会发生分化,从而表现出丰富的表型可塑性[1-3]及生理生态特征变异[4-6],这反映了种群应对不同生境条件的进化方式和适应对策[7-8]。为了区分同一植物不同种源的性状差异是源自遗传效应还是环境效应,通常将相同种源的植物移植至不同环境下来研究环境效应,而将不同种源的植物移植至相同环境下来研究遗传效应[9]。此外,母体植株经受的环境胁迫也会显著影响其子代的生长发育和生理特性[10],但这种母体效应的影响程度和机理还有待深入研究。目前,关于不同地理种群/种源植物的光合特性方面研究已有大量报道[11-21]。KUNDU等[11]比较研究了印楝Azadirachta indica在南亚和非洲10个种源间的光合生理特征,发现其净光合速率、气孔导度、气孔密度、保卫细胞长度等在不同种源间均存在显著差异,印楝各种源早期的生物量积累与光合作用及气孔特征密切相关。黄秦军等[12]研究表明:5个种源蒙古栎Quercus mongolica幼苗的生长生理特性均存在差异,江密峰种源的生物量显著高于其他4个种源,同时单叶面积、栅栏组织厚度、光合色素含量及净光合速率也优于其他种源。熊彩云等[13]基于净光合速率、最大光合速率、光补偿点、光饱和点等光合作用参数,评价了3个不同纬度的木荷Schima superba种源对环境的适应能力,认为南部开平种源对当地环境具有较强的适应能力和生长潜力。张玲菊等[14]测定分析了浙江和云南5个种源铁皮石斛Dendrobium officinale的光合速率及光响应曲线,表明铁皮石斛不同种源的光合特性均表现出阴生植物特点,对光照的需求不强,其中云南广南种源的光照生态幅相对更宽。由此可见,植物在不同地理种源间通过改变自身光合生理特性来更好地适应新的环境。然而,针对极端“干热”环境的干热河谷分布区,关于牛角瓜Calotropis gigantea不同种源的光合能力及水分利用研究尚未见报道。牛角瓜原产于亚洲和非洲南部,后被引入南美洲和加勒比海一带的岛屿[22]。现广泛分布于亚洲和非洲热带及亚热带地区,是印度、印度尼西亚、马来西亚、泰国、尼泊尔、斯里兰卡、中国的特有种,在中国主要分布于云南、海南、广东、四川等省[23]。牛角瓜在干热河谷的荒山野坡、旷野瘠地、江滩河岸等严酷生境下生长迅速,长势良好,花果期全年,具有改善干热河谷脆弱生境与防治水土流失的生态功能[23]。同时,近年来牛角瓜被发现具有药用[24-27]、纤维[22, 28-32]、能源[33-34]等多种用途的资源开发价值,是不可多得的生态经济型植物。尽管如此,由于牛角瓜的自然分布较为分散,且尚无系统的集约化栽培管理技术,加之牛角瓜在中国还未受到足够的重视,导致其生态经济价值的推广受到极大限制。为此,本研究比较分析了干热河谷牛角瓜不同种源光合生理参数的日变化动态与日均值差异,筛选出干热河谷牛角瓜的优良种质资源,旨在为牛角瓜的定向培育及开发利用提供理论依据。
-
研究地位于云南省元江县种苗站,地处23°19′~23°55′N,101°39′~102°22′E,海拔390~420 m,属典型元江干热河谷气候区。年平均气温为23.7 ℃,最高日平均气温28.8 ℃,≥10 ℃的年积温4 000.0~8 700.0 ℃,无霜期200.0~364.0 d,年平均降水量787.0 mm[35]。
于2014年4月进行不同种源牛角瓜的播种育苗,供试种子采自元江河谷区内的元江、红河、个旧、建水、元阳等典型代表地域自然分布的野生牛角瓜成熟果实。牛角瓜不同种源的地理位置和生境条件见表 1。播种200粒·种源-1,种子播在10 cm × 15 cm的营养袋中,土壤基质为燥红土,育苗期间常规水肥管理。于2014年8月,选择每个种源正常生长、长势一致的盆栽幼苗12株(1株·盆-1),开展牛角瓜苗期光合生理特性的种源试验。
表 1 牛角瓜不同种源的地理位置和生境条件
Table 1. Geographical locations and habitat conditions of Calotropis gigantea from different provenances
种源 种源地点 海拔/m 地理坐标 树高/m 地径/cm 冠幅/m 结果数/个 主要植被 分布位置 元江 元江那塘 608 23°31'14.2"N 102°04'41.0"E 1.9 4.5 1.5 14 合欢、酸角、香蕉 山脚公路旁 红河 红河乌弯寨 467 23°17'37.5"N 102°37'30.9"E 2.6 7.0 3.1 32 车桑子 山腰公路旁 个旧 个旧老新寨 255 23°10'2.3"N 102°59'48.5"E 2.5 6.0 3.3 38 榕树、檻木 山腰公路旁 建水 建水自营矿山 234 23°12'49.4"N 102°53'29.5"E 2.5 8.0 2.8 35 膏桐、芒果 山腰公路旁 元阳 元阳南沙-蛮柏沙路 222 23°12'43.6"N 102°52'30.9"E 1.6 5.0 1.6 15 车桑子 江边 说明:合欢Albizia julibrissin,酸角Tamarindus indica,香蕉Musa paradisiaca,车桑子Dodonaea viscosa,榕树Ficus microcarpa,檵木Loropetalum chinensis,膏桐Jatropha carcas,芒果Mangifera indica。 -
采用便携式CO2/H2O分析系统(Li-Cor 6400; Li-Cor Inc.,Lincoln,美国),于2014年8月中上旬连续晴朗天气条件下,选待测植株顶端第5,6,7枚健康成熟的叶片(3次重复),各测定日从8:00-18:00隔2 h原位测量牛角瓜不同种源幼苗的气体交换进程。净光合速率(Pn),气孔导度(Gs),胞间二氧化碳摩尔分数(Ci),蒸腾速率(Tr),空气温度(Ta),光合有效辐射(PAR),空气二氧化碳摩尔分数(Ca)由Li-6400光合作用系统同步自动记录。水分利用效率(WUE)=Pn/Tr,光能利用效率(LUE)=(Pn/PAR)×1 000,瞬时羧化效率(CE)=Pn/Ci,气孔限制值(ls)=1-Ci/Ca[36-37]。
将牛角瓜的光合生理参数在日变化进程中每个时刻的实测值加以平均,得到各光合生理参数的日均值并比较分析它们在不同种源间的差异。
-
数据的统计分析通过SPSS 13.0软件(SPSS Inc. 美国)完成,文中图形在Microsoft Office Excel 2003软件中完成。图表中所有数据均由平均值±标准误表示。方差分析采用多重比较分析中的邓肯检验(Duncan’s test),不同字母表示在P<0.05水平差异显著。
Photosynthetic and physiological characteristics for seedlings of Calotropis gigantea provenances in a hot-dry valley
-
摘要: 为了解干热河谷不同种源牛角瓜Calotropis gigantea苗期的光合生理特性,比较分析了牛角瓜幼苗净光合速率(Pn),气孔导度(Gs),胞间二氧化碳摩尔分数(Ci),蒸腾速率(Tr),水分利用效率(WUE),光能利用效率(LUE),瞬时羧化效率(CE)和气孔限制值(ls)在元江、红河、个旧、建水、元阳等种源间的日变化动态与日均值差异。牛角瓜5个种源的Pn日变化动态均呈双峰曲线,但在不同时刻的数值存在种源间差异。牛角瓜对高温具有极强的适应性,它通过增加气孔导度和蒸腾作用来提高光合同化效率。干热河谷的极端高温不是影响牛角瓜幼苗光合作用与羧化反应的限制因素,而正午的强光辐射显著抑制了牛角瓜幼苗的光合作用与水分利用。干热河谷牛角瓜不同种源间的光合生理参数日均值具有显著差异(P<0.05),红河种源的Pn,Tr,LUE和CE显著高于其他4个种源(P<0.05),个旧种源表现出“高光合、低蒸腾”的显著特点,具有最高的WUE和较高的Pn,LUE和CE,因此筛选出红河、个旧为具有高水平光合生产与水分利用潜力的干热河谷牛角瓜种质资源。图3表1参43Abstract: To understand the photosynthetic and physiological characteristics of the seedling stage for different provenances of Calotropis gigantea in a hot-dry valley area, changes in daily mean values for net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), water use efficiency (WUE), light use efficiency (LUE), carboxylation efficiency (CE), and stomatal limitation (ls) of C. gigantea seedlings from Yuanjiang, Honghe, Gejiu, Jianshui, and Yuanyang provenances were compared and analyzed using multiple comparison analysis of Duncan’s test. Results of diurnal dynamics for the net photosynthetic rates from all provenances showed bimodal curves, but there were different times associated with the values. C. gigantea has strong adaptability to high temperature, which can improve the photosynthetic assimilation efficiency by increasing the stomatal conductance and transpiration. The extreme high temperature in hot-dry valleys is not the limiting factor to influence photosynthesis and carboxylation reaction of C. gigantea seedlings, however, the high light radiation at midday significantly inhibits their photosynthesis and water utilization. The daily mean values for photosynthetic and physiological parameters showed that Honghe provenance had a significantly higher (P < 0.05) net photosynthetic rate, transpiration rate, light use efficiency, and carboxylation efficiency than the other four provenances. Also, Gejiu provenance had a highest (P < 0.05) water use efficiency and a high-level net photosynthetic rate, light use efficiency, and carboxylation efficiency. Consequently, Honghe and Gejiu provenances are considered superior for planting in hot-dry valleys having high-level photosynthetic production and water utilization potential.[Ch, 3 fig. 1 tab. 43 ref.]
-
表 1 牛角瓜不同种源的地理位置和生境条件
Table 1. Geographical locations and habitat conditions of Calotropis gigantea from different provenances
种源 种源地点 海拔/m 地理坐标 树高/m 地径/cm 冠幅/m 结果数/个 主要植被 分布位置 元江 元江那塘 608 23°31'14.2"N 102°04'41.0"E 1.9 4.5 1.5 14 合欢、酸角、香蕉 山脚公路旁 红河 红河乌弯寨 467 23°17'37.5"N 102°37'30.9"E 2.6 7.0 3.1 32 车桑子 山腰公路旁 个旧 个旧老新寨 255 23°10'2.3"N 102°59'48.5"E 2.5 6.0 3.3 38 榕树、檻木 山腰公路旁 建水 建水自营矿山 234 23°12'49.4"N 102°53'29.5"E 2.5 8.0 2.8 35 膏桐、芒果 山腰公路旁 元阳 元阳南沙-蛮柏沙路 222 23°12'43.6"N 102°52'30.9"E 1.6 5.0 1.6 15 车桑子 江边 说明:合欢Albizia julibrissin,酸角Tamarindus indica,香蕉Musa paradisiaca,车桑子Dodonaea viscosa,榕树Ficus microcarpa,檵木Loropetalum chinensis,膏桐Jatropha carcas,芒果Mangifera indica。 -
[1] NICOTRA A B, HERMES J P, JONES C S, et al. Geographic variation and plasticity to water and nutrients in Pelargonium australe [J]. New Phytol, 2007, 176(1): 136-149. [2] SCHLICHTING C D, SMITH H. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes [J]. Evol Ecol, 2002, 16(3): 189-211. [3] SULTAN S E. Phenotypic plasticity for plant development, function and life history [J]. Trends Plant Sci, 2000, 5(12): 537-542. [4] 季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性[J]. 生态学报, 2013, 33(21): 6967-6974. JI Zijing, QUAN Xiankui, WANG Chuankuan. Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes [J]. Acta Ecol Sin, 2013, 33(21): 6967-6974. [5] 杨传平, 姜静, 唐盛松, 等. 帽儿山地区21年生兴安落叶松种源试验[J]. 东北林业大学学报, 2002, 30(6): 1-5. YANG Chuanping, JIANG Jing, TANG Shengsong, et al. The provenance test of 21-year old Larix gmelinii at Maoershan area [J]. J Northeast For Univ, 2002, 30(6): 1-5. [6] 赵晓焱, 王传宽, 霍宏. 兴安落叶松(Larix gmelinii)光合能力及相关因子的种源差异[J]. 生态学报, 2008, 28(8): 3798-3807. ZHAO Xiaoyan, WANG Chuankuan, HUO Hong. Variations in photosynthetic capacity and associated factors for Larix gmelinii from diverse origins [J]. Acta Ecol Sin, 2008, 28(8): 3798-3807. [7] ACKERLY D D, DUDLEY S A, SULTAN S E, et al. The evolution of plant ecophysiological traits: recent advances and future directions [J]. BioScience, 2000, 50(11): 979-995. [8] ZENNI R D, BAILEY J K, SIMBERLOFF D. Rapid evolution and range expansion of an invasive plant are driven by provenance-environment interactions [J]. Ecol Lett, 2014, 17(6): 727-735. [9] SUSTANI F B, JALALI S G, SOHRABI H, et al. Biomass allocation of chestnut oak (Quercus castaneifolia C.A. Mey) seedlings: effects of provenance and light gradient [J]. J For Sci, 2014, 60(11): 443-450. [10] GALLOWAY L F. Parental environmental effects on life history in the herbaceous plant Campanula americana [J]. Ecology, 2001, 82(10): 2781-2789. [11] KUNDU S K, TIGERSTEDT P M A. Variation in net photosynthesis, stomatal characteristics, leaf area and whole-plant phytomass production among ten provenances of neem (Azadirachta indica) [J]. Tree Physiol, 1998, 19(1): 47-52. [12] 黄秦军, 黄国伟, 苏晓华, 等. 蒙古栎生长及生理特征的种源间差异[J]. 林业科学, 2013, 49(9): 72-78. HUANG Qinjun, HUANG Guowei, SU Xiaohua, et al. Provenance differences in growth and physiological characteristics of Quercus mongolica [J]. Sci Silv Sin, 2013, 49(9): 72-78. [13] 熊彩云, 曾伟, 肖复明, 等. 木荷种源间光合作用参数分析[J]. 生态学报, 2012, 32(11): 3628-3631. XIONG Caiyun, ZENG Wei, XIAO Fuming, et al. An analysis of photosynthetic parameters among Schima superba provenances [J]. Acta Ecol Sin, 2012, 32(11): 3628-3631. [14] 张玲菊, 高亭亭, 章晓玲, 等. 5个种源铁皮石斛的光合特性[J]. 浙江农林大学学报, 2013, 30(3): 359-363. ZHANG Lingju, GAO Tingting, ZHANG Xiaoling, et al. Photosynthetic characteristics of Dendrobium officinale from five provenances [J]. J Zhejiang A & F Univ, 2013, 30(3): 359-363. [15] 尚海琳, 李方民, 林玥, 等. 桃儿七光合生理特性的地理差异研究[J]. 西北植物学报, 2008, 28(7): 1440-1447. SHANG Hailing, LI Fangmin, LIN Yue, et al. Photosynthetic characteristics of Sinopodophyllum hexandrum from different distribution areas in China [J]. Acta Bot Boreal-Occident Sin, 2008, 28(7): 1440-1447. [16] 邵玺文, 韩梅, 韩忠明, 等. 不同生境条件下黄芩光合日变化与环境因子的关系[J]. 生态学报, 2009, 29(3): 1470-1477. SHAO Xiwen, HAN Mei, HAN Zhongming, et al. Relationship between diurnal changes of photosynthesis of Scutellaria baicalensis and environmental factors in different habitats [J]. Acta Ecol Sin, 2009, 29(3): 1470-1477. [17] 申文辉, 李志辉, 彭玉华, 等. 格木不同种源光合作用光响应分析研究[J]. 中南林业科技大学学报, 2014, 34(6): 13-18. SHEN Wenhui, LI Zhihui, PENG Yuhua, et al. Light response of photosynthesis of different provenance Erythrophleum fordii Oliv. [J]. J Cent South Univ For Technol, 2014, 34(6): 13-18. [18] 王旭军, 潘百红, 程勇, 等. 红榉不同种源光合特性的比较[J]. 中南林业科技大学学报, 2013, 33(6): 37-42. WANG Xujun, PAN Baihong, CHENG Yong, et al. Comparison of photosynthetic characteristics of different provenances of Zelkova schneideriana Hand-Mazz [J]. J Cent South Univ For Technol, 2013, 33(6): 37-42. [19] 杨瑞卿, 楚秀丽, 杨万霞, 等. 不同种源青钱柳苗期光合特征及变异分析[J]. 南京林业大学学报:自然科学版, 2012, 36(4): 41-45. YANG Ruiqing, CHU Xiuli, YANG Wanxia, et al. Variation in photosynthetic characteristics of Cyclocarya paliurus seedlings from different provenances [J]. J Nanjing For Univ Nat Sci Ed, 2012, 36(4): 41-45. [20] 张世华, 梁社往, 何忠俊, 等. 10个地理种源滇重楼光合特性的比较研究[J]. 云南农业大学学报, 2012, 27(5): 708-715. ZHANG Shihua, LIANG Shewang, HE Zhongjun, et al. Comparative analysis of ten different geographical strains of Paris polyphylla var. yunnanensis based on photosynthesis [J]. J Yunnan Agric Univ, 2012, 27(5): 708-715. [21] 种培芳, 李毅, 苏世平, 等. 红砂3个地理种群的光合特性及其影响因素[J]. 生态学报, 2010, 30(4): 914-922. ZHONG Peifang, LI Yi, SU Shiping, et al. Photosynthetic characteristics and their effect factors of Reaumuria soongorica on three geographical populations [J]. Acta Ecol Sin, 2010, 30(4): 914-922. [22] MAITY S, MOHAPATRA H S, CHATTERJEE A, et al. New generation natural fiber: akund floss [J]. Chin Mell, 2014(7): 6-8, 56. [23] 郑元, 罗明灿, 高柱, 等. 牛角瓜的研究动态[J]. 西南林业大学学报, 2015, 35(5): 96-102. ZHENG Yuan, LUO Mingcan, GAO Zhu, et al. The research trends and development prospect of Calotropis gigantean [J]. J Southwest For Univ, 2015, 35(5): 96-102. [24] SUMANGALA K B, SHARMA A. Therapeutic potential of cardiac glycosides of Calotropis gigantea for breast cancer [J]. Int Res J Pharm, 2013, 4(6): 164-167. [25] HABIB M R, AZIZ M A, KARIM M R. Inhibition of Ehrlich’s ascites carcinoma by ethyl acetate extract from the flower of Calotropis gigantea L. in mice [J]. J Appl Biomed, 2010, 8(1): 47-54. [26] PATIL S M, SAINI R. Investigation of wound healing activity of ethyl acetate extract of flowers of Calotropis gigantea [J]. Int J Pharmu Chem Biol Sci, 2012, 2(2): 134-137. [27] KULDEEP S, ZEASHAN H, RITU P. Evaluation of in-vivo antioxidant and oral glucose tolerance test of ethanolic extract of Calotropis gigantea Linn. against streptozotocin-induced diabetic rats [J]. J Pharm Phytochem, 2014, 2(5): 59-65. [28] ASHORI A, BAHREINI Z. Evaluation of Calotropis gigantea as a promising raw material for fiber-reinforced composite [J]. J Compos Mater, 2009, 43(11): 1297-1304. [29] CHEN Qin, ZHAO Tao, WANG Ming, et al. Studies of the fibre structure and dyeing properties of Calotropis gigantea, kapok and cotton fibres [J]. Color Technol, 2013, 129(6): 448-453. [30] 方国平, 胡惠民. 牛角瓜纤维及其在针织领域应用初探[J]. 针织工业, 2014(5): 26-30. FANG Guoping, HU Huimin. Akund fiber and its application in knitting [J]. Knit Ind, 2014(5): 26-30. [31] 费魏鹤, 胡惠民, 李璇, 等. 牛角瓜纤维的结构与性能研究[J]. 中国纤检, 2011(7): 80-83. FEI Weihe, HU Huimin, LI Xuan, et al. Study on the structure and property of akund fiber [J]. Chin Fiber Inspect, 2011(7): 80-83. [32] 李璇, 费魏鹤, 李卫东. 牛角瓜纤维鉴别方法研究[J]. 上海纺织科技, 2013, 41(3): 20-22. LI Xuan, FEI Weihe, LI Weidong. Research on identification of akund [J]. Shanghai Text Sci Technol, 2013, 41(3): 20-22. [33] KALITA D, SAIKIA C N. Chemical constituents and energy content of some latex bearing plants [J]. Bioresource Technol, 2004, 92(3): 219-227. [34] 李瑞, 曾建立, 王晓东, 等. 耐盐碱植物牛角瓜产能成分分析[J]. 过程工程学报, 2007, 7(6): 1217-1220. LI Rui, ZENG Jianli, WANG Xiaodong, et al. Energy-produced components in Calotropis gigantea [J]. Chin J Process Eng, 2007, 7(6): 1217-1220. [35] 袁晓慧, 刘惠民, 王连春, 等. 不同施肥处理对牛角瓜营养生长和产量的影响[J]. 经济林研究, 2015, 33(2): 14-19. YUAN Xiaohui, LIU Huimin, WANG Lianchun, et al. Effect of different fertilization treatments on vegetative growth and yield in Calotropis gigantea [J]. Nonwood For Res, 2015, 33(2): 14-19. [36] ZHENG Yuan, ZHAO Zhong, ZHOU Jingjing, et al. The importance of slope aspect and stand age on the photosynthetic carbon fixation capacity of forest: a case study with black locust (Robinia pseudoacacia) plantations on the Loess Plateau [J]. Acta Physiol Plant, 2011, 33(2): 419-429. [37] 郑元, 赵忠, 周靖靖, 等. 刺槐光合气体交换与环境因子的关系[J]. 西北农林科技大学学报:自然科学版, 2011, 39(4): 81-88. ZHENG Yuan, ZHAO Zhong, ZHOU Jingjing, et al. Relationship between photosynthetic gas exchange of black locust and environmental factors [J]. J Northwest A & F Univ Nat Sci Ed, 2011, 39(4): 81-88. [38] 郑元, 高柱, 罗明灿, 等. 元江干热河谷牛角瓜种质资源调查及果实性状的多元统计分析[J]. 中南林业科技大学学报, 2015, 35(9): 13-21. ZHENG Yuan, GAO Zhu, LUO Mingcan, et al. Investigation on germplasm resources and multivariate statistical analysis on fruit characters of Calotropis gigantea in Yuanjiang dry-hot valley in Yunnan [J]. J Cent South Univ For Technol, 2015, 35(9): 13-21. [39] 高柱, 王小玲, 余发新, 等. 干热河谷牛角瓜光合特性[J]. 东北林业大学学报, 2014, 42(3): 19-23. GAO Zhu, WANG Xiaoling, YU Faxin, et al. Photosynthesis characteristics of Calotropis gigantea L. in dry-hot valley [J]. J Northeast For Univ, 2014, 42(3): 19-23. [40] CENTRITTO M, BRILLI F, FODALE R, et al. Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings [J]. Tree Physiol, 2011, 31(3): 275-286. [41] SALVUCCI M E, PORTIS A R J, OGREN W L. Purification of ribulose-1, 5-bisphosphate carboxylase/oxygenase with high specific activity by fast protein liquid chromatography [J]. Anal Biochem, 1986, 153(1): 97-101. [42] YAMORI W, HIKOSAKA K, WAY D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation [J]. Photosynth Res, 2014, 119(1/2): 101-117. [43] 云建英, 杨甲定, 赵哈林. 干旱和高温对植物光合作用的影响机制研究进展[J]. 西北植物学报, 2006, 26(3): 641-648. YUN Jianying, YANG Jiading, ZHAO Halin. Research progress in the mechanism for drought and high temperature to affect plant photosynthesis [J]. Acta Bot Boreal-Occident Sin, 2006, 26(3): 641-648. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.03.010