-
木材结晶度是指木材中纤维素构成的结晶区占纤维素整体的百分数,表示木材纤维素聚集态形成结晶的程度[1]。它与树木的结构、生长特性及化学组成皆有密切关系,并对木材的密度、硬度及力学性质等具有重要的影响。因此,研究木材结晶度对于从结构与组成上了解木质性质具有指导意义。目前,木材结晶度的测试方法主要有密度法、X-射线衍射法、红外光谱、核磁共振光谱和动力谱学等,其中X-射线衍射法属于绝对法,应用最广泛[2]。然而,该方法相对费时,不适于大批量样本的测定。为此,研究一种快速简便准确的测试方法日益受到各国研究者的关注。近红外(near infrared,NIR)光谱技术是一项快速、准确的无损检测技术,已被广泛应用于药物生产、纸浆造纸、产品检测等各个领域。近红外光谱主要记录含氢基团C—H,O—H,N—H等振动的倍频和合频信息,能反映绝大多数有机化合物的组成和结构性能信息。木材中的纤维素和木质素分子内含有大量含氢基团,在近红外光谱区域有丰富的吸收信息,这是利用近红外光谱法预测木材性质的化学基础。近年来,近红外光谱技术在木材科学研究中的应用也越来越广泛,已被应用到蓝桉Eucalyptus globules,亮果桉Eucalyptus nitens,榆树Ulmus pumila,粗皮桉Eucalyptus pellita,辐射松Pinus radiata,火炬松Pinus taeda,湿地松Pinus elliottii和落叶松Larix gmelinii等树种上,实现了对木材纤维素含量[3]、密度[4-5]、力学性质[6-8]、微纤丝角[9]和木材结晶度[10-12]等性状的预测。杉木Cunninghamia lanceolata是中国南方最重要的速生用材树种之一,分布区涉及湖南、福建、江西、贵州、浙江、广东、广西、四川、湖北、云南、安徽、江苏、河南、陕西、甘肃及台湾等16省(区)[13]。目前,已经就近红外光谱法预测杉木的综纤维素和木质素含量[14]、力学性质[15]、木材强度[16]、微纤丝角[17]、冠层色素含量[18]和叶绿素含量[19]等指标进行了研究,但预测杉木木材结晶度的研究还未见报道。另外,迄今为止杉木木材性状变异规律方面的研究大多基于单株水平[20-23],而基于种源和无性系间的变异研究积累较少,仅有对无性系间力学性质和木材密度变异[24-26]以及种源间木材密度变异[27]的研究。为此,本研究在测定不同地理种源杉木木材样品结晶度的基础上,通过光谱区间选择、光谱预处理组合筛选等建立杉木木材结晶度的近红外预测模型。同时,运用该模型对未知样品进行预测,分析木材结晶度的变异规律,以期为优良无性系选择提供重要依据。
-
图 1A为杉木木材X射线衍射图,有3个主要的衍射峰,不同样品光谱在衍射峰1和衍射峰2区域差异较大。图 1B为木材结晶度差异较大的2个样品的近红外光谱图。由图 1可知:不同样品具有相似的近红外吸收光谱,近红外吸收谱带相对较宽,而且重叠严重。在低波数(高波长)近红外NIR吸收峰相对较强和尖锐,分辨能力也较好,而在高波数段吸收峰更低,峰形更宽。杉木的主要成分在波数为7 000,5 200,4 700,和4 400 cm-1等4处有较强吸收峰。结果与黄安民等[15]的测定结果一致。
-
根据131个木材样品的结晶度数据,按照结晶度大小梯度选取101个样品作为校正集,用于模型的建立和完全交互验证。剩余30个样品作为预测集,不参与建模,用于建模后的外部验证。由表 1可知:预测集的数据分布均在校正集中。
表 1 木材结晶度数据统计结果
Table 1. Statistical results of wood crystallinity of Cunninghamia lanceolata
样本集 数量 平均值/% 最大值/% 最小值/% 标准偏差/% 校正集 101 47.13 50.28 39.81 2.03 预测集 30 44.76 47.14 42.88 1.24 -
如果采用全谱数据进行分析,计算工作量比较大,而且在有的光谱区间内样品的信息很弱,与样品的组成间相关性较小,因此,选择合理的光谱范围可减少工作量,同时能提高信噪比和数据分析效率。光谱范围的选择在近红外定量分析模型的建立中是最难的一步,迄今为止化学计量学领域还没有一个完美的算法来选择最佳的光谱范围[28]。最佳光谱区间的选择需要综合考虑光谱特性、采样技术、样品的物理化学性质和分析结果[29]。杉木木材中化学组分复杂,难以从近红外光谱中单独提取某一组分相对应的特征吸收带,因此需要利用样品信息较强的低波数(高波长)范围光谱。实际建模中也发现波数最小值不利于建模,故光谱区间选择从4 100 cm-1开始。表 2为在低波数下的10个不同光谱区域的原始光谱、一阶导数预处理光谱和二阶导数预处理光谱的建模结果,对应的参数为相关系数/校正均方差(r/RMSEC)。结果显示,采用二阶导数预处理光谱,在6 000~4 100 cm-1光谱范围内。预测模型具有相对较好的相关性。
表 2 不同光谱区间建模结果
Table 2. Results of modeling with different spectral regions
光谱范围/(cm-1) 原始光谱 一阶导数 二阶导数 4 100~8 000 0.637 7/1.52 0.703 2/1.48 0.951 5/0.61 5 000~8 000 0.619 9/1.55 0.399 6/1.81 0.600 0/1.58 6 000~8 000 0.602 4/1.57 0.668 1/1.47 0.247 1/1.91 7 000~8 000 0.574 9/1.61 0.636 8/1.52 0.222 5/1.92 4 100~7 000 0.637 7/1.52 0.673 2/1.46 0.955 2/0.58 5 000~7 000 0.623 5/1.54 0.396 2/1.81 0.570 1/1.62 6 000~7 000 0.444 6/1.76 0.507 1/1.70 0.105 8/1.96 4 100~6 000 0.614 2/1.55 0.659 4/1.48 0.981 3/0.39 5 000~6 000 0.598 7/1.58 0.395 3/1.81 0.489 8/1.72 4 100~5 000 0.642 7/1.51 0.649 4/1.50 0.141 5/1.95 -
利用近红外定量常用的偏最小二乘法(PLS)和主成分回归法(PCR)作为建模的备选算法。TQ Analyst的光程类型提供了多种方法用于对光程进行定义或校正处理,而光程类型的选择取决于采样的方法。在进行粉末样品近红外漫反射光谱采集时,由于样品颗粒尺寸、均匀性等的影响,光程无法保持恒定,此时需要使用多元信号修正(MSC)或标准则变换(SNV)来对光谱进行处理,以消除这些因素的干扰[30]。光谱预处理在近红外光谱分析中通常是有效且必要的。近红外光谱测量过程中,经常出现光谱偏移或漂移。导数处理是净化谱图较常用的方法,可根据需要进行一阶或二阶微分处理[31-33]。平滑处理可以减少随机噪音,提高模型的稳健性。表 3为在光谱区间6 000~4 100 cm-1时,不同光谱处理组合方式所建立的模型比较结果。采用偏最小二乘、二阶求导和Savitzky-Golay卷积平滑组合对光谱进行预处理,获得了最佳的定量校正模型(图 2),其中校正模型相关系数为0.987 5,校正均方差RMSEC=0.318;预测模型的相关系数为0.921 3,预测均方差RMSEP=0.742。
表 3 不同预处理方法获得的模型参数
Table 3. The model parameters in different pretreatment methods
预处理方法 校正模型 预测模型 RMSEC Rc RMSEP Rp PLS+MSC+ Original 1.970 0.216 0 1.460 0.782 PLS+SNV+ Original 1.970 0.217 5 1.460 0.782 PCR+MSC+ Original 1.750 0.498 8 1.100 0.795 PCR+SNV+ Original 1.760 0.490 7 1.110 0.790 PLS+MSC+ First derivative 1.920 0.3144 1.220 0.850 PLS+SNV+ First derivative 1.990 0.160 3 1.650 0.455 PCR+MSC+ First derivative 1.660 0.565 6 1.340 0.714 PCR+SNV+ First derivative 1.780 0.470 5 1.270 0.698 PLS+MSC+ First derivative +SG 1.990 0.173 6 1.630 0.506 PLS+SNV+ First derivative +SG 1.990 0.166 9 1.640 0.486 PCR+MSC+ First derivative +SG 1.660 0.567 1 1.340 0.714 PCR+SNV+ First derivative +SG 1.780 0.468 3 1.270 0.692 PLS+MSC+ Second derivative 0.366 0.983 4 0.753 0.916 PLS+SNV+ Second derivative 0.369 0.983 2 0.756 0.955 PCR+MSC+ Second derivative 1.880 0.368 6 1.210 0.816 PCR+SNV+ Second derivative 1.880 0.367 8 1.210 0.820 PLS+MSC+ Second derivative +SG 0.318 0.987 5 0.742 0.921 PLS+SNV+ Second derivative +SG 0.318 0.987 5 0.745 0.920 PCR+MSC+ Second derivative +SG 1.870 0.379 6 1.220 0.808 PCR+SNV+ Second derivative +SG 1.870 0.379 1 1.220 0.812 说明:Original为原始光谱;First derivative为一阶求导;Second derivative为二阶求导;SG为Savitzky-Golay卷积平滑。 -
为进一步评价模型的质量和测定结果,用30个未参与建模的样品进行外部验证,以确定模型的可靠性和准确性。图 3所示:木材结晶度的实测值和预测值之间的相关系数为0.905 4,有较强的相关性,平均标准偏差为0.301,表明预测结果较好,利用近红外光谱技术建立杉木木材结晶度预测模型是可行的。该模型可以用来预测真实值,实现杉木木材结晶度的快速测定。
-
利用已建成的预测模型和近红外光谱信息对未测定结晶度的230个样品进行预测。表 4给出了11个地理种源杉木木材结晶度的变异情况。按照地理种源分布,杉木木材平均结晶度湖南靖县种源的最小,为43.45%,贵州黎平种源的最大,为45.23%。结晶度的变异系数由大到小依次是广西融水>广西三江>广西柳州>贵州锦屏>广西那坡>湖南靖县=广西河池>湖南会同>贵州天柱>广西南丹>贵州黎平。方差分析显示杉木木材结晶度在种源间无显著差异[F=1.305<F0.05(10, 200)=1.88,表 5]。
表 4 不同地理种源平均结晶度变异情况
Table 4. Average crystallinity variation of different geographical provenances
地理种源 结晶度/% 变异系数 变幅/% 广西融水 44.24 0.044 41.00~49.75 广西河池 44.07 0.032 42.30~45.77 广西柳州 44.53 0.038 42.95~46.28 广西那坡 45.15 0.034 42.53~47.21 广西南丹 44.59 0.022 43.60~45.52 广西三江 44.59 0.039 41.05~48.01 贵州锦屏 44$62 0.037 41.55~47.10 贵州黎平 45$23 0.009 44.95~45.51 贵州天柱 43$68 0.027 42.50~44.88 湖南会同 44$26 0.027 42.49~45.36 湖南靖县 43$45 0.032 40.49~46.28 总体 44.52 0.031 40.49~49.75 图 4为杉木无性系木材结晶度大小分布频次图。对164个杉木无性系样品结晶度大小的结果分析表明:平均值为44.52%,总体变幅为40.49%~49.75%,其中分布在区间42.06%~47.28%的占72.86%。另外,不同杉木无性系间结晶度的差异达极显著水平[F=1.718>F0.01(100, 150)=1.52,表 5]。
图 4 杉木无性系木材结晶度大小分布频次图
Figure 4. The size distribution frequency graph of wood crystallinity of Cunninghamia lanceolata clones
表 5 杉木木材结晶度种源及无性系间方差分析结果
Table 5. Variance analysis of wood crystallinity for C. lanceolata provenances and clones
变异来源 平方和 自由度 均方 F值 种源 处理间 28.072 10 2.807 1.305 处理内 600.546 164 3.662 总变异 628.618 174 无性系 处理间 951.179 163 5.835 1.718** 处理内 556.913 164 3.396 总变异 1 508.092 327 说明:F0.05(10, 200)=1.88, F0.01(10, 200)=2.41;F0.05(10, 150)=1.34, F0.01(10, 150)=1.52
A near infrared prediction model and variation analysis of wood crystallinity in Cunninghamia lanceolata
-
摘要: 木材结晶度的测定费用高、耗时长,所以基于近红外光谱技术快速测定结晶度很有实用价值。杉木Cunninghamia lanceolata是中国南方栽植面积最大的用材树种之一,结晶度作为衡量木材品质的重要指标,了解其变异对杉木无性系选育及木材加工技术改进都有实际意义。本研究样品来自广西、湖南和贵州等11个不同地理种源的杉木无性系,通过X衍射技术测定结晶度,结合近红外光谱技术通过偏最小二乘法建立相应的模型并对模型预测效果进行评价。通过模型预测未知样品,进而分析杉木木材结晶度在不同种源和无性系间的变异。当光谱区域为6 000~4 100 cm-1,光谱数据进行二阶导数和Savitzky-Golay平滑处理,运用偏最小二乘法建立的校正模型预测效果最好。校正模型相关系数r=0.987 5,校正均方差(RMSEC)为0.318;预测模型的相关系数r=0.921 3,预测均方差(RMSEP)=0.742。用未参与建模的已测定样品进行模型评价,其预测值与实测值之间的相关系数为0.905 0,平均标准偏差为0.301,该模型能预测杉木样品的结晶度。对164个杉木无性系木材结晶度测定结果的分析显示:平均值为44.52%,变幅为40.49%~49.75%,区间为42.06%~47.28%的占72.86%。按照地理种源分布,杉木木材平均结晶度湖南靖县种源的最小为43.45%,贵州黎平种源的最大为45.23%,方差分析表明种源间无显著差异(P=0.000 3),而无性系间具有显著差异。Abstract: Understanding variation of wood crystallinity, an important indicator of timber quality measurement, of Cunninghamia lanceolata, one of the most widely planted timber trees in southern China, is important for C. lanceolata clonal selection and wood processing technology improvements. For an inexpensive and less time-consuming method of rapid crystallinity determination, near infrared spectrum technology was tested. Using 164 C. lanceolata clones from 11 different geographic origins such as Guangxi, Hunan, and Guizhou Provinces, a near infrared spectroscopy prediction model of wood crystallinity was established by the partial least squares (PLS) method in combination with X-ray diffraction techniques, and then evaluated. Next, unknown samples were predicted through the model, and the variation of crystallinity was analyzed. Results showed that when using a spectral region of 6 000-4 000 cm-1, the second derivative spectrum, and PLS method, the calibration model had the best prediction effect. The calibration model correlation coefficient was r=0.987 5, and the root mean square error of calibration (RMSEC) was 0.318. Verifying the model revealed r=0.921 3 and root mean square error of prediction (RMSEP) was 0.742. Using unknown samples not involved in modeling to evaluate the model, predicted and measured r=0.905 0 with an average standard deviation of 0.301. So, the model could predict the crystallinity of C. lanceolata. Then, wood crystallinity determination results of 164 C. lanceolata clones showed that the average value was 44.52%, the range was 40.49%-49.75%, and the value between 42.06% and 47.28% took up 72.86%. According to the distribution of geographical provenances, the average wood crystallinity of C. lanceolata had a minimum of 43.45% from Jing County, Hunan, and a maximum of 45.23% from Liping County, Guizhou. The variance analysis showed no significant difference among the provenances, but there were significant differences for clones (P=0.000 3). The results indicate that near infrared spectroscopy could be used for the establishment of reliable prediction model, and the selection of improved varieties should be carried out among clones.
-
表 1 木材结晶度数据统计结果
Table 1. Statistical results of wood crystallinity of Cunninghamia lanceolata
样本集 数量 平均值/% 最大值/% 最小值/% 标准偏差/% 校正集 101 47.13 50.28 39.81 2.03 预测集 30 44.76 47.14 42.88 1.24 表 2 不同光谱区间建模结果
Table 2. Results of modeling with different spectral regions
光谱范围/(cm-1) 原始光谱 一阶导数 二阶导数 4 100~8 000 0.637 7/1.52 0.703 2/1.48 0.951 5/0.61 5 000~8 000 0.619 9/1.55 0.399 6/1.81 0.600 0/1.58 6 000~8 000 0.602 4/1.57 0.668 1/1.47 0.247 1/1.91 7 000~8 000 0.574 9/1.61 0.636 8/1.52 0.222 5/1.92 4 100~7 000 0.637 7/1.52 0.673 2/1.46 0.955 2/0.58 5 000~7 000 0.623 5/1.54 0.396 2/1.81 0.570 1/1.62 6 000~7 000 0.444 6/1.76 0.507 1/1.70 0.105 8/1.96 4 100~6 000 0.614 2/1.55 0.659 4/1.48 0.981 3/0.39 5 000~6 000 0.598 7/1.58 0.395 3/1.81 0.489 8/1.72 4 100~5 000 0.642 7/1.51 0.649 4/1.50 0.141 5/1.95 表 3 不同预处理方法获得的模型参数
Table 3. The model parameters in different pretreatment methods
预处理方法 校正模型 预测模型 RMSEC Rc RMSEP Rp PLS+MSC+ Original 1.970 0.216 0 1.460 0.782 PLS+SNV+ Original 1.970 0.217 5 1.460 0.782 PCR+MSC+ Original 1.750 0.498 8 1.100 0.795 PCR+SNV+ Original 1.760 0.490 7 1.110 0.790 PLS+MSC+ First derivative 1.920 0.3144 1.220 0.850 PLS+SNV+ First derivative 1.990 0.160 3 1.650 0.455 PCR+MSC+ First derivative 1.660 0.565 6 1.340 0.714 PCR+SNV+ First derivative 1.780 0.470 5 1.270 0.698 PLS+MSC+ First derivative +SG 1.990 0.173 6 1.630 0.506 PLS+SNV+ First derivative +SG 1.990 0.166 9 1.640 0.486 PCR+MSC+ First derivative +SG 1.660 0.567 1 1.340 0.714 PCR+SNV+ First derivative +SG 1.780 0.468 3 1.270 0.692 PLS+MSC+ Second derivative 0.366 0.983 4 0.753 0.916 PLS+SNV+ Second derivative 0.369 0.983 2 0.756 0.955 PCR+MSC+ Second derivative 1.880 0.368 6 1.210 0.816 PCR+SNV+ Second derivative 1.880 0.367 8 1.210 0.820 PLS+MSC+ Second derivative +SG 0.318 0.987 5 0.742 0.921 PLS+SNV+ Second derivative +SG 0.318 0.987 5 0.745 0.920 PCR+MSC+ Second derivative +SG 1.870 0.379 6 1.220 0.808 PCR+SNV+ Second derivative +SG 1.870 0.379 1 1.220 0.812 说明:Original为原始光谱;First derivative为一阶求导;Second derivative为二阶求导;SG为Savitzky-Golay卷积平滑。 表 4 不同地理种源平均结晶度变异情况
Table 4. Average crystallinity variation of different geographical provenances
地理种源 结晶度/% 变异系数 变幅/% 广西融水 44.24 0.044 41.00~49.75 广西河池 44.07 0.032 42.30~45.77 广西柳州 44.53 0.038 42.95~46.28 广西那坡 45.15 0.034 42.53~47.21 广西南丹 44.59 0.022 43.60~45.52 广西三江 44.59 0.039 41.05~48.01 贵州锦屏 44$62 0.037 41.55~47.10 贵州黎平 45$23 0.009 44.95~45.51 贵州天柱 43$68 0.027 42.50~44.88 湖南会同 44$26 0.027 42.49~45.36 湖南靖县 43$45 0.032 40.49~46.28 总体 44.52 0.031 40.49~49.75 表 5 杉木木材结晶度种源及无性系间方差分析结果
Table 5. Variance analysis of wood crystallinity for C. lanceolata provenances and clones
变异来源 平方和 自由度 均方 F值 种源 处理间 28.072 10 2.807 1.305 处理内 600.546 164 3.662 总变异 628.618 174 无性系 处理间 951.179 163 5.835 1.718** 处理内 556.913 164 3.396 总变异 1 508.092 327 说明:F0.05(10, 200)=1.88, F0.01(10, 200)=2.41;F0.05(10, 150)=1.34, F0.01(10, 150)=1.52 -
[1] 江泽慧, 杨忠, 王戈, 等.湿地松木材近红外光谱与其结晶度的相关性[J].林业科学, 2007, 43(10):95-99. JIANG Zehui, YANG Zhong, WANG Ge, et al. Correlation between near infrared spectroscopy and the crystallinity of slash pine wood[J]. Sci Silv Sin, 2007, 43(10):95-99. [2] 杨淑敏, 江泽慧, 任海青, 等.利用X-射线衍射法测定竹材纤维素结晶度[J].东北林业大学学报, 2010, 38(8):75-77. YANG Shumin, JIANG Zehui, REN Haiqing, et al. Determination of cellulose crystaninity of bamboo culms with X-ray diffraction spectrum[J]. J Northeast For Univ, 2010, 38(8):75-77. [3] WRIGHT J A, BIRKETT M D, GAMBINO M J T. Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy[J]. Tappi J, 1990, 73(8):164-166. [4] SCHIMLECK L R, EVANS R. Estimation of wood stiffness of increment cores by near infrared spectroscopy:the development and application of calibrations based on selected cores[J]. IAWA J, 2002, 23(3):217-224. [5] 李耀翔, 徐浩凯.榆树木材基本密度近红外模型优化的研究[J].云南大学学报 (自然科学版), 2015, 37(1):155-162. LI Yaoxiang, XU Haokai. A study on the optimization of the model of NIR:based elm wood density[J]. J Yunnan Univ Nat Sci, 2015, 37(1):155-162. [6] JONES P D, SCHIMLECK L R, PETER G F, et al. Nondestructive estimation of Pinus taeda L. wood properties for samples from a wide range of sites in Georgia[J]. Can J For Res, 2011, 35(1):85-92. [7] SCHIMLECK L R, DOWNES G M, EVANS R. Estimation of Eucalyptus nitens wood properties by bear infrared spectroscopy[J]. Appita Conf Exhib, 2006, 59(2):136-141. [8] 赵荣军, 邢新婷, 吕建雄, 等.粗皮桉木材力学性质的近红外光谱方法预测[J].林业科学, 2012, 48(6):106-111. ZHAO Rongjun, XING Xinting, LÜJianxiong, et al. Estimation of wood mechanical properties of Eucalyptus pellita by near infrared spectroscopy[J]. Sci Silv Sin, 2012, 48(6):106-111. [9] SCHIMLECK L R, EVANS R. Estimation of microfibril angle of increment cores by near infrared spectroscopy[J]. IAWA J, 2002, 23(3):225-234. [10] 李耀翔, 张鸿富, 张亚朝, 等.基于近红外技术的落叶松木材密度预测模型[J].东北林业大学学报, 2010, 38(9):27-30. LI Yaoxiang, ZHANG Hongfu, ZHANG Yachao, et al. Modeling of dahurian larch wood density based on NIR and multivariate analysis[J]. J Northeast For Univ, 2010, 38(9):27-30. [11] 江泽慧, 费本华, 杨忠.光谱预处理对近红外光谱预测木材纤维素结晶度的影响[J].光谱学与光谱分析, 2007, 27(3):435-438. JIANG Zehui, FEI Benhua, YANG Zhong. Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy[J]. Spectrosc Spectral Anal, 2007, 27(3):435-438. [12] 邹鑫. 近红外光谱分析法预测欧美杨材性的研究[D]. 北京: 北京林业大学, 2010. ZOU Xin. Study of Near-infrared Spectroscopy on the Chemical Components Character of Populus×euramericana[D]. Beijing:Beijing Forestry University, 2010. [13] 杨玉玲, 马祥庆, 张木清.不同地理种源杉木的分子多态性分析[J].热带亚热带植物学报, 2009, 17(2):183-189. YANG Yuling, MA Xiangqing, ZHANG Muqing. Molecular polymorphic analysis for different geographic provenances of Chinese fir[J]. J Trop Subtrop Bot, 2009, 17(2):183-189. [14] 黄安民, 江泽慧, 李改云.杉木综纤维素和木质素的近红外光谱法测定[J].光谱学与光谱分析, 2007, 27(7):1328-1331. HUANG Anmin, JIANG Zehui, LI Gaiyun. Determination of cellulose and lignin content in Chinese fir by near infrared spectroscopy[J]. Spectrosc Spectral Anal, 2007, 27(7):1328-1331. [15] 虞华强, 赵荣军, 傅峰, 等.利用近红外光谱技术预测杉木力学性质[J].西北林学院学报, 2007, 22(5):149-154. YU Huaqiang, ZHAO Rongjun, FU Feng, et al. Prediction mechanical properties of Chinese fir wood by near infrared spectroscopy[J]. J Northwest For Univ, 2007, 22(5):149-154. [16] 王晓旭, 黄安民, 杨忠, 等.近红外光谱用于杉木木材强度分等的研究[J].光谱学与光谱分析, 2011, 31(4):975-978. WANG Xiaoxu, HUANG Anmin, YANG Zhong, et al. Study on the wood grading by near infrared spectroscopy[J]. Spectrosc Spectral Anal, 2011, 31(4):975-978. [17] 江泽慧, 黄安民, 费本华, 等.利用近红外光谱和X射线衍射技术分析木材微纤丝角[J].光谱学与光谱分析, 2006, 26(7):1230-1233. JIANG Zehui, HUANG Anmin, FEI Benhua, et al. The analysis of wood microfibriI angle by near infrared spectroscopy and X-ray diffractometry[J]. Spectrosc Spectral Anal, 2006, 26(7):1230-1233. [18] 伍南, 刘君昂, 周国英, 等.基于高光谱数据的病害胁迫下杉木冠层色素含量估算研究[J].中国农学通报, 2012, 28(1):73-79. WU Nan, LIU Jun'ang, ZHOU Guoying, et al. Study on estimating pigment contents in canopy of Chinese fir under disease stress based on hyperspectral data[J]. Chin Agric Sci Bull, 2012, 28(1):73-79. [19] 伍南, 刘君昂, 闫瑞坤, 等.利用光谱特征参数估算病害胁迫下杉木叶绿素含量[J].植物保护, 2012, 38(4):72-76. WU Nan, LIU Jun'ang, YAN Ruikun, et al. Using spectral feature parameters to estimate the chlorophyll content of Chinese fir under disease stress[J]. Plant Prot, 2012, 38(4):72-76. [20] 骆秀琴, 管宁, 张寿槐, 等.杉木材性株内变异的研究 (Ⅰ) 木材力学性质和木材密度[J].林业科学, 1997, 33(4):349-355. LUO Xiuqin, GUAN Ning, ZHANG Shouhuai, et al. Variation of mechanical properties and wood density with trees of Chinese fir[J]. Sci Silv Sin, 1997, 33(4):349-355. [21] 姜笑梅, 骆秀琴, 陈益泰, 等.杉木材性株内的变异 (Ⅱ) 管胞形态的变异[J].林业科学, 1997, 33(5):441-446. JIANG Xiaomei, LUO Xiuqin, CHEN Yitai, et al. Variation of wood properties within trees of Chinese fir (Ⅱ) variation within trees of tracheid morphology[J]. Sci Silv Sin, 1997, 33(5):441-446. [22] 秦特夫, 黄洛华, 周勤.杉木、1-72杨主要化学组成的株内纵向变异研究[J].林业科学研究, 2004, 17(1):47-53. QIN Tefu, HUANG Luohua, ZHOU Qin. Studies on longitudinal variation of main chemical compositions in Chinese fir and Poplar×euramaricana cv. I-72/58 trees[J]. For Res, 2004, 17(1):47-53. [23] 任海青, 中井孝.人工林杉木和杨树木材物理力学性质的株内变异研究[J].林业科学, 2006, 42(3):14-20. REN Haiqing, NAKAI T. Intratree variability of wood density and main wood mechanical properties in Chinese fir and poplar plantation[J]. Sci Silv Sin, 2006, 42(3):13-20. [24] 骆秀琴, 管宁, 张寿槐, 等. 32个杉木无性系木材密度和力学性质的变异[J].林业科学研究, 1994, 7(3):259-262. LUO Xiuqin, GUAN Ning, ZHANG Shouhuai, et al. Variations in wood density and mechanical properties of 32 Chinese fir clones[J]. For Res, 1994, 7(3):259-262. [25] 田荆祥, 俞友明, 余学军, 等.无性系杉木的物理力学性质[J].浙江林学院学报, 1998, 15(3):260-266. TIAN Jingxiang, YU Youming, YU Xuejun, et al. Physical and mechanical properties of clone Chinese fir wood[J]. J Zhejiang For Coll, 1998, 15(3):260-266. [26] 胡德活, 阮梓材, 钱志能, 等.杉木无性系木材密度遗传变异及其与生长性状的相关性[J].中南林学院学报, 2004, 24(5):24-27. HU Dehuo, RUAN Zicai, QIAN Zhineng, et al. The genetics and variation of wood density in Chinese fir clones and its interaction to the growth characters[J]. J Cent South For Univ, 2004, 24(5):24-27. [27] 洪昌端, 沈辛作, 陈天霞, 等.杉木种源木材密度的遗传变异与选择[J].浙江林学院学报, 1992, 9(3):246-252. HONG Changduan, ZHAO Xinzuo, CHEN Tianxia, et al. Genetic variation and selection on the wood specific gravity of Chinese fir provenance[J]. J Zhejiang For Coll, 1992, 9(3):246-252. [28] CARD D H, PETERSON D L, MATSON P A, et al. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy[J]. Remote Sens Environ, 1988, 26(2):123-147. [29] CANDOFI A, de MAESSCHALCK R, JOUAN-RIMBAUD D, et al. The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra[J]. J Pharm Biomed Anal, 1999, 21(1):115-132. [30] SO C L, VIA B K, GROOM L H, et al. Near infrared spectroscopy in the forest products industry[J]. For Prod J, 2004, 54(3):6-16. [31] SIMPSON C R, KOHL M, ESSENPREIS M, et al. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique[J]. Phys Med Biol, 1998, 43(3):2465-2478. [32] GIVENS D I, de BOEVER J L, de AVILLE E R. The principles practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans[J]. Nutr Res Rev, 1997, 10(1):83-114. [33] SCHIMLECK L R, MORA C, DANIELS R F. Estimation of the physical properties of green Pinus taeda radial samples by near infrared spectroscopy[J]. Can J For Res, 2003, 33(12):2297-2311. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.02.022