留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口潮滩地带典型盐沼植被光谱特征分析

舒敏彦 田波 丁丽霞 周云轩 吴文挺

张斌, 马星霞, 张景朋, 等. 含石蜡水基型有机木材保护复合制剂的性能研究[J]. 浙江农林大学学报, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
引用本文: 舒敏彦, 田波, 丁丽霞, 等. 长江口潮滩地带典型盐沼植被光谱特征分析[J]. 浙江农林大学学报, 2019, 36(1): 107-117. DOI: 10.11833/j.issn.2095-0756.2019.01.014
ZHANG Bin, MA Xingxia, ZHANG Jingpeng, et al. Preparation and properties of containing paraffin water based organic wood protective agent[J]. Journal of Zhejiang A&F University, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
Citation: SHU Minyan, TIAN Bo, DING Lixia, et al. Spectral analysis of an intertidal saltmarsh in the Yangtze Estuary[J]. Journal of Zhejiang A&F University, 2019, 36(1): 107-117. DOI: 10.11833/j.issn.2095-0756.2019.01.014

长江口潮滩地带典型盐沼植被光谱特征分析

DOI: 10.11833/j.issn.2095-0756.2019.01.014
基金项目: 

国家重点研发计划项目 2016YFC0502704

国家自然科学基金资助项目 41371112

详细信息
    作者简介: 舒敏彦, 从事海岸带湿地遥感与地理信息系统应用研究。E-mail:13162010590@163.com
    通信作者: 田波, 副研究员, 博士, 从事海岸带湿地遥感与地理信息系统开发应用研究。E-mail:btian@sklec.ecnu.edu.cn
  • 中图分类号: S718.3;Q948.11

Spectral analysis of an intertidal saltmarsh in the Yangtze Estuary

  • 摘要: 以长江口典型盐沼植被为研究对象,考虑不同盐沼植被类型、盖度、土壤类型、土壤湿度以及高中低潮滩地形分布因素,分别在崇明东滩国家级自然保护区、崇明北湖边滩、南汇边滩设置光谱测量样带和样方,使用ASD光谱仪进行现场光谱测量,分析不同植被盖度、土壤下垫面、潮位条件下典型盐沼植被的光谱特征反射曲线。研究结果表明:同一类型盐沼植被的光谱反射率差异是由植被盖度和下垫面共同导致的。在相同土壤背景下,光谱反射率与植被盖度在可见光波段相关系数接近-1.00,呈负相关,在近红外波段相关系数接近0.99,呈正相关。不同潮滩土壤背景,盐沼植被光谱反射率有明显差异。在可见光波段,土壤下垫面对植被光谱反射率影响较大,而在近红外波段的影响则较小。植被盖度越小,其反射光谱受土壤下垫面影响越大。盐沼植被与潮位的相关系数最大可达0.97,低潮位时植被反射光谱高于无潮汐时的光谱,且呈现随潮位升高反射率增大的趋势;当潮位上涨到一定高度,植被反射光谱低于无潮汐时的光谱,且呈现随潮位的升高而下降的趋势。
  • 随着环境保护要求的不断提高,环保型木材防腐剂越来越受到重视,此类防腐剂多以高效低毒的有机农药为主成分,配合其他助剂制备成有机型或水基型防腐剂[1-2]。三唑类杀菌剂,如丙环唑、戊唑醇、环丙唑醇、氟环唑和苯醚甲环唑等,既可以单独使用,又可以与铜制剂复配[3-4],是目前常用的木材防腐剂;这些三唑类杀菌剂杀菌谱不尽相同,作用机制也有所差异,应用较广泛的是丙环唑和戊唑醇[5-6]。常见的木材防霉剂有异噻唑啉酮类如卡松、1,2-苯并异噻唑-3-酮(BIT)、4,5-二氯-2-正辛基-3-异噻唑啉酮(DCOI)等,有机碘类如碘丙炔醇丁基氨甲酸酯(IPBC),三唑类等[7],杀菌谱也不尽相同;常用的仓储水果防霉剂如溴菌腈和抑霉唑[8-9],防霉活性较高,但较少应用于木材防霉。菊酯类杀虫剂是常见的防治白蚁的药剂,具有用量少、成本较低、废弃物易回收、环境相对友好等优点;高效氯氟氰菊酯在菊酯类杀虫剂中活性较高、稳定性较强、耐雨水冲刷性能较好。因含有大量羟基等亲水基团[10],木材变色、发霉、腐朽、变形等问题频发,品质降低[11-13],常用亚麻油、桐油、豆油、核桃油等含甘油三脂肪酸酯的植物油[14]和沥青、石蜡等含长链烷烃的矿物油用作木材防水;现代工业多将植物油与动植物蜡等复配成木蜡油[15],用作木材的表面防水处理剂。如马红霞等[16]使用56号石蜡制备木材防水剂,当石蜡质量浓度为5%时,防水效率可达54%;由此可见,石蜡可作为良好的木材防水剂。液体石蜡是经原油分馏得到的无色无味的液态烃类混合物,室温下为液态,用作防水剂时可省去加热融化环节,节约了能源和时间。木材在使用过程中需要多重保护,如防腐、防霉、防虫和防水等,存在工序繁琐、成本高昂等问题,为满足木材不同生物危害防治需要,本研究拟制备一种同时具有防腐、防霉、防虫和防水多项功能的水基型有机木材保护复合制剂,通过室内抑菌圈法筛选不同杀菌剂的抑菌活性,从中挑选活性较好、杀菌谱互补的防腐成分与防霉成分进行复配,并筛选两者的最佳配比;将其与杀虫成分和防水成分复配,制备成可以兑水自动乳化的乳油制剂。制备的复合制剂稳定性好,兼具防水、防腐、防霉、防白蚁等性能,同时处理工序简单,可达到常规生物危害防治要求的目的,为木材保护提供参考。

    1.1.1   杀菌剂、杀虫剂和防水剂

    杀菌剂包括氟环唑(FCZ)、戊唑醇(TEB)、丙环唑(PPZ)、苯醚甲环唑(DCZ)、碘丙炔醇丁基氨甲酸酯(IPBC)、溴菌腈(BMN)、抑霉唑(IMZ)。杀虫剂为高效氯氟氰菊酯(CLT)。防水剂为液体石蜡(化妆品级)。以上试剂购自上海麦克林生化科技有限公司。

    1.1.2   测试菌种

    木材腐朽菌有褐腐菌密粘褶菌Gloeophyllun trabeum、白腐菌彩绒革盖菌Coriolus versicolor。木材混合霉菌有黑曲霉Aspergillus sp.、木霉Trichoderma sp.、青霉Penicillium sp.。木材变色菌可可球二孢Botryodiplodia theobromae。所有菌株均为实验室保存的生物测试标准用菌株。

    测试树种为辐射松Pinus radiata

    预实验通过满细胞法确定辐射松边材吸液(水)量为750~850 kg·m−3;根据三唑类药剂防腐有效载药量(200.0~400.0 g·m−3)[17],换算药剂质量浓度为150.0~300.0 mg·L−1,确定试验用药质量浓度为200.0 mg·L−1

    1.2.1   防腐、防霉成分及配比筛选

    通过室内抑菌效果普筛挑选出效果较好且杀菌谱互补的杀菌剂作为防腐和防霉成分。将挑选出的防腐和防霉成分按照不同配比混合进行复配,再次测试室内抑菌效果,确定效果较好的复配比例作为药剂配伍。

    1.2.2   室内抑菌圈测试

    参照《中华人民共和国药典》的“抗生素微生物检定法”测试抑菌圈。将5种防腐剂(FCZ、TEB、PPZ、DCZ、IPBC)统一配制成质量分数为5.00%的乳油,分别加水稀释到200.0 mg·L−1;防霉剂IMZ配制为400.0 mg·L−1,BMN分别配制为400.0、600.0和800.0 mg·L−1。在各涂满真菌孢子液的马铃薯葡萄糖琼脂(PDA)培养基中,分别摆放4个装有0.3 mL待测药液的牛津杯。随着药液的扩散,培养基上的真菌菌丝会受到抑制形成抑菌圈,抑菌圈直径越大,说明药剂抑菌效果越好。

    1.2.3   制剂性能测试

    乳液稳定性测试。参照GB/T 1603—2001《农药乳液稳定性测定方法》,在100.0 mL室温标准硬水中慢慢加入不同体积样品,边加入边搅拌,加完后继续搅拌30 s;然后在30 ℃恒温水浴中静置1 h,观察不同稀释倍数下样品乳状液分离情况。无浮油、沉淀或沉油则视为乳液稳定性合格。

    防水性能测试。将含液体石蜡质量分数为40.00%的复合制剂分别兑水,稀释液体石蜡质量分数为2.00%、4.00%、8.00%,满细胞法处理试块。辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,室温平衡21 d后称质量,然后蒸馏水浸泡30 min,取出试块,称质量,参照GB/T 1934.1—2009《木材吸水性测定方法》计算吸水率;测量弦向尺寸变化,参照GB/T 29901—2013《木材防水剂的防水效率测试方法》计算防水效率。

    室内防腐性能测试。参照GB/T 13942.1—2009《木材耐久性能第1部分:天然耐腐性实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍备用,辐射松边材尺寸为20 mm×20 mm×10 mm,每组6块试块,经真空−0.09 MPa处理10 min,常压浸渍10 min,参照标准测试防腐性能。试块质量损失率<10%,属于Ⅰ级强耐腐;质量损失率为11%~24%,属于Ⅱ级耐腐;质量损失率为25%~44%,属于Ⅲ级稍耐腐;质量损失率>45%,属于Ⅳ级不耐腐。

    室内防霉性能测试。参照GB/T 18261—2013《防霉剂对木材霉菌及变色菌防治效力的试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,参照标准方法处理试块,测试防霉性能。试块表面无菌丝、霉点时,定义侵染值为0;试块表面感染面积<1/4,定义为1;试块表面感染面积1/4~1/2,定义为2;试块表面感染面积1/2~3/4,定义为3;试块表面感染面积>3/4,定义为4。

    室内防白蚁测试。参照GB/T 18260—2015《木材防腐剂对白蚁毒效实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为20 mm×20 mm×10 mm,每组5块试块,参照标准方法处理试块,测试室内防白蚁性能。试块蚁蛀程度为完好无损,定义试样完好等级为10;微痕蛀蚀,定义为9.5;轻微蛀蚀,截面面积<3%的蛀蚀,定义为9;中等蛀蚀,截面面积3%~10%的蛀蚀,定义为8;中等蛀蚀,截面面积10%~30%的蛀蚀,定义为7;严重蛀蚀,截面面积30%~50%的蛀蚀,定义为6;非常严重蛀蚀,截面面积50%~75%的蛀蚀,定义为4;试块几乎完全被蛀毁,定义完好等级为0。

    表1可以看出:5种防腐剂(FCZ、TEB、PPZ、DCZ和 IPBC)对木材腐朽菌(彩绒革盖菌和密粘褶菌)均具有较好的抑制效果,但FCZ、TEB和PPZ对变色菌(可可球二孢)和混合霉菌几乎没有抑制作用,只有DCZ对可可球二孢有抑制效果,因此优选DCZ作为防腐成分。IPBC和IMZ对所测试菌种均有较好的抑制效果,BMN和IMZ虽然对混合霉菌和变色菌有抑制作用,但抑菌圈均小于IPBC。因此,优先IPBC作为防霉成分。

    表 1  各杀菌剂的室内抑菌效果
    Table 1  Result of inhibition zones test by bactericide
    杀菌剂质量浓度/
    (mg·L−1)
    抑菌圈大小/mm
    彩绒革
    盖菌
    密粘
    褶菌
    可可球
    二孢
    混合
    霉菌
    FCZ 200.0 >45.0 >45.0 0 0
    TEB 200.0 >45.0 >45.0 0 0
    PPZ 200.0 >45.0 >45.0 0 0
    DCZ 200.0 >45.0 >45.0 11.4 0
    IPBC 200.0 >45.0 >45.0 34.6 21.9
    BMN 800.0 37.2 35.4 12.8 10.6
    600.0 38.1 29.0 9.0 9.4
    400.0 26.8 31.8 8.3 7.1
    IMZ 400.0 39.2 41.6 26.9 12.7
    下载: 导出CSV 
    | 显示表格

    将DCZ和IPBC按质量比1∶1、1∶3、3∶1的比例配制混合药剂,测试DCZ+IPBC复配药剂对腐朽菌和霉菌的抑制效果;将其他3种三唑类防腐药剂(FCZ、TEB和PPZ)与IPBC按照质量比1∶1配制复配药剂,作为对照测试抑菌效果。由表2可以看出:DCZ+IPBC复配药剂对木材腐朽菌、变色菌和混合霉菌的抑制效果较好,其中按照1∶1比例复配的药剂效果最高。相其他三唑类与IPBC的复配药剂,抑菌效果亦有所提高。由此确认防腐/防霉复配药剂,DCZ和IPBC按照1∶1进行配制。

    表 2  不同三唑类药剂与IPBC复配的抑菌效果
    Table 2  Result of inhibition zones test by compounded of different preservatives
    组分质量浓度/
    (mg·L−1)
    抑菌圈大小/mm
    彩绒革
    盖菌
    密粘
    褶菌
    可可球
    二孢
    混合
    霉菌
    DCZ 200.0 >45.0 >45.0 11.4 0
    DCZ+IPBC 150.0+50.0 >45.0 >45.0 22.4 15.1
    DCZ+IPBC 100.0+100.0 >45.0 >45.0 31.0 23.6
    DCZ+IPBC 50.0+150.0 >45.0 >45.0 29.1 23.7
    IPBC 200.0 >45.0 >45.0 30.6 21.9
    FCZ+IPBC 100.0+100.0 >45.0 >45.0 25.7 21.8
    PPZ+IPBC 100.0+100.0 >45.0 >45.0 25.8 22.5
    TEB+IPBC 100.0+100.0 >45.0 >45.0 24.0 21.0
    下载: 导出CSV 
    | 显示表格

    为探索CLT对白蚁的防治效果,设计含梯度载药量的辐射松边材室内抗白蚁效果测试,拟定辐射松边材载药量分别为5.0、10.0、15.0、20.0、30.0 g·m−3。由表3可知:试块中CLT载药量达10.9 g·m−3以上时,白蚁蛀蚀完好值>8.0,质量损失率<11%,而未添加药剂处理的对照木材,完好值仅4.6,质量损失率>40%。因此,设计的复合制剂中防虫成分的目标载药量为7.5~30.0 g·m−3

    表 3  不同CLT载药量木材的白蚁蛀蚀结果
    Table 3  Result of lab anti-termite test of cyhalothrin
    载药量/
    (g·m−3)
    白蚁蛀蚀
    完好值
    质量损
    失率/%
    载药量/
    (g·m−3)
    白蚁蛀蚀
    完好值
    质量损
    失率/%
    4.642.9±14.615.58.010.5±1.4
    5.38.011.3±0.721.89.15.2±1.4
    10.98.65.9±1.532.18.45.1±1.9
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格

    综上,本研究设计制备了含苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯、液体石蜡等多种有效成分的木材保护复合制剂,通过调试乳化剂和助溶剂的用量和配比,最终配制出稳定、均相、透明、入水可自乳化的乳油制剂。制剂制备时按比例称取原药和乳化剂,加入助溶剂,充分溶解混匀后加入液体石蜡,搅拌均匀即可。测试使用的制剂为乳油,组成成分质量分数为0.20%苯醚甲环唑、0.20%碘丙炔醇丁基氨甲酸酯、0.02%高效氯氟氰菊酯和40.00%液体石蜡。

    2.2.1   乳液稳定性测试

    制剂兑水稀释250倍,制剂呈乳白色,初入水时呈乳白色团雾状,可自动扩散,摇匀后呈均匀的乳状液,静置1 h未见分层、析油和沉淀,稳定性可保持3~4 h;过夜后破乳,药液表面有大量浮油,颠倒摇匀后可恢复乳液状,不影响正常使用。

    2.2.2   防水性能测试

    参照标准方法用该制剂处理辐射松边材,经水浸泡30 min后测试试块的吸水率和防水效率。由表4可知:未添加药剂处理的木材,吸水率为54.7%;随着制剂中石蜡质量分数升高,木材试块中石蜡含量相应增加,试块吸水率依次降低,从43.5%下降到26.6%,木材防水效率则随之增强,从44.4%提升到了77.8%。

    表 4  防水剂处理后试块的防水性能
    Table 4  Efficiency of waterproof
    稀释
    倍数
    制剂中液体石
    蜡质量分数/%
    试块中液体石
    蜡含量/(kg·m−3)
    吸水
    率/%
    防水效
    率/%
    5849.126.6±7.477.8±19.1
    10419.435.0±17.368.9±22.1
    20210.543.5±15.144.4±20.6
    0054.7±5.80
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.3   室内耐腐性能测试

    表5可知:未处理木材受白腐菌侵染后质量损失率达75.7%,受褐腐菌侵染质量损失率为19.4%,而所有处理试块质量损失率均低于6%,达到强耐腐。制剂稀释20倍后处理试块,试块中DCZ和IPBC载药量超过71.1 g·m−3,试块质量损失率可达1%,达到Ⅰ级强耐腐。值得注意的是,稀释20倍的药液处理后,试块质量损失率低于稀释5倍的药液,原因是高质量浓度制剂处理后,试块内含有大量的液体石蜡,在长达3个月的试验期内,液体石蜡自动扩散到培养基,试块质量损失增加。但取样现场也发现:高质量浓度制剂处理的试块无腐朽菌菌丝附着生长,说明添加防水剂实际进一步提升了制剂的防腐性能。

    表 5  制剂处理后试块的室内耐腐性能
    Table 5  Result of lab sand block test on sapwood P. radiate
    稀释
    倍数
    彩绒革盖菌密粘褶菌
    试块DCZ+IPBC
    载药量/(g·m−3)
    质量损
    失率/%
    试块DCZ+IPBC
    载药量/(g·m−3)
    质量损
    失率/%
    5311.2+311.25.5±0.6320.6+320.63.6±0.3
    10150.9+150.92.7±0.2139.0+139.03.4±0.4
    2071.2+71.20.6±0.171.1+71.11.0±0.2
    075.7±4.3019.4±2.1
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.4   室内防霉性能测试

    参照标准方法用该制剂处理辐射松边材,测试室内防霉效果。由表6可知:未处理木材的霉菌和变色菌侵染值为4,该制剂稀释5倍时,试块表面的DCZ和IPBC含量均达0.165 g·m−2,处理试块变色菌和混合霉菌侵染值均为0,防治效果优良。在实际使用中可根据木材树种的天然耐腐性及所处环境适当增减制剂的用量,以达到理想的防霉效果。

    表 6  室内防霉测试结果
    Table 6  Result of lab mildew proof test
    稀释
    倍数
    可可球二孢混合霉菌
    DCZ+IPBC载药
    量/(g·m−2)
    侵染值DCZ+IPBC载药
    量/(g·m−2)
    侵染值
    50.165+0.16500.202+0.2020
    100.106+0.1061.50.148+0.1480.5
    200.045+0.0454.00.048+0.0483.3
    04.004.0
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.5   室内抗白蚁测试

    表7可知:不同稀释倍数的制剂处理后,试块质量损失率均<3%,而未添加抗虫剂的对照试块,质量损失率为42.9%;制剂稀释5倍时,试块载药量达29.1 g·m−3,试块白蚁蛀蚀完好值为9.6;稀释20倍时,试块载药量为7.6 g·m−3, 试块白蚁蛀蚀完好值为8.9,而未处理木材的白蚁蛀蚀后完好值仅为4.7,质量损失率达42.9%,显示该制剂的防治白蚁效果优良。结合表3可知:相比单用高效氯氟氰菊酯时,复合制剂处理材在同等载药量下对白蚁的防治效果要好得多;当高效氯氟氰菊酯质量浓度为15.0、30.0 g·m−3时,该复合制剂防治白蚁的效果远远优于单剂,由此可知其他组分的加入起到了增效作用。

    表 7  室内抗白蚁测试结果
    Table 7  Result of lab anti-termite test
    稀释
    倍数
    木材中高效氯氟氰菊酯
    载药量/(g·m−3)
    质量损
    失率/%
    白蚁蛀蚀
    完好值
    529.12.8±0.59.6
    1014.72.6±0.39.2
    207.62.5±0.78.9
    042.9±14.64.7
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格

    针对不同的木材败坏防治需求,本研究制备了一种具有防腐、防霉、防虫、防水多功能的复合制剂,类型为乳油,有效成分为苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯和液体石蜡。

    该制剂兑水稀释后呈乳液状,稳定性可保持3~4 h,符合GB/T 1603—2001 《农药乳液稳定性测定方法》的规定。石蜡作为常见的防水剂被广泛应用,多数所使用的时熔点较高的固体石蜡[18],而该制剂以液体石蜡为防水组分,优点是室温下即为液体,无需加热融化,缺点是液体石蜡密度较小,相较常规药剂,兑水稀释后稳定性差,药液兑水约 4 h 后就会分层破乳;不过,稍微搅拌即可恢复乳状,基本不影响正常使用。该制剂防水性能较好,然而应注意的是防水剂含量很大,大剂量液体石蜡的使用,存在一定的消防隐患,后期应配合表面阻燃处理。石蜡基防水剂的主要防水机制是通过石蜡的疏水作用[19],石蜡的使用同时增强了木材的尺寸稳定性[20],石蜡分子量较大,不易进入木材内部,因此需要将其乳化成细小的乳状液,然而,乳化剂的过量使用可能会有石蜡的疏水性降低的风险,需要在以后的开发中引起重视。结合室内耐腐试验菌丝生长状况可以发现:防水剂液体石蜡的加入,可以明显增加药剂的防腐性能,而木材中石蜡的含量很高,当木材与环境中土壤或者水体接触时,石蜡会从木材中自由扩散到环境中,可能会增加药剂流失的风险。

    室内防霉测试结果来看,将制剂稀释 5 倍使用,即辐射松试块苯醚甲环唑和碘丙炔醇丁基氨甲酸酯载药量均为 0.165 g·m −2 时,混合霉菌的生长才能被完全抑制,这与李晓文等[21]的IPBC防霉效果结论一致。室内防霉测试所选的温湿度条件适合霉菌生长,且霉菌的孢子液人为接种,因此,通常可以通过室内防霉测试的药剂,在实际生产中的防霉效果也会很好。

    室内防白蚁测试结果可知:制剂稀释 20 倍后,试块受白蚁蛀蚀程度仍较低,质量损失率较小,防蚁性能优异。同时,比较单独使用高效氯氟氰菊酯和添加防水剂后的防白蚁效果可以看出:防水剂的添加明显增加了药剂的防白蚁效果。分析原因可能是石蜡是一种化石能源,白蚁不喜食。

    为满足木材不同生物危害防治需要,本研究制备出一种含石蜡水基型有机多功能木材防腐剂,可以一次处理基本满足木材常规保护的要求。该木材保护复合制剂同时具有防腐、防霉、防虫、防水多功能,剂型为乳油,质量分数分别为0.20%的苯醚甲环唑和碘丙炔醇丁基氨甲酸酯、0.02%的高效氯氟氰菊酯和40.00%的液体石蜡。

    当环境中生物危害较轻时,可将该复合制剂稀释20倍使用,当生物危害较重时,可将复合制剂稀释5倍甚至直接使用。将制剂稀释5到10倍处理木材,即木材中液体石蜡为25.0~50.0 kg·m−3,苯醚甲环唑和碘丙炔醇丁基氨甲酸酯为150.0~300.0 g·m−3,高效氯氟氰菊酯载药量为15.0~30.0 g·m−3,可满足多大多数生物危害的防治需求。

  • 图  1  相近盖度不同盐沼植被光谱反射率曲线及其一阶导数

    Figure  1  Curve map of spectral reflectance and first derivative of different saltmarsh with similar coverage

    图  2  不同盖度下盐沼植被的光谱反射率曲线及其一阶导数

    Figure  2  Curve map of spectral reflectance and first derivative of saltmarsh with different coverages

    图  3  不同盖度下盐沼光谱相关性分析

    Figure  3  Spectral correlation analysis of saltmarsh with different coverages

    图  4  不同土壤的光谱反射率曲线及其一阶导数曲线

    Figure  4  Curve map of spectral reflectance and first derivative of different kinds of soil

    图  5  低盖度海三棱藨草在不同潮滩土壤上的光谱反射率曲线及一阶导数曲线

    Figure  5  Curve map of spectral reflectance and first derivative of low coverage Scirpus mariqueter in different tidal flat

    图  6  中等盖度海三棱藨草在不同潮滩土壤上的光谱反射率曲线及其一阶导数曲线

    Figure  6  Curve map of spectral reflectance and first derivative of medium coverage Scirpus mariqueter in different tidal flat

    图  7  不同潮滩土壤背景下海三棱藨草光谱相关性分析

    Figure  7  Spectral correlation analysis of Scirpus mariqueter in different tidal flat

    图  8  崇明东滩不同水深和悬沙浓度水体的光谱反射率曲线

    Figure  8  Curve map of spectral reflectance of water with changing water level and suspended sediment concentration

    图  9  盐沼植被在不同潮位下的光谱反射率曲线及一阶导数曲线

    Figure  9  Curve map of spectral reflectance and first derivative of saltmarsh with changing water level

    图  10  不同潮位与盐沼植被光谱相关性分析

    Figure  10  Spectral correlation analysis of saltmarsh with changing water level

    表  1  不同盖度植被样地

    Table  1.   Sample plots of different coverage saltmarsh

    芦苇 海三棱藨草 互花米草
    植被盖度/% 样地数/个 植被盖度/% 样地数/个 植被盖度/% 样地数/个
    60 4 10 12 50 5
    70 10 30 15 60 7
    90 6 65 7 70 8
    下载: 导出CSV

    表  2  不同下垫面土壤植被样地数

    Table  2.   Sample plots of different underlying

    测量地点 样地数/个
    芦苇 海三棱藨草 互花米草
    崇明东滩 14 20 0
    南汇边滩 6 9 0
    崇明北八滧 0 5 20
    下载: 导出CSV

    表  3  不同潮位植被样地

    Table  3.   Sample plots of different tidal

    组别 海水淹没深度/cm
    海三棱藨草 互花米草
    1 0 0
    2 1 2
    3 2 4
    4 3 6
    5 8
    下载: 导出CSV
  • [1] 陈吉余, 程和琴, 戴志军.滩涂湿地利用与保护的协调发展探讨:以上海市为例[J].中国工程科学, 2007, 9(6):11-17.

    CHEN Jiyu, CHENG Heqin, DAI Zhijun. Compatibility of utilization and protection of tidal flat and wetland:a case study in Shanghai Area[J]. Eng Sci, 2007, 9(6):11-17.
    [2] COSTANZA R, d'ARGE R, de GROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Ecol Econ, 1998, 25(1):3-15.
    [3] 马安娜, 陆健健.湿地生态系统碳通量研究进展[J].湿地科学, 2008, 2(6):116-123.

    MA Anna, LU Jianjian. The progress of research on carbon flux in wetland ecosystems[J]. Wetland Sci, 2008, 2(6):116-123.
    [4] 胡嘉东, 郑丙辉, 万峻.潮间带湿地栖息地功能退化评价方法研究与应用[J].环境科学研究, 2009, 22(2):171-175.

    HU Jiadong, ZHENG Binghui, WAN Jun. Studies and application of an assessment model of the habitat function degradation in the intertidal wetland[J]. Res Environ Sci, 2009, 22(2):171-175.
    [5] 陈秀芝, 孙瑛.中国特有盐沼植物:海三棱藨草的现状及保护利用[J].湿地科学与管理, 2011, 7(1):60-63.

    CHEN Xiuzhi, SUN Ying. Chinese endemic salt marsh piant:bulrush(Scirpus mariqueter), current status of its conservation and utilization[J]. Wetlang Sci Manage, 2011, 7(1):60-63.
    [6] 张晓龙, 李培英, 李萍, 等.中国滨海湿地研究现状与展望[J].海洋科学进展, 2005, 23(1):87-95.

    ZHANG Xiaolong, LI Peiying, LI Ping, et al. Present conditions and prospects of study on coastal wetlands in China[J]. Adv Marine Sci, 2005, 23(1):87-95.
    [7] 李青山, 张华鹏, 崔勇, 等.湿地功能的研究进展[J].科学技术与工程, 2004, 4(11):41-42.

    LI Qingshan, ZHANG Huapeng, CUI Yong, et al. A prospect for study on functions of wetland[J]. Sci Tecchnol Eng, 2004, 4(11):41-42.
    [8] 季子修, 蒋自巽, 朱季文, 等.海平面上升对长江三角洲和苏北滨海平原海岸侵蚀的可能影响[J].地理学报, 1993, 4(6):516-526.

    JI Zixiu, JIANG Zixun, ZHU Jiwen, et al. Impacts of sea level rise on coastal erosion in the Changjiang Delata and North Jiangsu Coastal Plain[J]. Acta Geogr Sin, 1993, 4(6):516-526.
    [9] TIAN Bo, WU Wenting, YANG Zhaoqing, et al. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010[J]. Estuarine Coastal Shelf Sci, 2016, 170:83-90.
    [10] 黄华梅.上海滩涂盐沼植被的分布格局和时空动态研究[D].上海: 华东师范大学, 2009.

    HUANG Huamei. A Research on Spatial-temporal Dynamics of Salt Marsh Vegetation at the Intertidal Zone in Shanghai[D]. Shanghai: East China Normal University, 2009.
    [11] 朱春娇, 田波, 周云轩, 等.基于Markov和CLUE-S模型的浦东新区湿地演变遥感分析与预测[J].复旦学报(自然科学版), 2015, 54(4):431-438.

    ZHU Chunjiao, TIAN Bo, ZHOU Yunxuan, et al. Wetland change analysis and forecasting in Pudong New Area Using Markov and CLUE-S Model[J]. J Fudan Univ Nat Sci, 2015, 54(4):431-438.
    [12] 赖婷, 杨为民, 田波.遥感与GIS支持下杭州湾北岸湿地空间威胁性分析与评价研究[J].复旦学报(自然科学版), 2013, 52(3):356-362.

    LAI Ting, YANG Weimin, TIAN Bo. A GIS and remote sensing based analysis of wetland spatial threat in the North Hangzhou Bay[J]. J Fudan Univ Nat Sci, 2013, 52(3):356-362.
    [13] 黄华梅, 张利权, 袁琳.崇明东滩自然保护区盐沼植被的时空动态[J].生态学报, 2007, 27(10):4166-4172.

    HUANG Huamei, ZHANG Liquan, YUAN Lin. The spatio-temporal dynamics of salt marsh vegetation for Chongming Dongtan National Nature Reserve, Shanghai[J]. Acta Ecol Sin, 2007, 27(10):4166-4172.
    [14] 张杰.长江口潮滩植被检测及时空变化的遥感研究[D].上海: 华东师范大学, 2007.

    ZHANG Jie. Remote Sensing Study on Vegetation Detection and Temporal Change of Tidal Flat in the Yangtze River Estuary[D]. Shanghai: East China Normal University, 2007.
    [15] 刘克, 赵文吉, 郭逍宇, 等.野鸭湖典型湿地植物光谱特征[J].生态学报, 2010, 30(21):5853-5861.

    LIU Ke, ZHAO Wenji, GUO Xiaoyu, et al. Spectral bands of typical wetland vegetation in the Wild Duck Lake[J]. Acta Ecol Sin, 2010, 30(21):5853-5861.
    [16] GOVENDER M, CHETTY K, BULCOCK H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies[J]. Water S A, 2007, 33(2):145-151.
    [17] BELLUCO E, CAMUFFO M, FERRARI S, et al. Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing[J]. Remote Sense Environ, 2006, 105(1):54-67.
    [18] 刘建平, 赵英时.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院大学学报, 1999, 16(2):153-161.

    LIU Jianping, ZHAO Yingshi. Methods on optimal bands seletion in hyperspectral remote sensing data interpretation[J]. J Grad Sch Acad Sin, 1999, 16(2):153-161.
    [19] SCHMIDT K S, SKIDMORE A K. Spectral discrimination of vegetation types in a coastal wetland[J]. Remote Sens Environ, 2003, 85(1):92-108.
    [20] 林川, 宫兆宁, 赵文吉, 等.基于光谱特征变量的湿地典型植物生态类型识别方法:以北京野鸭湖湿地为例[J].生态学报, 2013, 33(4):1172-1185.

    LIN Chuan, GONG Zhaoning, ZHAO Wenji, et al. Identifying typical plant ecological types based on spectral characteristic variables:a case study in Wild Duck Lake wetland, Beijing[J]. Acta Ecol Sin, 2013, 33(4):1172-1185.
    [21] 李亚丹, 杜华强, 周国模, 等.雷竹叶绿素与高光谱植被指数关系及其反演模型[J].浙江农林大学学报, 2015, 32(3):335-345.

    LI Yadan, DU Huaqiang, ZHOU Guomo, et al. Chlorophyll content in Phyllostachys violascens related to hyper-spectral vegetation indices and development of an inversion model[J]. J Zhejiang A & F Univ, 2015, 32(3):335-345.
    [22] 高占国, 张利权.上海盐沼植被的多季相地面光谱测量与分析[J].生态学报, 2006, 26(3):793-800.

    GAO Zhanguo, ZHANG Liquan. Measuring and analyzing of the multi-seasonal spectral characteristics for saltmarsh vegetation in Shanghai[J]. Acta Ecol Sin, 2006, 26(3):793-800.
    [23] 高占国.长江口盐沼植被的光谱特征研究[D].上海: 华东师范大学, 2006.

    GAO Zhanguo. Spectral Characteristics of Salt Marsh Vegetation in the Yangtze River Estuary[D]. Shanghai: East China Normal University, 2006.
    [24] 刘光, 唐鹏, 蔡占庆, 等.水体背景对湿地水生植物冠层光谱影响研究[J].光谱学与光谱分析, 2015, 35(10):2970-2976.

    LIU Guang, TANG Peng, CAI Zhanqing, et al. A study on effect of water background on canopy spectral of wetland aquatic plant[J]. Spectrosc Spectrol Anal, 2015, 35(10):2970-2976.
    [25] 舒敏彦.海岸带盐沼植被指数构建研究[D].上海: 华东师范大学, 2017.

    SHU Minyan. A New Remote Sensing Vegetation Index for Coastal Saltmarsh Wetland[D]. Shanghai: East China Normal University, 2017
    [26] 金仲辉.绿色植物反射光谱的特征及其在监测农作物生长中的应用[J].物理, 1993, 22(11):673-678.

    JIN Zhonghui. Characteristics of reflectance spectra for green plants and their application in inspecting the growth of the crop[J]. Physics, 1993, 22(11):673-678.
    [27] HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sense Environ, 1988, 25(3):295-309
  • [1] 王璐, 李乐乐, 赖梦霞, 杜长霞, 樊怀福.  土壤盐分空间异质性成因及对植物生长影响研究进展 . 浙江农林大学学报, 2022, 39(6): 1369-1377. doi: 10.11833/j.issn.2095-0756.20220155
    [2] 王霞, 胡海波, 程璨, 张帅, 陈建宇, 卢洪霖.  北亚热带麻栎林土壤植硅体碳储量研究 . 浙江农林大学学报, 2021, 38(1): 1-9. doi: 10.11833/j.issn.2095-0756.20200283
    [3] 原雅楠, 李正才, 王斌, 张雨洁, 黄盛怡.  不同林龄榧树林地土壤碳氮磷化学计量特征 . 浙江农林大学学报, 2021, 38(5): 1050-1057. doi: 10.11833/j.issn.2095-0756.20200761
    [4] 蒋仲龙, 叶柳欣, 刘军, 林松, 徐旻昱, 吴家森, 刘娟, 刘海英.  封育年限对毛竹林凋落物和土壤持水效能的影响 . 浙江农林大学学报, 2020, 37(5): 860-866. doi: 10.11833/j.issn.2095-0756.20190603
    [5] 刘学敏, 罗久富, 陈德朝, 朱欣伟, 周金星.  若尔盖高原不同退化程度草地植物种群生态位特征 . 浙江农林大学学报, 2019, 36(2): 289-297. doi: 10.11833/j.issn.2095-0756.2019.02.010
    [6] 夏雯, 芦建国, 景蕾.  镇江市低影响开发示范区植物群落特征与物种多样性 . 浙江农林大学学报, 2019, 36(4): 793-800. doi: 10.11833/j.issn.2095-0756.2019.04.020
    [7] 张震, 刘伸伸, 胡宏祥, 何金铃, 马友华, 王一帆, 代宇雨, 徐微.  3种湿地植物对农田沟渠水体氮、磷的消减作用 . 浙江农林大学学报, 2019, 36(1): 88-95. doi: 10.11833/j.issn.2095-0756.2019.01.012
    [8] 崔艳红, 史常青, 孙丽文, 彭贤锋, 张艳, 赵廷宁.  5·12地震后北川次生灾害迹地植被的自然恢复与更新 . 浙江农林大学学报, 2018, 35(2): 219-226. doi: 10.11833/j.issn.2095-0756.2018.02.004
    [9] 陈璐璐, 雷妮娅.  植物-土壤反馈作用对2种引进树种的菌根侵染率和生物量的影响 . 浙江农林大学学报, 2018, 35(3): 422-430. doi: 10.11833/j.issn.2095-0756.2018.03.005
    [10] 吴昊.  入侵植物空心莲子草春季沿纬度变化的群落特征 . 浙江农林大学学报, 2017, 34(5): 816-824. doi: 10.11833/j.issn.2095-0756.2017.05.007
    [11] 雷相科, 张雪彪, 杨启红, 欧阳前超, 张超波.  植物根系抗拉力学性能研究进展 . 浙江农林大学学报, 2016, 33(4): 703-711. doi: 10.11833/j.issn.2095-0756.2016.04.021
    [12] 钟斌, 陈俊任, 彭丹莉, 刘晨, 郭华, 吴家森, 叶正钱, 柳丹.  速生林木对重金属污染土壤植物修复技术研究进展 . 浙江农林大学学报, 2016, 33(5): 899-909. doi: 10.11833/j.issn.2095-0756.2016.05.024
    [13] 陈珊, 陈双林.  集约经营对雷竹林生态系统稳定性的影响 . 浙江农林大学学报, 2013, 30(4): 578-584. doi: 10.11833/j.issn.2095-0756.2013.04.018
    [14] 周园园, 王小德, 符秀玉, 周苏勤, 李东.  浙江省江郎山丹霞地貌岩生植被群落特征 . 浙江农林大学学报, 2010, 27(5): 699-705. doi: 10.11833/j.issn.2095-0756.2010.05.010
    [15] 王冬云, 张卓文, 苏开君, 王光, 雷云飞, 林明磊, 张培, 钟庸.  广州流溪河流域毛竹林的水文生态效应 . 浙江农林大学学报, 2008, 25(1): 37-41.
    [16] 张群, 崔心红, 夏檑, 朱义, 张庆费.  上海临港新城近60 a筑堤区域植被与土壤特征 . 浙江农林大学学报, 2008, 25(6): 698-704.
    [17] 徐秋芳, 姜培坤, 俞益武, 孙建敏.  不同林用地土壤抗蚀性能研究 . 浙江农林大学学报, 2001, 18(4): 362-365.
    [18] 郭建钢, 周新年, 丁艺, 粟金云, 邱仁辉.  不同集材方式对森林土壤理化性质的影响 . 浙江农林大学学报, 1997, 14(4): 344-349.
    [19] 姜培坤, 蒋秋怡, 徐秋芳, 钱新标, 张钦相.  杉木檫树根际土壤有机化合物研究 . 浙江农林大学学报, 1994, 11(3): 235-240.
    [20] 罗汝英.  晚近北美森林土壤研究动态 . 浙江农林大学学报, 1993, 10(2): 203-208.
  • 期刊类型引用(4)

    1. 张景朋,蒋明亮,张斌. 嘧菌酯高效液相色谱分析方法及防腐材抗流失性能研究. 浙江农林大学学报. 2025(01): 185-192 . 本站查看
    2. 刘于莜,王小燕,云虹. 生物基防腐技术的研究进展及其在木包装中的应用展望. 包装工程. 2023(03): 8-15 . 百度学术
    3. 马星霞,乔云飞,黎冬青,王艳华. 古建筑木构件生物危害预防性保护体系框架构建. 木材科学与技术. 2023(01): 83-90 . 百度学术
    4. 陈利芳,王剑菁,马红霞,谢桂军,高婕. 防腐树脂增强改性木材力学及耐久性能研究. 安徽农业大学学报. 2023(03): 389-395 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.01.014

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2019/1/107

图(10) / 表(3)
计量
  • 文章访问数:  3237
  • HTML全文浏览量:  797
  • PDF下载量:  269
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-09-06
  • 刊出日期:  2019-02-20

长江口潮滩地带典型盐沼植被光谱特征分析

doi: 10.11833/j.issn.2095-0756.2019.01.014
    基金项目:

    国家重点研发计划项目 2016YFC0502704

    国家自然科学基金资助项目 41371112

    作者简介:

    舒敏彦, 从事海岸带湿地遥感与地理信息系统应用研究。E-mail:13162010590@163.com

    通信作者: 田波, 副研究员, 博士, 从事海岸带湿地遥感与地理信息系统开发应用研究。E-mail:btian@sklec.ecnu.edu.cn
  • 中图分类号: S718.3;Q948.11

摘要: 以长江口典型盐沼植被为研究对象,考虑不同盐沼植被类型、盖度、土壤类型、土壤湿度以及高中低潮滩地形分布因素,分别在崇明东滩国家级自然保护区、崇明北湖边滩、南汇边滩设置光谱测量样带和样方,使用ASD光谱仪进行现场光谱测量,分析不同植被盖度、土壤下垫面、潮位条件下典型盐沼植被的光谱特征反射曲线。研究结果表明:同一类型盐沼植被的光谱反射率差异是由植被盖度和下垫面共同导致的。在相同土壤背景下,光谱反射率与植被盖度在可见光波段相关系数接近-1.00,呈负相关,在近红外波段相关系数接近0.99,呈正相关。不同潮滩土壤背景,盐沼植被光谱反射率有明显差异。在可见光波段,土壤下垫面对植被光谱反射率影响较大,而在近红外波段的影响则较小。植被盖度越小,其反射光谱受土壤下垫面影响越大。盐沼植被与潮位的相关系数最大可达0.97,低潮位时植被反射光谱高于无潮汐时的光谱,且呈现随潮位升高反射率增大的趋势;当潮位上涨到一定高度,植被反射光谱低于无潮汐时的光谱,且呈现随潮位的升高而下降的趋势。

English Abstract

张斌, 马星霞, 张景朋, 等. 含石蜡水基型有机木材保护复合制剂的性能研究[J]. 浙江农林大学学报, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
引用本文: 舒敏彦, 田波, 丁丽霞, 等. 长江口潮滩地带典型盐沼植被光谱特征分析[J]. 浙江农林大学学报, 2019, 36(1): 107-117. DOI: 10.11833/j.issn.2095-0756.2019.01.014
ZHANG Bin, MA Xingxia, ZHANG Jingpeng, et al. Preparation and properties of containing paraffin water based organic wood protective agent[J]. Journal of Zhejiang A&F University, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
Citation: SHU Minyan, TIAN Bo, DING Lixia, et al. Spectral analysis of an intertidal saltmarsh in the Yangtze Estuary[J]. Journal of Zhejiang A&F University, 2019, 36(1): 107-117. DOI: 10.11833/j.issn.2095-0756.2019.01.014
  • 潮滩是海岸带地区高潮时淹没、低潮时露出的区域,也是受陆海交互作用强烈影响的生态过渡地带[1]。由于独特的水文环境和生态系统动态特点,潮滩湿地是地球上生产力最高、生态服务价值最大的生态系统之一[2]。典型潮滩湿地有淤泥质海滩湿地、潮间盐水沼泽湿地、潮间森林沼泽湿地、红树林湿地等。中国海岸带湿地每年总固碳量大于4×105 t·a-1,潮滩湿地中的盐沼植被作为滨海湿地的重要组成部分,是重要的碳汇[3]。盐沼湿地植被位于海岸带缓冲区,不仅为水鸟等生物提供丰富的食源、安全的隐蔽场所和繁殖地[4-5],也具有消浪护岸、保滩促淤、水质净化等重要的生态服务功能,其演化直接关系到沿海区域社会经济可持续发展和生态安全[6-9]。近年来,由于海平面上升[8]、海岸带围垦[9]、外来物种入侵[10]等自然和人为因素的影响,潮滩盐沼植被面积萎缩、功能退化,受到的威胁日趋严重,给中国沿海城市带来巨大生态威胁和环境风险[11-12]。因此,需要构建完善、科学的潮滩盐沼湿地监测与评估体系,掌握潮滩植物现状和动态变化。由于潮滩盐沼植被受潮汐周期性影响,现场大范围调查困难。因此,常采用遥感监测的手段,大面积、快速地获取其种类、数量及其空间分布信息并进行相应的生物物理参数遥感反演估算。国内研究者多利用Landsat等多光谱遥感影像对中国盐沼植被分布及时空变化进行研究,由于多光谱遥感影像的光谱分辨率低,较难满足对潮滩盐沼植被识别的需求[13-14]。高光谱卫星影像的发展为盐沼植被遥感识别提供了新的手段,它一般具有几十、几百个波段信息,使其在盐沼植被识别分类方面有独特的优势[15-16]。BELLUCO等[17]利用ROSIS和CASI等多种遥感影像对意大利东北部潮间带盐沼植被进行分类,并结合实地测量,发现高光谱影像的分类精度明显高于多光谱影像。然而,高光谱遥感影像信息量大,冗余信息多,有效光谱波段信息提取难度大。如何选择合适的高光谱影像波段,研究多波段的有效信息提取,是其应用的技术关键[18]。地物光谱仪以其灵活测量的特点,能够设计大量实验现场观测不同植被生理过程的有效光谱信息,通过分析并选择地物的特征波段,与高光谱遥感影像波段结合,为高光谱遥感影像识别地物提供依据[19-21]。盐沼植被光谱差异不仅受植被生长季相影响[22],还受植被盖度、下垫面等不同因素影响[23-24]。以往在对潮滩盐沼植被的光谱研究中,没有充分考虑潮滩土壤粒径和土壤湿度快速动态变化对植被光谱的影响,特别是涨退潮期间水体背景对植被光谱反射的影响[25]。因此,为提高遥感影像信息提取精度,针对潮滩盐沼植被生境特点,以长江口潮滩地带为研究区域,使用地物光谱仪测定潮滩地带典型盐沼植被及其下垫面的光谱反射率,获得不同类型和盖度盐沼植被光谱反射特征,以及不同土壤类型和潮位背景影响下的盐沼植被光谱反射率的变化规律,建立潮滩盐沼植被光谱特征库,为潮滩湿地盐沼植被高光谱遥感影像解译提供依据,实现遥感手段快速准确获取潮滩湿地植被的时空变化及生态环境变化。

    • 长江口是长江在中国东部入海的河口,因受径流、水下地形等因素影响。该河口内为不正规半日潮。潮滩湿地因受长江口特殊的气候、水文、地质、地貌、泥沙,尤其是人为因素影响,潮滩格局、地形及植被经长期演替均发生较大变化。

      长江口潮滩湿地资源极其丰富,潮滩上的盐沼植被以芦苇Phragmites australis群落、海三棱藨草Scirpus mariqueter群落、藨草Scirpus triqueter群落、糙叶薹草Carex scabrifolia群落和互花米草Spartina alterniflora群落为主[23]。芦苇群落是长江口潮滩优势种群,主要分布于高潮滩区域。互花米草是外来入侵种,自上海市引入以来,在崇明岛及九段沙大肆蔓延[12]。海三棱藨草主要分布于低潮滩,是中国的特有种。由于潮滩高程差异,不同高程潮滩的水淹时间不同,海三棱藨草群落密度随高程的增加而增大。在光滩区域群落密度低,一般为10%~20%,植株一般较低矮,通常在20 cm以下。海三棱藨草在高潮时几乎完全被淹没,低潮时露出。海三棱藨草的遥感监测因其植株低矮稀疏,下垫面易受潮汐影响。

      本研究选择崇明东滩(CMDT),崇明北八滧(CMBBX)和南汇边滩(NHBT)等3个长江口典型潮滩湿地。崇明东滩(31°24′59.72″~31°37′54.37″N,121°45′44.52″~122°04′47.78″E)位于上海市崇明岛东部,南临长江入海口,东濒东海,主要由长江入海泥沙堆积形成,是典型的淤泥质潮滩,主要分布有海三棱藨草群落和芦苇群落。崇明北八滧(31°40′55.20″~31°36′57.60″N,121°41′2.40″~121°51′18″E)位于崇明岛北沿,濒临长江北支,水流平缓,潮滩淤涨快,湿地资源丰富,主要分布有海三棱藨草群落和互花米草群落。南汇边滩(30°51′43.20″~30°50′52.80″N,121°56′2.40″~121°51′57.59″E)位于上海南部,杭州湾北部,受长江口径流及杭州湾北岸水流影响大,其优越的地理位置使其同时受到长江带来的丰富泥沙和杭州湾北部潮流的影响,形成了广阔的砂质潮滩,主要分布有海三棱藨草群落和芦苇群落。

    • 潮滩盐沼植物光谱测量样带与样方设置需充分考虑潮滩植物生态学特征,植被类型、形态决定其光谱反射特征,同时又受到物候现象与生长环境的影响。不同季相潮滩盐沼植被的光谱反射差异比较明显。春季为芦苇和互花米草的生长期,光谱上表现出绿色植物的特征,而海三棱藨草由于较晚进入生长期,绝大多数呈枯黄,其中低盖度的光谱特征类似光滩;夏至初秋为潮滩盐沼植被的生长旺季,在该物候期测量的光谱数据更具代表性;秋末冬初,海三棱藨草的“红边”特征几乎消失,芦苇和互花米草的“红边”陡坡大幅下降[23]

      本研究选择盐沼植被生长茂盛期进行光谱反射特征研究,分别在长江口崇明东滩、崇明北八滧和南汇边滩等3个潮滩湿地进行野外光谱测量。其中崇明北八滧测点样方13个,崇明东滩测点样方39个,南汇测点样方30个。样带设置采取由陆向海方向设置样方,样方大小为1 m × 1 m,并在崇明东滩设置水淹实验样方4个。样方设置充分考虑植被盖度、植被类型、土壤湿度、土壤类型等生态因子和环境因子。盐沼植被类型主要为高潮滩的芦苇、中低潮滩的海三棱藨草、互花米草。土壤类型有粉砂、极细砂、细粉砂这3种长江口潮滩典型土壤类型。低潮滩光滩由于长时间被海水覆盖湿度较高,故在光滩沿潮滩土壤湿度梯度设置光谱采样点。

      考虑到潮滩湿地盐沼植被测量中潮汐水位高低对植被冠层光谱反射的影响比较复杂,因此对崇明东滩潮滩前沿的海三棱藨草和互花米草进行不同潮位情况模拟实验。通过对同一样方盐沼植被加水来模拟涨潮,获取在其他外部条件完全一致的情形下盐沼植被受不同潮汐影响时的光谱特征。根据海三棱藨草(10 cm)和互花米草(20 cm)的植株高度设置潮位,分别为0,1,2,3 cm和0,2,4,6,8 cm。

    • 测量仪器采用美国ASD公司(Analytical Spectral Devices Inc)生产的手持式野外地物光谱仪,测量波长为325~1 075 nm,波长取样间隔为1.4 nm,光谱分辨率为3 nm,视场角为25°。野外测量选择晴朗无风的条件下,在9:00-14:00进行。各个样方测量2~3次,测量数据15~20个·次-1。根据天气状况及测量点的改变,间隔2~3 min进行环境光谱校正。为使测量数据能与卫星影像、航空影像进行比较,测量时传感器探头垂直向下。同时测量人员面向阳光入射方向,避免阴影落在样方区域。

      每个样方测量数据包括经纬度,土壤湿度,植被平均高度,天气情况(包括云量、风速),光谱反射率等。土壤湿度测量使用英国Delta-T公司生产的WET土壤三参数仪,在样方区域均匀选取5个点,分别测量每个点的湿度后取平均值。同时,使用手持式全球定位系统(GPS)测定样方的经纬度坐标。通过相机拍摄样方内植被覆盖情况,利用ArcGIS 10.1的监督分类功能计算植被覆盖像元数与总像元数,得到植被盖度。将ASD地物光谱仪测量的光谱数据通过HH2 Sync导出,并在Viewspec Pro 6.2.0软件里对测量数据进行处理。考虑到仪器噪声为保证测量数据的精确性,仅保留350~950 nm范围内的光谱数据。

    • 光谱分析主要分为以下几个部分:①分析同等盖度不同植被类型的光谱反射特征,分别对样方盖度为60%±5%的海三棱藨草、芦苇、互花米草的光谱特征进行分析;②分析同种植被不同盖度情况下的光谱反射特征,对海三棱藨草、芦苇、互花米草在不同盖度条件下的光谱特征进行分析,植被盖度受其生长环境影响大,实际测量盐沼的植被盖度见表 1;③分析在不同土壤背景下盐沼的光谱特征,选择长江口3种典型盐沼植被及其下垫面土壤进行分析(表 2);④分析潮滩前沿地带海三棱藨草和互花米草在不同潮位影响下的光谱特征。潮滩前沿植被受潮位影响最为显著,前沿地带海三棱藨草植株高度多为6~12 cm,植被盖度较低,通常为10%~30%。该处互花米草的植株高度为15~24 cm,植被盖度较海三棱藨草要高,一般为20%~45%。本研究分析主要选择潮滩前沿具有代表性的海三棱藨草群落(植株高度为10 cm,盖度为30%)和互花米草群落(植株高度为20 cm,盖度为40%)。根据植株的高度设置实验潮位。具体实验潮位见表 3

      表 1  不同盖度植被样地

      Table 1.  Sample plots of different coverage saltmarsh

      芦苇 海三棱藨草 互花米草
      植被盖度/% 样地数/个 植被盖度/% 样地数/个 植被盖度/% 样地数/个
      60 4 10 12 50 5
      70 10 30 15 60 7
      90 6 65 7 70 8

      表 2  不同下垫面土壤植被样地数

      Table 2.  Sample plots of different underlying

      测量地点 样地数/个
      芦苇 海三棱藨草 互花米草
      崇明东滩 14 20 0
      南汇边滩 6 9 0
      崇明北八滧 0 5 20

      表 3  不同潮位植被样地

      Table 3.  Sample plots of different tidal

      组别 海水淹没深度/cm
      海三棱藨草 互花米草
      1 0 0
      2 1 2
      3 2 4
      4 3 6
      5 8

      光谱分析采用光谱曲线法和一阶导数法,光谱曲线主要反映在350~950 nm波段不同地物的反射和吸收特征,一阶导数主要用于分析在350~950 nm波段地物的反射和吸收变化速率,增强植被光谱变化特征。一阶导数正值越大表明光谱反射率增速越大。相关性分析法用来衡量2个变量之间的密切程度,通过相关性分析确定植被盖度、土壤粒径、潮位与盐沼植被反射光谱之间的密切程度[24]。在软件Origin 9.0和Excel中进行处理分析。

    • 图 1是生长季节长江口3种主要潮滩盐沼植被海三棱藨草、芦苇和互花米草约60%盖度下的光谱反射和一阶导数曲线。在波长550 nm附近海三棱藨草、芦苇和互花米草均有1个次反射峰值,在波长680 nm附近有1个吸收谷,且光谱反射率均小于0.05。这是由于叶片中的叶绿素发生光合作用,在此处强烈吸收。反射率到波长700 nm附近急剧增大,增长速率同时也增大。在350~950 nm波长范围内,这3种潮滩盐沼植被的光谱特征差异很大。一阶导数图可以看出互花米草在“红边”位置(700~750 nm)的反射率增速高于另外2种潮滩盐沼植被。在533~560和683~751 nm波长范围内,这3种潮滩盐沼植被的光谱差异相对明显。

      图  1  相近盖度不同盐沼植被光谱反射率曲线及其一阶导数

      Figure 1.  Curve map of spectral reflectance and first derivative of different saltmarsh with similar coverage

    • 在崇明东滩选择相近土壤湿度不同盖度的潮滩盐沼植被进行光谱测量,结果见图 2。海三棱藨草、芦苇、互花米草在350~730 nm波段光谱反射率随盖度增大而减小。到730 nm后3种植被反射率随盖度增大而增大,且不同盖度的芦苇和互花米草光谱反射率变化趋势同海三棱藨草基本一致。由反射光谱一阶导数曲线得到3种盐沼植被在绿峰波段(519~528 nm),红谷波段(675~685 nm),红边波段(727~738 nm)有明显的峰、谷特点。绿峰波段是叶绿素反射区域,盖度高的叶绿素反射作用强。位于680 nm附近的波谷是叶绿素吸收红光形成的,植被盖度越高在该处的吸收作用越强,反射率越低。盐沼植被在红边的增速越快,表明该种群的生长环境比较适宜。这些波段能很好地反映反射光谱随植被盖度的变化特征,是判断植被盖度的有效波段范围。

      图  2  不同盖度下盐沼植被的光谱反射率曲线及其一阶导数

      Figure 2.  Curve map of spectral reflectance and first derivative of saltmarsh with different coverages

      图 3可知:在可见光波段,反射率与植被盖度呈负相关,主要是在该波段范围土壤的高反射及植被在可见光波段有强烈吸收作用;在近红外波段,反射率与植被盖度呈正相关性,相关性绝对值均接近1,是由于植被在近红外波段高反射率且反射率随植被盖度的增大而增大。故盐沼植被盖度对其反射光谱影响很大。当利用遥感手段对盐沼植被进行信息提取时,不可忽略植被盖度的影响。

      图  3  不同盖度下盐沼光谱相关性分析

      Figure 3.  Spectral correlation analysis of saltmarsh with different coverages

    • 图 4的样地土壤反射光谱曲线可以看出:3种土壤反射光谱总体呈现随波长增大反射率增大的趋势,在350~600 nm波长范围内,土壤的反射率随波长增大而增大的趋势明显;在波长600 nm附近出现第1个反射峰;到波长600 nm后,土壤反射光谱随波长变化反射率变化不明显,呈缓慢增大或减小的趋势。

      图  4  不同土壤的光谱反射率曲线及其一阶导数曲线

      Figure 4.  Curve map of spectral reflectance and first derivative of different kinds of soil

      崇明东滩、南汇边滩、崇明北八滧3个研究区的土壤光谱反射特征有明显差异,相同盖度的同种植被在不同样地的光谱反射率表现出较大差异,不论是低盖度还是中等盖度,在可见光波段,海三棱藨草光谱反射率均表现为南汇边滩的最高,崇明北八滧的最低,崇明东滩的居中;近红外波段则反之;可以认为盐沼植被的这种光谱差异很大程度上是由下垫面土壤导致的。

      低盖度30%±5%海三棱藨草光谱曲线(图 5)整体呈随波长增大反射率增大的趋势,只在红光波段出现小的波谷,与健康植被光谱曲线相比,植被光谱特征不明显。图 5显示:崇明北八滧和南汇边滩的低盖度海三棱藨草光谱曲线均未出现绿光反射峰,仅有崇明东滩的绿峰和红谷2个植被特征均呈现。而3个样带的中等盖度60%±5%海三棱藨草光谱曲线(图 6)都呈健康植被反射率特征。对于不同的样带,土壤下垫面对植被光谱影响程度不同。

      图  5  低盖度海三棱藨草在不同潮滩土壤上的光谱反射率曲线及一阶导数曲线

      Figure 5.  Curve map of spectral reflectance and first derivative of low coverage Scirpus mariqueter in different tidal flat

      图  6  中等盖度海三棱藨草在不同潮滩土壤上的光谱反射率曲线及其一阶导数曲线

      Figure 6.  Curve map of spectral reflectance and first derivative of medium coverage Scirpus mariqueter in different tidal flat

      图 7相关性分析中可以看出:在可见光波段海三棱藨草光谱反射率与土壤下垫面的相关性更高,相关系数在0.94~0.99范围内波动,相关系数在波长550 nm附近有一个最小值,是由于550 nm为绿色植被的“绿峰”,表现为盐沼植被叶绿素的强反射作用,土壤的影响相对较小;相关性到波长750 nm后明显下降,与土壤到750 nm后光谱反射率趋于稳定有关,近红外波段是植被的敏感波段,主要由植被自身生长状况决定。

      图  7  不同潮滩土壤背景下海三棱藨草光谱相关性分析

      Figure 7.  Spectral correlation analysis of Scirpus mariqueter in different tidal flat

      由上述结果分析可见:土壤下垫面对海三棱藨草光谱反射率在可见光波段的影响较大,而在近红外波段的影响则较小;海三棱藨草盖度越小,其反射光谱受土壤下垫面影响越大,当盖度过小时,海三棱藨草反射光谱的植被特征将消失,并呈现土壤的反射光谱特点。

    • 潮滩盐沼植被由于受到周期性水文过程影响,对涨潮时潮滩水体进行的光谱测量发现,光谱反射率随水深的增加增大,但在近红外波段水深大的反射率下降速率明显大于水深浅的水体;相同水深,悬沙质量浓度大的反射率大(图 8)。对研究区潮滩前沿的海三棱藨草群落和互花米草群落受不同潮位影响时的光谱特征进行分析,水体悬沙质量浓度控制在0.032~0.036 g·L-1范围内。

      图  8  崇明东滩不同水深和悬沙浓度水体的光谱反射率曲线

      Figure 8.  Curve map of spectral reflectance of water with changing water level and suspended sediment concentration

      图 9所示:在350~950 nm波长范围内,不同潮位海三棱藨草反射率曲线走势大体一致,并随潮位的增加反射率增大。波段830~950 nm,表面有水体覆盖的海三棱藨草反射率随波长增大而呈下降趋势,与830~950 nm波段水体的光谱特征相似,而表面没有水体淹没的在近红外波段仍表现为反射率随波长的增大而上升趋势,与健康植被反射光谱特征相同。潮位为2和3 cm时的海三棱藨草在920 nm附近反射率几乎完全重合。由潮位和海三棱藨草植被反射光谱之间的相关性分析可以看出,两者相关性相当高,350~950 nm波段的相关系数绝对值基本都在0.97以上(图 10)。

      图  9  盐沼植被在不同潮位下的光谱反射率曲线及一阶导数曲线

      Figure 9.  Curve map of spectral reflectance and first derivative of saltmarsh with changing water level

      图  10  不同潮位与盐沼植被光谱相关性分析

      Figure 10.  Spectral correlation analysis of saltmarsh with changing water level

      盖度相对较高的互花米草群落在潮位在0~4 cm时,有潮汐影响的反射光谱高于无潮汐影响的,且反射光谱随潮位升高而增加。当潮位超过4 cm后,反射光谱均小于无潮汐时的反射光谱,呈现反射光谱随潮位升高而下降的趋势。在可见光和近红外波段,互花米草群落的反射率与潮位均有一定相关性,为-0.37~-0.78,当波长超过700 nm后,两者间的相关系数值更大,即反射光谱与近红外波段潮位之间相关性更高(图 10)。互花米草植被的反射光谱及其与潮位相关性分析结果显示,当下垫面被较薄水体覆盖发生镜面反射时,植被反射光谱随潮位升高而增大。而当潮位超过一定值时,出露的植被较少,传感器视野范围内主要为水体和湿土下垫面,植被反射光谱受到水体下垫面的影响较大,表现为下垫面的光谱特征,植被反射光谱随潮位升高而下降。

      在潮汐影响下,潮位变化极大地影响了盐沼植被光谱反射率。当土壤表面有较薄水体覆盖时,植被光谱反射率在350~950 nm范围内随潮位升高而增大;潮位继续升高到将植株逐渐淹没后,光谱反射率急剧下降。由于海三棱藨草和互花米草的植被盖度、植株高度不同,光谱反射率下降的潮位也不同。在相同潮位下,植株高、盖度高的植被露出水面的部分更多,传感器获得更多的植被光谱信息。海三棱藨草光谱反射率与潮位间的相关性高于互花米草,还受到两者植株形态的影响。

    • 本研究利用ASD手持式地物光谱仪测量了长江口不同盐沼植被的反射光谱,针对植被生长茂盛期,分析不同潮滩土壤、潮位、植被盖度条件下的盐沼植被光谱反射特征,主要得出以下结论:①不同类型盐沼植被的光谱反射率差异较大,这种差异主要是植被本身和下垫面共同造成的。②盐沼植被的反射光谱受盖度的影响极大,在可见光波段两者呈负相关,在近红外波段两者呈正相关,相关系数接近0.99。盐沼植被的反射率在可见光波段随盖度增大而降低,在近红外波段则相反。③土壤下垫面对盐沼植被反射光谱影响极大。植被盖度越小,土壤下垫面影响越大。土壤下垫面对植被光谱反射率在可见光波段的影响较大,而在近红外波段的影响则较小。④盐沼植被反射光谱与潮位相关性显著。当潮位较低时,植被反射率高于无潮汐时的反射率,且呈随潮位升高反射率增大的趋势。当潮位上涨到一定高度,植被反射率低于无潮汐时的反射率,且随潮位的升高植被反射率呈下降的趋势。

    • 本研究对不同潮位与植被反射光谱的相关性与刘光等[24]研究不同水深对水生植被冠层光谱特征影响得到的结论是一致的,可见光波段和近红外波段水深对植被光谱反射率的影响有明显差异。从植被和水体的光谱特征分析,水体的反射主要在蓝绿波段,在近红外波段吸收作用强;植被叶绿素对蓝光和红光吸收作用强,对绿光反射作用强,其叶细胞结构对近红外有高反射,所以在不同波段范围,对水深的波谱响应不同。同理,盖度对植被光谱特征的影响包括了植被自身叶绿素含量等因素。同一植被盖度高的叶绿素含量高,在可见光红波段的吸收作用就更强,金仲辉[26]在研究绿色植物光谱特征时也得到这样的结果。对土壤下垫面的分析结果,土壤在可见光和近红外波段变化幅度不大,不同土壤背景对于盐沼植被光谱反射率是有差异的。故在陆生植被的遥感指数研究中,HUETE[27]提出了土壤调节植被指数,来修正下垫面土壤的影响。

      本研究在设计中没有考虑土壤盐度等对盐沼植被光谱的影响,在潮位对盐沼植被光谱影响中也没有设计不同悬沙浓度与植被光谱反射之间的关系。因此今后的研究将充分考虑土壤和水体中的具体影响因子,结合室内控制实验,对盐沼植被光谱与其影响因子之间的相应关系进行定量研究,建立盐沼植被反射光谱模型。

参考文献 (27)

目录

/

返回文章
返回