-
南方集体林区以丘陵为主的地形特征决定了林业生产过程中客观上存在着机械替代率低的问题。由于大量农村劳动力进入城市非农就业,林业经营主体需要通过雇佣劳动力以解决劳动力不足的问题[1];日趋扩大的规模化经营对雇佣劳动力的依赖程度急剧增大,委托代理关系也应运而生。委托代理关系下的营林生产过程往往存在着信息不对称和“道德风险”等问题,导致雇主对劳动过程的监督不到位[2];而相对粗放的林业生产中,雇主无法准确观测劳动力的投入程度,雇工生产效率较低[3]。因此,在南方集体林区不断推进林业规模化经营的背景下,开展雇工劳动质量对农户营林技术效率的影响研究具有重要的理论和现实意义。国内外学者关于雇佣劳动对农林业生产影响的研究主要集中在农业领域。一种观点认为雇佣劳动对农业生产效率产生了负面影响。雇佣劳动存在“道德风险”,雇佣劳动力的边际产出小于自有劳动力的边际产出,要保证劳动质量必须要付出大量的监督成本。有研究发现:存在雇工行为的家庭农业经营雇主,需要花费10%的劳动力时间来监督雇工,对劳动力在其他用途上的配置产生挤出效应。还有研究表明:团队组织内部监督不完备与激励不足,将会降低生产效率[4]。另一观点则认为雇佣劳动对农业生产效率有正向影响。张五常[5]认为分成制、定租制和混合制等委托-代理机制[3]是有效的。相比之下,目前针对林业雇工研究较少,从雇工视角探讨南方集体林区农户营林生产效率影响因素的研究还未见报道。本研究基于浙江省的实地调研数据,采用计量模型测算样本农户的营林技术效率,分析雇工劳动质量对农户营林技术效率的影响,以期为林业规模化经营中存在的雇工劳动问题提供决策依据。
-
本研究以浙江省南方集体林区为案例点,充分考虑地理位置、自然资源和社会经济发展差异,按农民人均可支配收入分层抽样选取浙江省建德市、开化县2个县(市)作为样本县(市)。2地农民人均可支配收入为23 998和15 736元,存在明显差异,反映出浙江省不同地区经济发展的差异性;森林覆盖率为76.2%和80.9%,均超出浙江省的平均水平,林业代表性较好。采取随机抽样法,在2个样本县(市)随机选取6个乡(镇),其中开化3个乡(镇),建德3个乡(镇)。为保证问卷的质量与信息的真实性,调查采取“一对一”的访谈模式。共得到农户有效样本245户,其中有雇工参与的农户151户,无雇工参与的农户94户。
杉木Cunninghamia lanceolata是样本地区分布最广的树种之一,也是当地农户最主要的林业收入来源之一;因此,本研究以杉木为案例树种进行调研。调查内容包括农户家庭基本情况、林地基本情况、1个营林周期内最大地块上杉木的生产投入和产出情况等。样本分布见表 1。
表 1 农户有效样本分布情况
Table 1. Specific distribution of effective sample of farmers
县(市) 乡(镇) 村 合计/户 比例/% 开化 华埠 许家源 20 8.2 联丰 20 8.2 池淮 芹源 20 8.2 玉坑 20 8.2 芹阳 泉坑 21 8.6 小桥头 20 8.2 建德 李家 沙墩头 8 3.3 长林 23 9.4 石鼓 9 3.7 龙桥 1 0.4 新桥 2 0.8 李家 2 0.8 建德 大同 上马 1 0.4 小溪源 24 9.8 永平 1 0.4 竹林 1 0.4 竹源 13 5.3 航头 大店口 21 8.6 东村 14 5.7 溪沿 1 0.4 罗源 1 0.4 曹源 2 0.8 总计 245 100.0 -
在测算林业技术效率之前,需要先确定前沿函数的具体形式,常见的前沿函数形式有C—D生产函数和超越对数生产函数。相对于前者,后者不仅形式灵活、易估计、包容性强,而且允许要素间替代弹性可变,没有对技术变化附加任何限制条件,因此近似性更好。考虑到南方集体林区农户拥有林地地块数量普遍较多,而农户林业生产中最重视且存更大雇佣劳动可能性的一般是最大地块,因此,本研究采用农户最大地块1个经营周期内的营林投入产出变量来构建生产函数。超越对数生产函数公式如下:lnYi=β0+β1lnKi+β2lnLi+β3lnMi+β4(lnKi)2+β5(lnLi)2+β6(lnMi)2+β7lnKilnLi+β8lnMilnMi+β9lnKilnMi+Vi-Ui。其中:Y表示最大地块1个经营周期内的林业产出(主伐量)(m3);K表示农户在最大地块的1个经营周期内所投入的费用(元);L表示农户在最大地块的1个经营周期内所投入的劳动投工数量(工);M表示最大地块面积(hm2);β0~β9为待估参数。
通过对超越对数生产函数求导可以分别计算出各投入要素的产出弹性。资本投入要素的产出弹性为:η1=β1+2β4lnK+β7lnL+β9lnM。劳动力投入要素的产出弹性为:η2=β2+2β5lnL+β7lnK+β8lnM。土地投入要素的产出弹性为:η3=β3+2β6lnM+β8lnL+β9lnK。农户技术无效率函数表示为:$ {m_i} = {\delta _0} + \sum\limits_{j = 1}^{j = 5} {{\delta _j}{h_j} + \sum\limits_{j = 6}^{j = 16} {{\delta _j}{Z_{ji}} + {\mu _i}} } $。其中hj为关键变量,代表雇工劳动质量,表示农户最大地块1个经营周期内雇佣劳动力的投工质量情况,Zj为控制变量。
为全面测度营林雇工劳动质量问题,本研究构建了雇工年龄比例、雇工性别比例、雇工投工所占比例、受过技术培训的雇工所占比例等具体指标[6]作为关键变量。具体如下。①雇工年龄比例:40岁以下雇工所占比例(h1)、60岁以上雇工所占比例(h2);②雇工性别比例:男雇工所占比例(h3);③雇工投工所占比例:总投工中雇工所占比例(h4);④受过技术培训的雇工所占比例(h5)。
一般研究将影响技术效率的地块特征、农业生产特征、户主特征等外生因素作为控制变量。①地块特征主要包括地块的地理位置(最大地块离家距离)、农户家庭山林总面积、农户家庭林地总块数、最大地块立地质量。地块离家距离越近,越便于林农对林地进行管理,所以,预期最大地块离家距离会对农户营林技术效率产生负向影响。农户家庭山林总面积越大、林地总块数越多意味着农户管理林地的难度也越大,平均到每个地块的管理时间就会越少,因此,预期其会对农户营林技术效率产生负向影响[7]。土地细碎不利于先进机械设备和技术的推广,控制病虫害难度加大,难以实现规模经营[8],虽然也有研究表明耕地面积与生产率之间的反向关系[9],但有些研究却表明此种关系并不显著[10],因此预期其总效应不明确。地块的立地质量对效率的影响是显而易见的,肥沃的土壤相对于贫瘠的土壤更能提高农户的生产效率[11],因此预期其会对农户营林技术效率会产生正向影响。②农业生产特征包括家庭务农人数、家庭总收入以及农户是否为补贴户。家庭务农人数会直接影响到劳动力要素的投入,因此预期其会对农户营林技术效率产生正向影响。农户家庭总收入的增加会加大农户的林业投资[12],预期会对农户营林技术效率产生正向影响。农户若为补贴户,林业补贴的增加也会增加农户对林业的资本投入,因此假设其会对农户营林技术效率产生正向影响。③户主特征。包括户主年龄、户主的受教育年限、户主健康状况、户主是否担任过村干部。户主年龄对其技术效率的影响方向取决于该农户是更富有经验还是更守旧[13];户主受教育年限越长,越能有效利用先进的农业生产技术[14],因此,假设其会对农户营林技术效率产生正向影响。户主健康状况对农户营林技术效率的影响也是显而易见的:户主健康状况越好,越有利于家庭营林生产劳动和决策,因此假设其会对技术效率产生正向影响。干部身份一方面会带来收入效应,即干部获得先进生产技术和农业生产信息的渠道更多,这会对农户营林技术效率产生正效应;另一方面,干部身份同样存在替代效应,即干部用于家庭经营的时间更少,从事家庭经营的机会成本也较高,这会对农户营林技术效率产生负效应[15]。因此其具体影响尚不可知。具体控制变量如下:Z6表示农户是否为补贴户(0代表否,1代表是);Z7表示户主是否为村干部(0代表否,1代表是);Z8为农户家庭务农人数(人);Z9为户主年龄(岁);Z10为户主受教育年限(年);Z11为户主健康状况(1代表好,2代表中,3代表差);Z12表示农户家庭总收入(元);Z13为农户家庭山林总面积(hm2);Z14表示农户经营的山林总块数(块);Z15表示农户经营山林中最大地块的立地质量(1代表好,2代表中,3代表差);Z16表示最大地块离家的距离(km)。
-
由表 2可知:样本农户最大地块整个营林周期内单位面积的平均产出为108.62 m3·hm-2,农户最大地块整个营林周期内单位面积的平均资本投入为8 214.47元·hm-2,单位面积平均劳动力投入为375.23工·hm-2,平均林地投入为2.02 hm2。
表 2 随机前沿生产函数模型变量的描述性统计
Table 2. Descriptive statistics of variables in Stochastic Frontier Approach's model
统计值变量 最大地块总产出/(m3·hm-2) 最大地块资本投入/(元·hm-2) 最大地块面积/hm2 最大地块劳动力投入/(工·hm-2) 平均值 108.62 8 214.47 2.02 375.23 标准差 94.70 5 187.26 1.14 278.28 技术效率损失模型中(表 3),户主的平均年龄为57.24岁,平均受教育年限为7.20 a,可以看出该地区的劳动力质量较差。88.00%的立地质量为中等及以上,最大地块离家距离平均为1.97 km,表明样本地区的立地质量和交通条件对林业经营相对有利。样本农户家庭户均地块为3.41块,表明样本地区林地细碎化问题并不严重。农户的家庭总收入均值为95 501.74元,说明样本地区当地的经济条件利于林业发展。所有样本农户中仅有27.00%的农户为补贴户,说明国家的林补政策还未真正地惠及该地区。
表 3 技术效率损失模型变量的描述性统计
Table 3. Descriptive statistics of variables in the loss of technical efficiency's model
变量类型 具体变量 平均值 标准差 最小值 最大值 雇工劳动质量 40岁以下雇工所占比例 0.45 0.24 0.10 1.00 60岁以上雇工所占比例 0.49 0.17 0.01 1.00 男雇工所占比例 0.85 0.16 0.20 1.00 总投工中雇工所占比例 0.72 0.25 0.05 1.00 雇佣的工人中受过技术培训的工人所占比例 0.78 0.42 0.10 1.00 户主特征 户主年龄(岁) 57.24 9.38 27 86 户主教育年限 7.20 3.52 0 16 户主是否为村干部(0代表否,1代表是) 0.33 0.46 0 1 户主健康状况:好 0.84 0.36 0 1 户主健康状况:差 0.12 0.22 0 1 农业生产特征 家庭务农人数(人) 1.18 1.05 0 5 家庭总收入(元) 95 501.74 104 235.30 520 724 652 是否为补贴户(0代表否,1代表是) 0.27 0.44 0 1 地块特征 家庭总地块数 3.41 2.87 0 20 最大地块质量:好 0.54 0.49 0 1 最大地块质量:差 0.12 0.31 0 1 最大地块离家距离(km) 1.97 2.03 0.02 15 山林总面积 3.52 8.26 0.03 96.67 说明:“户主健康状况”参照组为“中”,“最大地块质量”参照组为“中” 为消除因自变量之间多重共线性导致的模型估计结果偏差,在模型估计前对雇工质量各指标进行相关性检验。结果发现(表 4):雇工质量各指标之间不存在多重共线性问题,各指标可以作为自变量放入模型进行估计。
表 4 雇工质量各指标系数相关矩阵
Table 4. Relevance matrix of index coefficients of employee quality
40岁以下雇工所占比例 60岁以上雇工所占比例 男雇工所占比例 总投工中雇工所占比例 雇佣的工人中受过技术培训的工人所占比例 40岁以下雇工所占比例 1.00 60岁以上雇工所占比例 0.18 1.00 男雇工所占比例 0.24 0.15 1.00 总投工中雇工所占比例 0.01 0.00 0.33 1.00 雇佣的工人中受过技术培训的工人所占比例 0.24 0.02 0.10 0.23 1.00 -
利用广义似然比(LR)检验可降低对SFA模型的依赖,避免函数形式的误设,从而从设定的待估计模型中筛选出最能拟合样本数据的模型。LR公式可表示为:RL=-2[lnL(H0)-lnL(H1)] ~χ2(k)。其中:L(H0)和L(H1)分别是零假设H0和备择假设H1下的似然函数值,表示受约束条件的自由度。将LR统计量与临界值进行比较,当LR统计量值大于临界值时拒绝原假设,否则,接受原假设。给出的2个零假设为:(1)规模户和非规模户的前沿面并没有显著的差异,即模型不需要添加是否为规模户的虚拟变量。(2)外生变量对技术效率无任何影响,即模型不需要添加外生变量影响因素。LR验证结果如表 5所示。相对于基准模型,假设1在1%显著性水平上没有被拒绝,而假设2在1%显著性水平上拒绝原假设;说明原假设1对应的模型较好地拟合了样本数据,可作为本研究测度技术效率的主要模型。
表 5 假设检验结果
Table 5. Hypothesis test results
零假设 LR统计量 自由度 χ2 0.01临界值 结论 H0:不应该设置规模户虚拟变量 0.001 9 20.97 接受 H0:外生变量对技术效率无影响 126.310 14 28.49 拒绝 -
表 6为随机前沿生产函数模型的估计结果。将表 6的回归系数代入上文生产投入要素产出弹性计算公式中可得到各投入要素的产出弹性。计算得:土地投入要素的产出弹性为2.25,说明样本地区林业生产对土地投入的依赖程度较高,即林业生产中最为稀缺的生产要素是土地,增加土地投入可以大幅度地提高林业产出。资本(-0.09)和劳动力(-0.23)投入要素的产出弹性均为负值,说明目前样本地区林业存在过度投入资本和劳动力的情况,单纯依靠增加林业劳动力和林业资本投入并不会带来林业产出的增加,相反还可能导致林业产出减少。
表 6 随机前沿生产函数模型估计结果
Table 6. Estimated results of Stochastic Frontier Approach's model
变量 系数 变量 系数 最大地块资本投入 0.589***(0.091) 劳动力投入的平方项 -0.029*(0.016) 最大地块面积(土地投入) 0.746***(0.240) 资本投入×土地投入 0.160**(0.068) 最大地块劳动力投入 0.017(0.125) 土地投入×劳动力投入 0.108*(0.063) 资本投入的平方项 0.051***(0.010) 资本投入×劳动力投入 -0.014(0.035) 土地投入的平方项 -0.410***(0.137) 常数项 -0.368(0.259) 说明:*,**,***分别表示通过10%,5%,1%水平下的显著性检。括号内数值为回归标准误 -
在245份有效样本农户中,家庭最大地块1个营林周期内有雇佣劳动力的农户有151户,占总体样本的61.63%。总体农户平均技术效率值为0.57,有雇工农户平均技术效率值为0.59,无雇工农户的平均技术效率值为0.76。由表 7可知:如果消除技术效率的损失,总体样本农户的平均技术效率还有43.00%的提升空间。由描述性统计结果可粗略看出无雇工农户的平均技术效率高于有雇工农户的平均技术效率,但雇佣劳动对农户技术效率的具体影响有待进一步计量分析。由样本农户雇工情况对农户营林技术效率损失影响的估计结果(表 8)可知:在控制其他变量不变的情况下,雇工会对农户营林技术效率造成负面影响(P<0.10)。雇工劳动质量指标中,总投工中雇工所占比例对农户的营林技术效率具有负向影响(P<0.05);原因可能是家庭自有劳动力和雇佣劳动力劳动质量存在异质性,雇主对劳动过程的监督很难到位,由此造成总投工中雇工所占比例越高,农户营林技术效率越低。户主年龄对农户的营林技术效率具有正向的影响(P<0.10);原因可能是随着户主年龄增大,其营林生产经验越丰富,对家庭营林生产越有利。户主良好的身体状况对农户营林生产技术效率具有正向影响(P<0.05);作为家庭最主要的林业劳动力和决策者,户主身体健康程度对林业生产至关重要。家庭总收入对农户营林生产技术效率具有正向影响(P<0.05);原因在于农户家庭总收入的增加会减少农户家庭林业生产的资金约束,农户林业投资概率会增大。山林总面积和家庭总地块数都对农户的营林技术效率具有负向影响(P<0.10);农户家庭山林总面积越大、家庭总地块数越多,农户管理林地的难度也越大,平均到每个地块的管理时间就会越少,农户无法对林地进行精细化地管理,影响了技术效率的提高。好的地块质量对农户营林生产技术效率具有负向影响(P<0.10);这与预期的影响方向相反,可能的原因是:农户会对质量较好的地块相对投入更少的肥料和劳动力等生产要素,因此使立地质量较优的地块产出情况反而不如立地质量较差的地块。
表 7 样本农户营林技术效率总体情况
Table 7. Overall situation of technical efficiency of sample farmers in forestry management
描述性统计农户类型 平均值 标准差 最小值 最大值 全部农户 0.57 0.20 0.12 0.92 有雇工农户 0.59 0.25 0.06 0.98 无雇工农户 0.76 0.12 0.24 0.92 表 8 雇工情况及雇工劳动质量对农户营林技术效率损失的影响估计结果
Table 8. Estimation of the impact of employment and labor quality of employees on technical efficiency of farmers' forestry management
变量类型 具体变量 系数 具体变量 系数 雇工情况 是否雇工(0代表否,1代表是) 0.373*(0.212) 40岁以下雇工所占比例 1.139(0.814) 及雇工劳 60岁以上雇工所占比例 -0.474(0.509) 动质量 男雇工所占比例 0.662(0.511) 总投工中雇工所占比例 1.205**(0.538) 雇佣的工人中受过技术培训的工人所占比例 -2.115(1.328) 户主特征 户主年龄(岁) -0.011(0.009) 户主年龄(岁) -0.027*(0.016) 户主教育年限 -0.008(0.022) 户主教育年限 0.052(0.044) 户主是否为村干部(0代表否,1代表是) 0.182(0.160) 户主是否为村干部(0代表否,1代表是) 0.181(0.245) 户主健康状况:好 -0.498**(0.242) 户主健康状况:好 -1.130**(0.489) 户主健康状况:差 -0.180(0.324) 户主健康状况:差 -0.132(0.883) 农业生产 家庭务农人数(人) 0.035(0.078) 家庭务农人数(人) 0.084(0.106) 特征 家庭总收入(元) -0.000**(0.000) 家庭总收入(元) -0.000**(0.000) 是否为补贴户(0代表否,1代表是) 0.333**(0.165) 是否为补贴户(0代表否,1代表是) 0.317(0.259) 地块特征 家庭总地块数 0.035(0.026) 家庭总地块数 0.090*(0.049) 最大地块质量:好 0.221(0.155) 最大地块质量:好 0.640*(0.359) 最大地块质量:差 -0.117(0.241) 最大地块质量:差 0.196(0.460) 最大地块离家距离(km) -0.040(0.037) 最大地块离家距离(km) -0.052(0.061) 山林总面积 -0.005(0.022) 山林总面积 0.042*(0.022) 常数项 1.643***(0.623) 常数项 0.303(1.099) σ2 0.318***(0.070) σ2 0.801***(0.268) γ 0.876***(0.073) γ 0.995***(0.003) 说明:“户主健康状况”参照组为“中”,“最大地块质量”参照组为“中”;*,**,***分别表示通过10%,5%,1%水平下的显著性检验。括号内数值为回归标准误
Impact of the labor quality of hired forestry labor on the technical efficiency of farmers' forestry management
-
摘要: 以浙江省245户样本农户的调研数据为基础,利用随机前沿生产函数方法测度样本农户营林技术效率,分析影响农户营林技术效率的因素,重点分析雇工劳动质量对农户营林技术效率的影响。结果表明:样本地区农户营林的平均技术效率为0.57,存在着明显的技术效率损失;有雇工农户的营林技术效率的平均值为0.59,无雇工农户的营林技术效率的平均值为0.76,农户营林生产过程中雇佣劳动的存在会阻碍农户营林技术效率的提高,对营林生产造成负面影响。实证分析发现:农户营林生产过程中的雇佣劳动对营林生产有负面影响;雇工劳动质量不同,对提高农户营林技术效率的影响程度也不同;营林生产总投工中雇工所占比例越大,对提高农户营林技术效率的负面影响程度越大。基于此,提出推进适度规模经营并加大林业科技服务投入、建立有效的劳动监督和管理机制等建议。Abstract: Drawing on the survey data of 245 farmer households in Zhejiang Province, this paper uses the Stochastic Frontier Approach (SFA) to measure the technical efficiency of the sample farmers' forestry management, and analyze the influencing factors of the technical efficiency, in particular the impact of labor quality of hired forestry labor on the technical efficiency of farmer's forest management. Results show that the average technical efficiency of farmer's forestry management in sample area is 0.57, and there is obvious loss of technical efficiency. The average technical efficiency of farmer households with hired labor is 0.59, and that of households without hired labor is 0.76. It shows that hiring labor in the process of farmer's forestry production will hinder the improvement of technical efficiency of farmer's forestry management and have a negative impact on the forestry production. Empirical analysis shows that hiring labor in the process of farmer's forestry production does have a negative impact on the forestation, and the different quality of the hired labor has different impact on improving the technical efficiency of farmer's forestry management:the greater the proportion of hired workers in the total labor input of forestry production, the greater the negative impact on improving the technical efficiency of farmers' forestry management will be. Based on the research findings, suggestions on promoting moderate scale operation, increasing investment in science and technology services, and establishing effective labor supervision and manage mechanism are proposed.
-
Key words:
- forest economics /
- off-farm employment /
- hired forestry labor /
- technical efficiency /
- scale management
-
表 1 农户有效样本分布情况
Table 1. Specific distribution of effective sample of farmers
县(市) 乡(镇) 村 合计/户 比例/% 开化 华埠 许家源 20 8.2 联丰 20 8.2 池淮 芹源 20 8.2 玉坑 20 8.2 芹阳 泉坑 21 8.6 小桥头 20 8.2 建德 李家 沙墩头 8 3.3 长林 23 9.4 石鼓 9 3.7 龙桥 1 0.4 新桥 2 0.8 李家 2 0.8 建德 大同 上马 1 0.4 小溪源 24 9.8 永平 1 0.4 竹林 1 0.4 竹源 13 5.3 航头 大店口 21 8.6 东村 14 5.7 溪沿 1 0.4 罗源 1 0.4 曹源 2 0.8 总计 245 100.0 表 2 随机前沿生产函数模型变量的描述性统计
Table 2. Descriptive statistics of variables in Stochastic Frontier Approach's model
统计值变量 最大地块总产出/(m3·hm-2) 最大地块资本投入/(元·hm-2) 最大地块面积/hm2 最大地块劳动力投入/(工·hm-2) 平均值 108.62 8 214.47 2.02 375.23 标准差 94.70 5 187.26 1.14 278.28 表 3 技术效率损失模型变量的描述性统计
Table 3. Descriptive statistics of variables in the loss of technical efficiency's model
变量类型 具体变量 平均值 标准差 最小值 最大值 雇工劳动质量 40岁以下雇工所占比例 0.45 0.24 0.10 1.00 60岁以上雇工所占比例 0.49 0.17 0.01 1.00 男雇工所占比例 0.85 0.16 0.20 1.00 总投工中雇工所占比例 0.72 0.25 0.05 1.00 雇佣的工人中受过技术培训的工人所占比例 0.78 0.42 0.10 1.00 户主特征 户主年龄(岁) 57.24 9.38 27 86 户主教育年限 7.20 3.52 0 16 户主是否为村干部(0代表否,1代表是) 0.33 0.46 0 1 户主健康状况:好 0.84 0.36 0 1 户主健康状况:差 0.12 0.22 0 1 农业生产特征 家庭务农人数(人) 1.18 1.05 0 5 家庭总收入(元) 95 501.74 104 235.30 520 724 652 是否为补贴户(0代表否,1代表是) 0.27 0.44 0 1 地块特征 家庭总地块数 3.41 2.87 0 20 最大地块质量:好 0.54 0.49 0 1 最大地块质量:差 0.12 0.31 0 1 最大地块离家距离(km) 1.97 2.03 0.02 15 山林总面积 3.52 8.26 0.03 96.67 说明:“户主健康状况”参照组为“中”,“最大地块质量”参照组为“中” 表 4 雇工质量各指标系数相关矩阵
Table 4. Relevance matrix of index coefficients of employee quality
40岁以下雇工所占比例 60岁以上雇工所占比例 男雇工所占比例 总投工中雇工所占比例 雇佣的工人中受过技术培训的工人所占比例 40岁以下雇工所占比例 1.00 60岁以上雇工所占比例 0.18 1.00 男雇工所占比例 0.24 0.15 1.00 总投工中雇工所占比例 0.01 0.00 0.33 1.00 雇佣的工人中受过技术培训的工人所占比例 0.24 0.02 0.10 0.23 1.00 表 5 假设检验结果
Table 5. Hypothesis test results
零假设 LR统计量 自由度 χ2 0.01临界值 结论 H0:不应该设置规模户虚拟变量 0.001 9 20.97 接受 H0:外生变量对技术效率无影响 126.310 14 28.49 拒绝 表 6 随机前沿生产函数模型估计结果
Table 6. Estimated results of Stochastic Frontier Approach's model
变量 系数 变量 系数 最大地块资本投入 0.589***(0.091) 劳动力投入的平方项 -0.029*(0.016) 最大地块面积(土地投入) 0.746***(0.240) 资本投入×土地投入 0.160**(0.068) 最大地块劳动力投入 0.017(0.125) 土地投入×劳动力投入 0.108*(0.063) 资本投入的平方项 0.051***(0.010) 资本投入×劳动力投入 -0.014(0.035) 土地投入的平方项 -0.410***(0.137) 常数项 -0.368(0.259) 说明:*,**,***分别表示通过10%,5%,1%水平下的显著性检。括号内数值为回归标准误 表 7 样本农户营林技术效率总体情况
Table 7. Overall situation of technical efficiency of sample farmers in forestry management
描述性统计农户类型 平均值 标准差 最小值 最大值 全部农户 0.57 0.20 0.12 0.92 有雇工农户 0.59 0.25 0.06 0.98 无雇工农户 0.76 0.12 0.24 0.92 表 8 雇工情况及雇工劳动质量对农户营林技术效率损失的影响估计结果
Table 8. Estimation of the impact of employment and labor quality of employees on technical efficiency of farmers' forestry management
变量类型 具体变量 系数 具体变量 系数 雇工情况 是否雇工(0代表否,1代表是) 0.373*(0.212) 40岁以下雇工所占比例 1.139(0.814) 及雇工劳 60岁以上雇工所占比例 -0.474(0.509) 动质量 男雇工所占比例 0.662(0.511) 总投工中雇工所占比例 1.205**(0.538) 雇佣的工人中受过技术培训的工人所占比例 -2.115(1.328) 户主特征 户主年龄(岁) -0.011(0.009) 户主年龄(岁) -0.027*(0.016) 户主教育年限 -0.008(0.022) 户主教育年限 0.052(0.044) 户主是否为村干部(0代表否,1代表是) 0.182(0.160) 户主是否为村干部(0代表否,1代表是) 0.181(0.245) 户主健康状况:好 -0.498**(0.242) 户主健康状况:好 -1.130**(0.489) 户主健康状况:差 -0.180(0.324) 户主健康状况:差 -0.132(0.883) 农业生产 家庭务农人数(人) 0.035(0.078) 家庭务农人数(人) 0.084(0.106) 特征 家庭总收入(元) -0.000**(0.000) 家庭总收入(元) -0.000**(0.000) 是否为补贴户(0代表否,1代表是) 0.333**(0.165) 是否为补贴户(0代表否,1代表是) 0.317(0.259) 地块特征 家庭总地块数 0.035(0.026) 家庭总地块数 0.090*(0.049) 最大地块质量:好 0.221(0.155) 最大地块质量:好 0.640*(0.359) 最大地块质量:差 -0.117(0.241) 最大地块质量:差 0.196(0.460) 最大地块离家距离(km) -0.040(0.037) 最大地块离家距离(km) -0.052(0.061) 山林总面积 -0.005(0.022) 山林总面积 0.042*(0.022) 常数项 1.643***(0.623) 常数项 0.303(1.099) σ2 0.318***(0.070) σ2 0.801***(0.268) γ 0.876***(0.073) γ 0.995***(0.003) 说明:“户主健康状况”参照组为“中”,“最大地块质量”参照组为“中”;*,**,***分别表示通过10%,5%,1%水平下的显著性检验。括号内数值为回归标准误 -
[1] 侯一蕾, 王昌海, 吴静, 等.南方集体林区林地规模化经营的理论探析[J].北京林业大学学报(社会科学版), 2013, 12(4):1-6. HOU Yilei, WANG Changhai, WU Jing, et al. A theoretical analysis of forest land scale management in collective forest areas of south China[J]. J Beijing For Univ Soc Sci, 2013, 12(4):1-6. [2] ALCHIAN A A, DEMSETZ H. Production, information costs, and economic organization[J]. Am Econ Rev, 1972, 62(5):21-41. [3] BERLE A A, MEANS G C. Corporations and the public investor[J]. Am Econ Rev, 1930, 20(1):54-71. [4] BHARADWAJ P. Fertility and rural labor market inefficiencies:evidence from India[J]. J Dev Econ, 2015, 115:217-232. [5] 张五常.佃农理论:应用于亚洲的农业和台湾的土地改革[M].北京:商务印书馆, 2000. [6] SCHWERDT G, TURUNEN J. Growth in euro area labor quality[J]. Rev Income Wealth, 2007, 53(4):716-734. [7] VIITALA E J, HANNINEN H. Measuring the efficiency of public forestry organizations[J]. For Sci, 1998, 44(2):298-307. [8] SIMONS S. Land fragmentation in developing countries: the optimal choice and policy implications[C]//Agricultural and Food Policy Land Economics, International Association of Agricultural Economists, Málaga, Spain, 1985: 3-16. [9] BERRY R A, CLINE W R. Agrarian Structure and Productivity in Developing Countries[M]. Baltimore:Johns Hopkins University Press, 1979. [10] CHAVAS J P, PETRIE R, ROTH M. Farm household production efficiency:evidence from the Gambia[J]. Am J Agric Econ, 2005, 87(1):160-179. [11] 王志刚, 李腾飞, 黄圣男, 等.基于随机前沿模型的农业生产技术效率研究:来自甘肃省定西市马铃薯生产的数据[J].华中农业大学学报(社会科学版), 2013(5):61-67. WANG Zhigang, LI Tengfei, HUANG Shengnan, et al. Study on agricultural production technical efficiency based on stochastic frontier model:taking potato data from Dingxi City, Gansu Province for example[J]. J Huazhong Agric Univ Soc Sci Ed, 2013(5):61-67. [12] 田杰, 姚顺波.中国林业生产的技术效率测算与分析[J].中国人口·资源与环境, 2013, 23(11):66-72. TIAN Jie, YAO Shunbo. Research on technical efficiency of forestry production in China[J]. China Pop Resour Environ, 2013, 23(11):66-72. [13] 许玉光, 杨钢桥, 文高辉.耕地细碎化对耕地利用效率的影响:基于不同经营规模农户的实证分析[J].农业现代化研究, 2017, 38(4):688-695. XU Yuguang, YANG Gangqiao, WEN Gaohui. Impacts of arable land fragmentation on land use efficiency:an empirical analysis based on farms of different scales[J]. Res Agric Modernization, 2017, 38(4):688-695. [14] BATTESE G E, COELLI T J. A model for technical inefficiency effects in a stochastic frontier production function for panel data[J]. Empirical Econ, 1995, 20(2):325-332. [15] 李谷成, 冯中朝, 占绍文.家庭禀赋对农户家庭经营技术效率的影响冲击:基于湖北省农户的随机前沿生产函数实证[J].统计研究, 2008, 25(1):35-42. LI Gucheng, FENG Zhongchao, ZHAN Shaowen. An empirical analysis about the effect of household endowments on the technical efficiency of farmer's household management:evidence from the farmers of Hubei Province[J]. Statistical Res, 2008, 25(1):35-42. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.021