-
林分空间结构是天然林研究焦点之一。优化森林空间结构是培育可持续森林的重要途径[1]。目前研究以水平空间结构为主,用混交度、大小分化度、林木分布格局[2-5]、林分空间结构指数及空间结构距离等指标[6-7],研究了空间结构特征、结构优化及采伐强度对林分空间结构的影响[5]等。天然林垂直空间结构方面,由于林木分布具有非均一、非规则性特点[8],成为空间结构研究难点。目前主要采用林层[9-10]、林层比[11]、林层指数[12]等研究垂直结构特征和参数计算方法。但这些指标仅用于分析空间结构特征属性,难以反映林分空间利用情况,对林分空间利用的表征指标、计算方法以及空间结构参数与空间利用率的关系方面研究鲜见报道。尽管在人为诱导异龄复层林技术和促进自然恢复演替作用[13]方面开展部分研究,但在演替调控和垂直结构优化研究不够深入。目前,林分空间利用、尤其天然林空间利用(包括林分垂直空间利用以及林分整体空间利用)方面研究未见报道。贾亚运等[14]认为,林地空间利用的指标包括枝下高、冠幅、单株叶面积和叶面积指数等。采用生长空间指数(树冠体积/胸径)、生长空间竞争指数(树冠表面积/胸高断面积)、根系(单株根量、根系密度)指标,测算人工林林木个体水平空间利用能力[15-17]。但研究中未充分考虑林木分布格局和树冠重叠因素,不足以揭示天然林空间利用规律。林分空间利用同林分结构与功能紧密相关,掌握其规律特征对过伐林经营具有重要意义。在天然林生长过程中,林分空间结构和空间利用发生动态变化,林木胸径和高生长不断分化,达到一定密度范围后生长量受到抑制,在有限的空间内逐渐被“合理布置”,由简单单层逐渐演替形成复层、异龄林和多代林。用水平或垂直单一结构因子探讨林分空间结构规律,缺乏系统性,从林分空间利用出发用整体空间结构因子探讨其规律更有利于提升结构优化和抚育经营实际效果。本研究提出天然林林分空间利用基本概念和内涵,探讨大兴安岭过伐林林分空间利用规律,揭示其影响因子,以期为天然林结构优化和抚育经营提供理论和技术支撑。
-
研究地点为内蒙古大兴安岭森林生态系统国家野外科学观测研究站,50°49'~50°51'N,121°30'~121°31'E,海拔800~1 100 m。属寒温带湿润气候区,年均气温为−5.4 ℃,最低气温−50.0 ℃,≥10 ℃年积温1 403 ℃;年降水量450~550 mm,60%降水集中在7−8月,全年无霜期80 d。境内连续多年冻土和岛状多年冻土交错分布。林下土壤为棕色针叶林土、灰色森林土和黑钙土,土层厚度20~40 cm,基岩以花岗岩与玄武岩为主。森林以兴安落叶松Larix gmelinii为建群种的寒温带针叶林,伴生树种有白桦Betula platyphylla和山杨Populus davidiana等。林下主要有杜鹃Rhododendron dahuricum等灌木和红花鹿蹄草Pyrola incarnate、舞鹤草Maianthemum bifolium等草本植物。
研究区过伐林是在20世纪80年代初主伐利用后形成的。1982−1986年当地林业部门对调查地林分进行了采伐作业,作业方式为100 m等带间隔皆伐,采伐间隔期10 a,作业面积150 hm2。伐前林龄为120~180 a,蓄积量80~120 m3·hm−2,郁闭度0.2~0.4,上层母树群团状分布,更新密度1 500~2 400株·hm−2,幼树年龄5~15 a,幼树组成为5落叶松5白桦。20世纪90年代初开始转为抚育经营,主要采取了透光伐和生长伐等抚育经营措施。
-
选择有代表性的森林群落类型,设置14块样地(表1)。进行每木检尺,调查更新(DBH<5.0 cm)情况及生长指标。将样地按2.5 m×2.5 m (14块样地DBH≥5.0 cm林木的平均冠幅2.4 m)进行网格化,划分若干个样方。以样地西南角作为坐标原点,用皮尺测量各样方内林木在样地内的相对坐标。应用方差/均值比率法求算林木聚集系数,检验林木分布格局[9]。采用树冠光竞争高度原理将林分垂直层次划分为主林层、演替层和更新层[9]。
表 1 样地概况
Table 1. Survey of sample plots
样地编号 样地面积/(m×m) 林分密度/(株·hm−2) 树种组成 平均胸径/cm 平均树高/m 1 30×30 1 433 5落叶松3白桦2山杨 13.6±6.6 13.2±4.2 2 40×40 1 019 9白桦1落叶松+山杨 10.8±3.9 9.9±2.6 3 40×40 1 994 6白桦4落叶松+山杨 8.1±2.7 9.4±1.9 4 40×40 2 238 5落叶松5白桦−山杨 10.4±4.1 10.9±3.0 5 20×30 1 983 5白桦5落叶松+山杨 9.1±3.9 10.5±1.9 6 40×40 2 775 7落叶松3白桦+山杨 9.6±3.5 10.7±2.9 7 40×40 1 750 6落叶松3白桦1山杨 12.0±4.6 10.9±2.9 8 40×40 1 425 7落叶松3白桦+山杨 12.8±4.2 12.1±2.4 9 30×30 2 556 7白桦3落叶松−山杨 9.4±3.1 10.0±1.5 10 30×30 1 367 8落叶松2白桦 12.2±3.4 10.3±2.0 11 30×30 2 067 8落叶松1白桦1山杨 11.8±4.7 10.5±2.1 12 30×30 1 722 7落叶松3白桦−山杨 12.7±5.7 11.1±2.8 13 30×30 2 233 7落叶松3白桦 11.4±4.6 10.2±2.2 14 30×40 892 9落叶松1白桦−山杨 15.5±7.1 10.0±2.6 说明:树种组成式中,数字表示树种的数量比,“+”表示该树种蓄积量占林分总蓄积量2%~5%;“−”表示该树种蓄积量少于林 分总蓄积量的2% -
林分空间利用是指在特定立地和林分结构条件下,林木在林分水平和垂直空间中合理利用温度、光照、水分以及营养空间的过程。林分空间利用率是林分空间被利用水平或填充度。主要表现在林木株数、林木个体大小、正向演替、在林分中的位置以及格局等方面。
水平空间利用率(horizontal space utilization ratio,HSUR)计算方法:统计小样方中有林木生长的样方数量,计算有林木生长(含更新幼树,不含枯立木)样方数占样方总数比例。在样方中不论林木株数,不论林木大小(大树或更新幼树),只要有林木生长,就算作有林木生长样方。采用该指标主要考虑样地全林木分布不同而填充空间差异性和林木分布格局对空间利用率的影响。计算公式:RHSU=
${{\sum\limits_{i = 1}^n {{q_i}} }}/{N}$ 。其中:RHSU为样地林分水平空间利用率(%);n为有林木生长的样方总数; qi为第i个有林木生长的样方,取值为1;N为样地样方总数。垂直空间利用率(vertical space utilization ratio,VSUR)计算方法:样地全林木总高度占全林木达优势木高度时总高度的比例。采用该指标主要考虑兴安落叶松天然林存在多代林和复层异龄林的垂直结构复杂性。体现样地全林木垂直分布特点、填充空间规律以及林木垂直分布格局对空间利用率的影响。计算公式:RVSU=
${{\sum\limits_{j = 1}^m {{h_j}} } / {\sum\limits_{j = 1}^m {{H_j}} }}$ 。其中:RVSU为样地林分垂直空间利用率(%);m为样地立木总株数;hj为第j株林木树高(m);Hj为第j株优势木高(m)即林分优势木高。优势木选择标准:生长良好,无病虫害,树冠最大且占据林冠上层,在样地内同龄级林木中,胸径和树高最大,林木相对直径d≥1.02。d=r/R,其中d为林木相对直径;r为林木胸径;R为林分平均胸径。林分综合空间利用率计算方法:以水平空间利用率和垂直空间利用率为指标,应用熵权法[18]计算2个指标的熵权重,再计算样地林分综合空间利用率。计算公式:Yi=RHSUW1+RVSUW2。其中:Yi为第i个样地林分综合空间利用率;W1和W2分别为水平空间利用率和垂直空间利用率指标的熵权重,本研究中W1=0.48,W2=0.52。
-
应用Excel进行数据处理,应用SPSS 17.0进行相关性分析,依据Pearson相关系数和双侧显著性检验结果,筛选影响空间利用率的相关因子。对林分空间利用率与其显著相关因子进行逐步回归分析,确定主要影响因子。
-
各样地水平空间利用率为62.5%~85.9%,平均达73.6%(表2)。由于各样地林木株数、分布格局和位置关系不同,因而有林木生长的样方数量也不同,水平空间利用率有较大差异。水平空间利用率大小与林分结构有关(表3)。水平空间利用率与样地林木株数、更新密度、林木聚集系数呈极显著正相关(P<0.01);与林分蓄积量显著负相关(P<0.05);与林分平均胸径极显著负相关(P<0.01)。随着林分更新、林木株数增多,林分空隙逐渐被填充,水平空间利用率也提高;随着林木聚集系数增加,林木分布格局、样方间林木株数差异变大,所占林分空间增大,水平空间利用率也提高;随着林分平均胸径和蓄积量增加,更新幼树所占空间减少,更新密度、林木株数趋于减小,水平空间利用率降低。说明目前林分密度较小,林木株数较少,林木分布不均,有林木的样方频度较低。
表 2 各样地林分空间利用率
Table 2. Stand space utilization ratio of various sample plots
样地编号 水平空间
利用率/%垂直空间
利用率/%综合空间
利用率/%样地编号 水平空间
利用率/%垂直空间
利用率/%综合空间
利用率/%1 68.1 33.7 50.1 8 75.0 43.1 58.3 2 73.8 31.2 51.6 9 71.5 57.9 64.4 3 85.9 44.0 64.0 10 65.3 50.8 57.7 4 80.9 38.8 58.9 11 72.2 65.5 68.7 5 81.3 43.5 61.5 12 62.5 52.7 57.4 6 81.6 36.0 57.8 13 72.2 58.3 65.0 7 75.8 39.6 56.9 14 64.6 49.5 56.7 表 3 水平空间利用率与各因子相关性分析
Table 3. Correlation coefficients between horizontal space utilization ratio and each factor
样地林木株数 林分蓄积量 更新密度 林木聚集系数 林分平均胸径 0.811** −0.561* 0.855** 0.761** −0.787** 说明:*表示P<0.05;**表示P<0.01 空间利用率体现不同生长阶段林分中林木分布和数量比例合理性。本研究对象为中幼龄林,林分中有相当数量的更新幼树和小径木。林分空间利用率越高,并非生产力就越高,生产力高低与林木胸径、树高与株数有关,幼树对生产力作用甚微。
-
因立地条件、林木生物学特征、林分生长阶段等不同,林分垂直空间大小不一,成熟林垂直空间将会达到最大水平。各样地垂直空间利用率为31.2%~65.5%,平均达46.0%(表2)。由于各样地林分高度、不同高度林木株数不同,林分垂直空间大小和空间利用率也不同。林分垂直空间利用率与更新层高极显著正相关(P<0.01)(表4);与样地林木株数、更新密度、林木聚集系数显著负相关(P<0.05);与垂直层次数[9]、主林层高、演替层高、主林层与更新层高差、演替层与更新层高差、更新层株数极显著负相关(P<0.01)。随着垂直层次数增加,主林层和演替层同更新层间的高差变大,林分平均高度减小,全林木总高度趋于减小,垂直空间利用率降低;随着主林层高、更新密度或更新层株数增加,优势木总高度增加,而全林木总高度趋于减小,垂直空间利用率降低;同理,随着演替层高度增加,演替层与更新层高差变大,垂直空间利用率也降低;随着更新层高度增加,林分平均高度也增加,全林木总高度趋于增加,垂直空间利用率也增加;随着样地林木株数、更新层株数增加,林木聚集系数增加,各层与更新层间高差也增加,从而垂直空间利用率降低。
表 4 垂直空间利用率与各因子相关性分析
Table 4. Correlation coefficients between vertical space utilization ratio and each factor
样地林木株数 更新密度 林木聚集系数 垂直层次数 主林层高 演替层高 更新层高 主林层与更新层高差 演替层与更新层高差 更新层株数 −0.569* −0.612* −0.563* −0.822** −0.671** −0.741** 0.788** −0.874** −0.881** −0.719** 说明:*表示P<0.05;**表示P<0.01 林分优势木高度相近情况下,垂直层林木高度分布状态不同时,垂直空间利用率会不同。处在中幼龄阶段的林分空间利用率高低,与林木株数特别是与林分垂直层次中的各层林木株数有直接关系。在林分中有相当数量的更新幼树、主林层以下的林木,这些林木的数量比例对林分垂直空间利用率的高低有直接影响。优化林分结构时,如何合理控制林分垂直各层次林木株数以及各层同更新层间的高差是关键技术问题。
-
为了综合评价林分空间利用水平,经用熵权法计算,各样地林分综合空间利用率为50.1%~68.7%,平均59.2%(表2)。各样地以林分综合空间利用率高低的排序与以水平空间利用率和垂直空间利用率高低的排序并非一致。说明影响综合空间利用率的因素是综合性的。综合空间利用率与林分密度、主林层株数显著正相关(P<0.05)(表5);与主林层高、主林层与更新层高差极显著负相关(P<0.01);与垂直层次数、潜替层高显著负相关(P<0.05)。表明林分综合空间利用率受水平和垂直结构综合因子影响,主要体现在林木株数、垂直层高、各林层与更新层间高差等方面。因此在林分密度合理情况下,垂直层出现“断层”将会降低林分综合空间利用率。
表 5 综合空间利用率与各因子相关性分析
Table 5. Correlation coefficients between stand space utilization ratio and each factor
林分密度 垂直层次数 主林层高 演替层高 主林层与更新层高差 主林层株数 0.591* −0.633* −0.718** −0.651* −0.664** 0.591* 说明:*表示P<0.05;**表示P<0.01 -
为确定影响空间利用率主要因子,对空间利用率与其显著相关的因子做了逐步回归分析(表6)。影响水平空间利用率、垂直空间利用率、综合空间利用率的主要因子分别为更新密度,演替层与更新层高差,主林层高、林分密度、演替层高。确保林分不同生长阶段的自然更新能力[19-20]和生境异质性,使林分密度和年龄结构更趋优化,可提高林分水平空间利用率。随着林分生长和演替变化,林木高度、各层林木数量和高度逐渐被调整,垂直空间利用率也发生变化。因此,依据林分演替规律,调控演替层和更新层等在林分垂直层次中最“活跃”的部分,确保在不同生长阶段的林木高度呈阶梯式分布,形成复层林,从而提高林分垂直空间利用率。林分综合空间利用率是水平空间和垂直空间的综合体现,其影响机理较复杂,进入方程的因子数量明显增多(表6),先后将主林层高、林分密度和演替层高等3个因子引入了方程。说明林层高度和林木株数是影响综合空间利用率的关键因子。通过合理保持主林层和演替层同更新层的高差,使各层林木株数呈阶梯式分布,合理保持林分密度,从而可提高林分综合空间利用率。
表 6 林分空间利用率(Y)与影响因子(X)的回归分析
Table 6. Stepwise regression analysis of stand space utilization ratio (Y) and influence factors (X)
项目 逐步回归模型 R2 df 显著性 水平空间利用率 Y= 66.427 83+0.003 98X1 0.732 13 0.000 垂直空间利用率 Y=65.032 49−4.582 53X2 0.777 13 0.000 综合空间利用率 Y=77.416 47−1.014 22X3+ 0.005 61X4−2.560 84X5 0.912 13 0.000 说明:X1为更新密度;X2为演替层与更新层高差;X3为主林层高;X4为林分密度;X5为演替层高 -
林分生长是填充林分空间的过程,也是林分空间大小和利用率动态变化的过程。提高林分空间利用率是在林分不同生长阶段使空间利用率最大化,林分空间能够可持续利用、循环利用的问题。研究认为调控林分空间利用率是优化林分结构、提高林分生产力、强化林分功能的重要技术措施,属于森林抚育经营范畴。在越来越重视林分结构和功能情况下,仅围绕目标树、保留木[21]提出抚育经营方案,可能有些片面性,将影响森林整体功能效益。依据林分空间利用情况,以提高林分空间利用率为目标,设计林分整体结构优化方案,可能更适合过伐林的抚育经营。
本研究计算林分空间利用率时仅考虑了乔木层,未考虑灌木和草本层,对完整垂直结构的林分空间利用规律有待深入研究。在计算公式中未考虑冠幅[14]、胸高断面积及郁闭度[22]等指标。天然林冠幅重叠率较高,若用冠幅指标测算林分空间利用率必然会影响其准确性。胸高断面积和郁闭度指标能够体现林木所占面积,但不能体现林木位置关系和分布格局,无法更好地揭示林分水平空间利用规律。本研究水平空间利用率计算方法与传统林木个体营养空间利用率概念有较大区别,不仅考虑大树,也考虑了幼树对林分空间利用,避免了林木单株个体大小(胸径、胸高断面积、树冠大小)因素干扰。在结果中,水平空间利用率与林分蓄积量和平均胸径呈极显著负相关。这主要是测算空间利用率时以样方数量为计数单位,有林木样方数量和林木出现频度来体现空间利用规律,并非简单的以所占面积比例来计算,空间利用率的高低与该林分密度、林木分布格局及所占样方数量有关。垂直空间利用率是动态变化的,因演替阶段、林龄阶段(幼龄、中龄、近熟林、成熟林和过熟林)的不同而不尽相同。本研究垂直空间利用率计算与传统的划分林层来分析垂直空间结构特征有着较大区别。本研究垂直空间利用率的计算避免了单一考虑生产力,从天然林自然更新能力、林分演替、垂直结构特征方面分析垂直空间利用率,体现各层林木株数和分布高度的合理性问题。垂直空间利用率高低涉及到垂直空间结构合理性问题,与垂直层次、各层林木株数和林木高度有关。并非垂直层次数越多、层次结构越复杂就空间利用率越高,还得看层数合理性、各层高度、高差以及株数分配比例情况。垂直空间利用率最高应该出现在近熟林、成熟林或过熟林阶段,本研究林分处在中幼龄阶段,因此具有特殊性。林木在垂直空间中阶梯式分布,能够充分填充林分垂直空间,空间利用率自然就高。主林层越高,则林分垂直空间越大,但不代表空间利用率就高,毕竟主林层林木株数少,对全林木总高的增加作用甚微,主要取决于林木株数较多的演替层和更新层高度。垂直空间利用率低,说明尽管层次数多、结构复杂,但各层高度、林木株数分配比例不合理。例如,主林层林木株数偏少,演替层或者更新层较低且林木株数过多等等。
本研究采用有林木的样方数和树高表述林分空间利用率,相对简单而便于操作,采用的林分空间利用率计算指标并非完全是衡量生产力评判指标。测算的垂直空间利用率普遍低于水平空间利用率,可见林木对垂直空间利用不足[22],这除了与人为采伐干扰有关,还与目前林分全林木高度离达到优势木高度还有较大差距(存在多代林)有关。说明目前的林分空间利用率有较大提高空间。林木在垂直层呈阶梯式分布,而且各层林木株数比例和高差合理,采伐第一层林木后较短的间隔期内能够被填充,是保持较高空间利用率的关键所在。尽管本研究初步测算了林分空间利用率,但未做对照处理(必须是未受干扰过的原始林),还因研究地点、样地数量、缺乏林分空间利用率评价指标和标准等因素的限制,难以客观评价林分空间利用情况,有待进一步丰富理论,改进技术方法,扩大研究范围,从而证实研究结果的适宜性。本研究空间利用率计算方法、指标以及公式主要依据天然林结构特征所提出的方法,适用中幼龄天然林空间利用率估算。对于近熟林、成熟林和过熟林以及人工林的林分空间利用率计算需要进一步研究探讨。曹小玉等[22]利用林层指数、林分空间结构评价指数来评价杉木Cunninghamia lanceolata人工林林分空间结构,但目前仍然缺乏对天然林林分空间结构的评价技术方法,这是下一步研究的重点。另外,本研究对象为过伐林,受过人为干扰,目前空间利用率现状是受干扰后所形成的结果。至于人为干扰因素对林分空间利用率的影响及其两者关系有待于进一步研究。
-
本研究林分空间利用率计算指标主要体现林木分布格局、林分演替、更新能力以及在水平和垂直层面个体大小不同的林木(大树、更新幼树)分布合理性及合理数量分配比例。其计算出的空间利用率可为调控林分演替、优化林分结构提供技术参考。通过调控林分空间利用率,修复天然林因人为干扰严重导致的林分结构“过度”自然状态,使结构更趋优化,提高营养空间的利用率,有效填充林分空间。本研究初步提出了林分空间利用率基本内涵、计算方法和公式,分析了大兴安岭过伐林林分空间利用规律,揭示了影响因子,可为过伐林结构优化、抚育经营提供技术参考。
经计算,林分水平空间利用率、垂直空间利用率、综合空间利用率分别为62.5%~85.9%、31.2%~65.5%、50.1%~68.7%,平均水平分别为73.6%、46.0%、59.2%。影响林分空间利用率的因子较多。其中林木聚集系数、样地林木株数、更新密度、林分平均胸径和林分蓄积量与水平空间利用率显著相关,其中更新密度是主要影响因子;垂直层次数、主林层高、演替层高、更新层高、主林层与更新层高差、演替层与更新层高差、更新层株数、林木聚集系数、更新密度、样地林木株数与垂直空间利用率显著相关,其中演替层与更新层高差是主要影响因子;林分密度、垂直层次数、主林层高、演替层高、主林层与更新层高差、主林层株数等与林分综合空间利用率显著相关,其中主林层高、林分密度、演替层高是主要影响因子。可通过调控上述因子来实现提高林分空间利用率和优化林分结构的目标。需要采取兼顾水平结构和垂直结构多种因素的立体技术措施,在林分不同生长阶段合理调控林分密度,确保林分自然更新能力,合理调整林分各层次林木株数和高度分布,形成阶梯式分布状态,使林分空间得到充分利用。
Characteristics and impact factors of space utilization of young and middle-aged natural Larix gmelinii forests
-
摘要:
目的 以大兴安岭过伐林为研究对象,界定林分空间利用,提出林分空间利用率计算方法,从林分水平空间、垂直空间、综合空间利用率3个方面分析天然林空间利用规律。 方法 利用14块样地数据,应用相关分析和逐步回归分析方法揭示影响林分空间利用率的主要因子。 结果 14块样地林分水平空间利用率、垂直空间利用率和综合空间利用率分别为62.5%~85.9%、31.2%~65.5%和50.1%~68.7%;平均水平分别达73.6%、46.0%和59.2%;随着林分生长,林木数量、个体大小、分布格局不断被调整,林分水平空间利用率发生变化;林分水平空间利用率与样地林木株数、更新密度和林木聚集系数极显著正相关(P<0.01),与林分蓄积量显著负相关(P<0.05),与林分平均胸径极显著负相关(P<0.01);不同生长阶段的林分垂直空间大小不一,随着林分生长,林分高度、各层林木株数和高度逐渐被调整,林分垂直空间大小和空间利用率发生动态变化;林分垂直空间利用率与更新层高极显著正相关(P<0.01),与样地林木株数、更新密度、林木聚集系数显著负相关(P<0.05),与垂直层次数、主林层高、演替层高、主林层与更新层高差、演替层与更新层高差、更新层株数极显著负相关(P<0.01);林分综合空间利用率受水平和垂直结构两方面因素影响,与林分密度、主林层株数显著正相关(P<0.05),与垂直层次数、演替层高显著负相关(P<0.05),与主林层高、主林层与更新层高差极显著负相关(P<0.01)。 结论 随着林分生长,林分空间大小和空间利用率发生动态变化。影响林分水平空间、垂直空间、综合空间利用率主要因子分别为更新密度、演替层与更新层高差、主林层高、林分密度和演替层高。提高林分空间利用率,优化林分结构,需要采取兼顾水平结构和垂直结构多种因子的立体技术措施。在林分不同生长阶段合理调控林分密度,确保林分自然更新能力,合理设置林分各层次林木株数和高度分布,形成阶梯式分布状态,使林分空间得到充分利用。表6参22 Abstract:Objective Taking the over-cutting forest in Daxingan mountains as the research object, this study aims to define space utilization of forest, propose the calculation method for space utilization ratio and analyze space utilization law of natural stands from three aspects: horizontal space, vertical space and comprehensive space utilization of stands. Method Using the data of 14 sample plots, correlation analysis and stepwise regression analysis were applied to reveal the main factors influencing space utilization ratio of forest stands to provide theoretical basis for the structure optimization of natural stand, its tending and management. Result (1) The utilization ratios of horizontal space, vertical space and comprehensive space in 14 plots were 62.5%−85.9%, 31.2%−65.5% and 50.1%−68.7%, respectively. The average levels were 73.6%, 46.0% and 59.2%, respectively. (2) With the growth of forest stands, the tree number, individual size and distribution pattern were constantly adjusted, and utilization ratio of horizontal space also changed. The horizontal space utilization ratio of stands was significantly positively correlated with tree number, renewal density as well as tree clustering coefficient (P<0.01), negatively correlated with stand stock (P<0.05) and stand mean breast-height diameter (P<0.01). (3) The vertical space size of stands at different growth stages varied. When stand growth, stand height, tree number and height of each layer were adjusted gradually, the vertical space size and space utilization ratio of forest stands changed dynamically. The utilization ratio of vertical space of stands had extremely significant positive correlation with height of renewal layer (P<0.01), significant negative correlation with tree number, renewal density and forest accumulation coefficient (P<0.05), and extremely significant negative correlation with the number of vertical layer, height of main forest, height of succession, height difference between main forest and renewal layer, height difference between succession layer and renewal layer, and number of plants in renewal layer (P<0.01). (4) The comprehensive space utilization ratio of stands was affected by both horizontal and vertical structure factors, which had significant positive correlation with stand density and plant number of main forest layer (P<0.05), significant negative correlation with vertical layer number and succession height (P<0.05), and extremely significant negative correlation with height of main forest layer, height difference between main forest layer and renewal layer (P<0.01). Conclusion Space size and space utilization ratio change dynamically with the growth of forest stands. The main factors affecting utilization of horizontal space, vertical space, and comprehensive space of stands include renewal density, height difference between succession layer and renewal layer, main forest height, stand density and succession height. To improve the utilization ratio of stand space and optimize stand structure, it is necessary to take three-dimensional technical measures that take into account such factors as horizontal and vertical structures. It’s also important to reasonably regulate and control the forest stand density in different growth stages, ensure natural renewal capability of forest stands, and reasonably set the tree number and height distribution at all levels of stands to form a stepped distribution state and make full use of stand space. [Ch, 6 tab. 22 ref.] -
随着环境保护要求的不断提高,环保型木材防腐剂越来越受到重视,此类防腐剂多以高效低毒的有机农药为主成分,配合其他助剂制备成有机型或水基型防腐剂[1-2]。三唑类杀菌剂,如丙环唑、戊唑醇、环丙唑醇、氟环唑和苯醚甲环唑等,既可以单独使用,又可以与铜制剂复配[3-4],是目前常用的木材防腐剂;这些三唑类杀菌剂杀菌谱不尽相同,作用机制也有所差异,应用较广泛的是丙环唑和戊唑醇[5-6]。常见的木材防霉剂有异噻唑啉酮类如卡松、1,2-苯并异噻唑-3-酮(BIT)、4,5-二氯-2-正辛基-3-异噻唑啉酮(DCOI)等,有机碘类如碘丙炔醇丁基氨甲酸酯(IPBC),三唑类等[7],杀菌谱也不尽相同;常用的仓储水果防霉剂如溴菌腈和抑霉唑[8-9],防霉活性较高,但较少应用于木材防霉。菊酯类杀虫剂是常见的防治白蚁的药剂,具有用量少、成本较低、废弃物易回收、环境相对友好等优点;高效氯氟氰菊酯在菊酯类杀虫剂中活性较高、稳定性较强、耐雨水冲刷性能较好。因含有大量羟基等亲水基团[10],木材变色、发霉、腐朽、变形等问题频发,品质降低[11-13],常用亚麻油、桐油、豆油、核桃油等含甘油三脂肪酸酯的植物油[14]和沥青、石蜡等含长链烷烃的矿物油用作木材防水;现代工业多将植物油与动植物蜡等复配成木蜡油[15],用作木材的表面防水处理剂。如马红霞等[16]使用56号石蜡制备木材防水剂,当石蜡质量浓度为5%时,防水效率可达54%;由此可见,石蜡可作为良好的木材防水剂。液体石蜡是经原油分馏得到的无色无味的液态烃类混合物,室温下为液态,用作防水剂时可省去加热融化环节,节约了能源和时间。木材在使用过程中需要多重保护,如防腐、防霉、防虫和防水等,存在工序繁琐、成本高昂等问题,为满足木材不同生物危害防治需要,本研究拟制备一种同时具有防腐、防霉、防虫和防水多项功能的水基型有机木材保护复合制剂,通过室内抑菌圈法筛选不同杀菌剂的抑菌活性,从中挑选活性较好、杀菌谱互补的防腐成分与防霉成分进行复配,并筛选两者的最佳配比;将其与杀虫成分和防水成分复配,制备成可以兑水自动乳化的乳油制剂。制备的复合制剂稳定性好,兼具防水、防腐、防霉、防白蚁等性能,同时处理工序简单,可达到常规生物危害防治要求的目的,为木材保护提供参考。
1. 材料与方法
1.1 试验材料
1.1.1 杀菌剂、杀虫剂和防水剂
杀菌剂包括氟环唑(FCZ)、戊唑醇(TEB)、丙环唑(PPZ)、苯醚甲环唑(DCZ)、碘丙炔醇丁基氨甲酸酯(IPBC)、溴菌腈(BMN)、抑霉唑(IMZ)。杀虫剂为高效氯氟氰菊酯(CLT)。防水剂为液体石蜡(化妆品级)。以上试剂购自上海麦克林生化科技有限公司。
1.1.2 测试菌种
木材腐朽菌有褐腐菌密粘褶菌Gloeophyllun trabeum、白腐菌彩绒革盖菌Coriolus versicolor。木材混合霉菌有黑曲霉Aspergillus sp.、木霉Trichoderma sp.、青霉Penicillium sp.。木材变色菌可可球二孢Botryodiplodia theobromae。所有菌株均为实验室保存的生物测试标准用菌株。
测试树种为辐射松Pinus radiata。
1.2 试验方法
预实验通过满细胞法确定辐射松边材吸液(水)量为750~850 kg·m−3;根据三唑类药剂防腐有效载药量(200.0~400.0 g·m−3)[17],换算药剂质量浓度为150.0~300.0 mg·L−1,确定试验用药质量浓度为200.0 mg·L−1。
1.2.1 防腐、防霉成分及配比筛选
通过室内抑菌效果普筛挑选出效果较好且杀菌谱互补的杀菌剂作为防腐和防霉成分。将挑选出的防腐和防霉成分按照不同配比混合进行复配,再次测试室内抑菌效果,确定效果较好的复配比例作为药剂配伍。
1.2.2 室内抑菌圈测试
参照《中华人民共和国药典》的“抗生素微生物检定法”测试抑菌圈。将5种防腐剂(FCZ、TEB、PPZ、DCZ、IPBC)统一配制成质量分数为5.00%的乳油,分别加水稀释到200.0 mg·L−1;防霉剂IMZ配制为400.0 mg·L−1,BMN分别配制为400.0、600.0和800.0 mg·L−1。在各涂满真菌孢子液的马铃薯葡萄糖琼脂(PDA)培养基中,分别摆放4个装有0.3 mL待测药液的牛津杯。随着药液的扩散,培养基上的真菌菌丝会受到抑制形成抑菌圈,抑菌圈直径越大,说明药剂抑菌效果越好。
1.2.3 制剂性能测试
乳液稳定性测试。参照GB/T 1603—2001《农药乳液稳定性测定方法》,在100.0 mL室温标准硬水中慢慢加入不同体积样品,边加入边搅拌,加完后继续搅拌30 s;然后在30 ℃恒温水浴中静置1 h,观察不同稀释倍数下样品乳状液分离情况。无浮油、沉淀或沉油则视为乳液稳定性合格。
防水性能测试。将含液体石蜡质量分数为40.00%的复合制剂分别兑水,稀释液体石蜡质量分数为2.00%、4.00%、8.00%,满细胞法处理试块。辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,室温平衡21 d后称质量,然后蒸馏水浸泡30 min,取出试块,称质量,参照GB/T 1934.1—2009《木材吸水性测定方法》计算吸水率;测量弦向尺寸变化,参照GB/T 29901—2013《木材防水剂的防水效率测试方法》计算防水效率。
室内防腐性能测试。参照GB/T 13942.1—2009《木材耐久性能第1部分:天然耐腐性实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍备用,辐射松边材尺寸为20 mm×20 mm×10 mm,每组6块试块,经真空−0.09 MPa处理10 min,常压浸渍10 min,参照标准测试防腐性能。试块质量损失率<10%,属于Ⅰ级强耐腐;质量损失率为11%~24%,属于Ⅱ级耐腐;质量损失率为25%~44%,属于Ⅲ级稍耐腐;质量损失率>45%,属于Ⅳ级不耐腐。
室内防霉性能测试。参照GB/T 18261—2013《防霉剂对木材霉菌及变色菌防治效力的试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,参照标准方法处理试块,测试防霉性能。试块表面无菌丝、霉点时,定义侵染值为0;试块表面感染面积<1/4,定义为1;试块表面感染面积1/4~1/2,定义为2;试块表面感染面积1/2~3/4,定义为3;试块表面感染面积>3/4,定义为4。
室内防白蚁测试。参照GB/T 18260—2015《木材防腐剂对白蚁毒效实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为20 mm×20 mm×10 mm,每组5块试块,参照标准方法处理试块,测试室内防白蚁性能。试块蚁蛀程度为完好无损,定义试样完好等级为10;微痕蛀蚀,定义为9.5;轻微蛀蚀,截面面积<3%的蛀蚀,定义为9;中等蛀蚀,截面面积3%~10%的蛀蚀,定义为8;中等蛀蚀,截面面积10%~30%的蛀蚀,定义为7;严重蛀蚀,截面面积30%~50%的蛀蚀,定义为6;非常严重蛀蚀,截面面积50%~75%的蛀蚀,定义为4;试块几乎完全被蛀毁,定义完好等级为0。
2. 结果与分析
2.1 有效成分筛选
从表1可以看出:5种防腐剂(FCZ、TEB、PPZ、DCZ和 IPBC)对木材腐朽菌(彩绒革盖菌和密粘褶菌)均具有较好的抑制效果,但FCZ、TEB和PPZ对变色菌(可可球二孢)和混合霉菌几乎没有抑制作用,只有DCZ对可可球二孢有抑制效果,因此优选DCZ作为防腐成分。IPBC和IMZ对所测试菌种均有较好的抑制效果,BMN和IMZ虽然对混合霉菌和变色菌有抑制作用,但抑菌圈均小于IPBC。因此,优先IPBC作为防霉成分。
表 1 各杀菌剂的室内抑菌效果Table 1 Result of inhibition zones test by bactericide杀菌剂 质量浓度/
(mg·L−1)抑菌圈大小/mm 彩绒革
盖菌密粘
褶菌可可球
二孢混合
霉菌FCZ 200.0 >45.0 >45.0 0 0 TEB 200.0 >45.0 >45.0 0 0 PPZ 200.0 >45.0 >45.0 0 0 DCZ 200.0 >45.0 >45.0 11.4 0 IPBC 200.0 >45.0 >45.0 34.6 21.9 BMN 800.0 37.2 35.4 12.8 10.6 600.0 38.1 29.0 9.0 9.4 400.0 26.8 31.8 8.3 7.1 IMZ 400.0 39.2 41.6 26.9 12.7 将DCZ和IPBC按质量比1∶1、1∶3、3∶1的比例配制混合药剂,测试DCZ+IPBC复配药剂对腐朽菌和霉菌的抑制效果;将其他3种三唑类防腐药剂(FCZ、TEB和PPZ)与IPBC按照质量比1∶1配制复配药剂,作为对照测试抑菌效果。由表2可以看出:DCZ+IPBC复配药剂对木材腐朽菌、变色菌和混合霉菌的抑制效果较好,其中按照1∶1比例复配的药剂效果最高。相其他三唑类与IPBC的复配药剂,抑菌效果亦有所提高。由此确认防腐/防霉复配药剂,DCZ和IPBC按照1∶1进行配制。
表 2 不同三唑类药剂与IPBC复配的抑菌效果Table 2 Result of inhibition zones test by compounded of different preservatives组分 质量浓度/
(mg·L−1)抑菌圈大小/mm 彩绒革
盖菌密粘
褶菌可可球
二孢混合
霉菌DCZ 200.0 >45.0 >45.0 11.4 0 DCZ+IPBC 150.0+50.0 >45.0 >45.0 22.4 15.1 DCZ+IPBC 100.0+100.0 >45.0 >45.0 31.0 23.6 DCZ+IPBC 50.0+150.0 >45.0 >45.0 29.1 23.7 IPBC 200.0 >45.0 >45.0 30.6 21.9 FCZ+IPBC 100.0+100.0 >45.0 >45.0 25.7 21.8 PPZ+IPBC 100.0+100.0 >45.0 >45.0 25.8 22.5 TEB+IPBC 100.0+100.0 >45.0 >45.0 24.0 21.0 为探索CLT对白蚁的防治效果,设计含梯度载药量的辐射松边材室内抗白蚁效果测试,拟定辐射松边材载药量分别为5.0、10.0、15.0、20.0、30.0 g·m−3。由表3可知:试块中CLT载药量达10.9 g·m−3以上时,白蚁蛀蚀完好值>8.0,质量损失率<11%,而未添加药剂处理的对照木材,完好值仅4.6,质量损失率>40%。因此,设计的复合制剂中防虫成分的目标载药量为7.5~30.0 g·m−3。
表 3 不同CLT载药量木材的白蚁蛀蚀结果Table 3 Result of lab anti-termite test of cyhalothrin载药量/
(g·m−3)白蚁蛀蚀
完好值质量损
失率/%载药量/
(g·m−3)白蚁蛀蚀
完好值质量损
失率/%− 4.6 42.9±14.6 15.5 8.0 10.5±1.4 5.3 8.0 11.3±0.7 21.8 9.1 5.2±1.4 10.9 8.6 5.9±1.5 32.1 8.4 5.1±1.9 说明:−表示未添加药剂 综上,本研究设计制备了含苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯、液体石蜡等多种有效成分的木材保护复合制剂,通过调试乳化剂和助溶剂的用量和配比,最终配制出稳定、均相、透明、入水可自乳化的乳油制剂。制剂制备时按比例称取原药和乳化剂,加入助溶剂,充分溶解混匀后加入液体石蜡,搅拌均匀即可。测试使用的制剂为乳油,组成成分质量分数为0.20%苯醚甲环唑、0.20%碘丙炔醇丁基氨甲酸酯、0.02%高效氯氟氰菊酯和40.00%液体石蜡。
2.2 制剂性能测试
2.2.1 乳液稳定性测试
制剂兑水稀释250倍,制剂呈乳白色,初入水时呈乳白色团雾状,可自动扩散,摇匀后呈均匀的乳状液,静置1 h未见分层、析油和沉淀,稳定性可保持3~4 h;过夜后破乳,药液表面有大量浮油,颠倒摇匀后可恢复乳液状,不影响正常使用。
2.2.2 防水性能测试
参照标准方法用该制剂处理辐射松边材,经水浸泡30 min后测试试块的吸水率和防水效率。由表4可知:未添加药剂处理的木材,吸水率为54.7%;随着制剂中石蜡质量分数升高,木材试块中石蜡含量相应增加,试块吸水率依次降低,从43.5%下降到26.6%,木材防水效率则随之增强,从44.4%提升到了77.8%。
表 4 防水剂处理后试块的防水性能Table 4 Efficiency of waterproof稀释
倍数制剂中液体石
蜡质量分数/%试块中液体石
蜡含量/(kg·m−3)吸水
率/%防水效
率/%5 8 49.1 26.6±7.4 77.8±19.1 10 4 19.4 35.0±17.3 68.9±22.1 20 2 10.5 43.5±15.1 44.4±20.6 − 0 0 54.7±5.8 0 说明:−表示未添加药剂 2.2.3 室内耐腐性能测试
由表5可知:未处理木材受白腐菌侵染后质量损失率达75.7%,受褐腐菌侵染质量损失率为19.4%,而所有处理试块质量损失率均低于6%,达到强耐腐。制剂稀释20倍后处理试块,试块中DCZ和IPBC载药量超过71.1 g·m−3,试块质量损失率可达1%,达到Ⅰ级强耐腐。值得注意的是,稀释20倍的药液处理后,试块质量损失率低于稀释5倍的药液,原因是高质量浓度制剂处理后,试块内含有大量的液体石蜡,在长达3个月的试验期内,液体石蜡自动扩散到培养基,试块质量损失增加。但取样现场也发现:高质量浓度制剂处理的试块无腐朽菌菌丝附着生长,说明添加防水剂实际进一步提升了制剂的防腐性能。
表 5 制剂处理后试块的室内耐腐性能Table 5 Result of lab sand block test on sapwood P. radiate稀释
倍数彩绒革盖菌 密粘褶菌 试块DCZ+IPBC
载药量/(g·m−3)质量损
失率/%试块DCZ+IPBC
载药量/(g·m−3)质量损
失率/%5 311.2+311.2 5.5±0.6 320.6+320.6 3.6±0.3 10 150.9+150.9 2.7±0.2 139.0+139.0 3.4±0.4 20 71.2+71.2 0.6±0.1 71.1+71.1 1.0±0.2 − 0 75.7±4.3 0 19.4±2.1 说明:−表示未添加药剂 2.2.4 室内防霉性能测试
参照标准方法用该制剂处理辐射松边材,测试室内防霉效果。由表6可知:未处理木材的霉菌和变色菌侵染值为4,该制剂稀释5倍时,试块表面的DCZ和IPBC含量均达0.165 g·m−2,处理试块变色菌和混合霉菌侵染值均为0,防治效果优良。在实际使用中可根据木材树种的天然耐腐性及所处环境适当增减制剂的用量,以达到理想的防霉效果。
表 6 室内防霉测试结果Table 6 Result of lab mildew proof test稀释
倍数可可球二孢 混合霉菌 DCZ+IPBC载药
量/(g·m−2)侵染值 DCZ+IPBC载药
量/(g·m−2)侵染值 5 0.165+0.165 0 0.202+0.202 0 10 0.106+0.106 1.5 0.148+0.148 0.5 20 0.045+0.045 4.0 0.048+0.048 3.3 − 0 4.0 0 4.0 说明:−表示未添加药剂 2.2.5 室内抗白蚁测试
由表7可知:不同稀释倍数的制剂处理后,试块质量损失率均<3%,而未添加抗虫剂的对照试块,质量损失率为42.9%;制剂稀释5倍时,试块载药量达29.1 g·m−3,试块白蚁蛀蚀完好值为9.6;稀释20倍时,试块载药量为7.6 g·m−3, 试块白蚁蛀蚀完好值为8.9,而未处理木材的白蚁蛀蚀后完好值仅为4.7,质量损失率达42.9%,显示该制剂的防治白蚁效果优良。结合表3可知:相比单用高效氯氟氰菊酯时,复合制剂处理材在同等载药量下对白蚁的防治效果要好得多;当高效氯氟氰菊酯质量浓度为15.0、30.0 g·m−3时,该复合制剂防治白蚁的效果远远优于单剂,由此可知其他组分的加入起到了增效作用。
表 7 室内抗白蚁测试结果Table 7 Result of lab anti-termite test稀释
倍数木材中高效氯氟氰菊酯
载药量/(g·m−3)质量损
失率/%白蚁蛀蚀
完好值5 29.1 2.8±0.5 9.6 10 14.7 2.6±0.3 9.2 20 7.6 2.5±0.7 8.9 − 0 42.9±14.6 4.7 说明:−表示未添加药剂 3. 讨论
针对不同的木材败坏防治需求,本研究制备了一种具有防腐、防霉、防虫、防水多功能的复合制剂,类型为乳油,有效成分为苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯和液体石蜡。
该制剂兑水稀释后呈乳液状,稳定性可保持3~4 h,符合GB/T 1603—2001 《农药乳液稳定性测定方法》的规定。石蜡作为常见的防水剂被广泛应用,多数所使用的时熔点较高的固体石蜡[18],而该制剂以液体石蜡为防水组分,优点是室温下即为液体,无需加热融化,缺点是液体石蜡密度较小,相较常规药剂,兑水稀释后稳定性差,药液兑水约 4 h 后就会分层破乳;不过,稍微搅拌即可恢复乳状,基本不影响正常使用。该制剂防水性能较好,然而应注意的是防水剂含量很大,大剂量液体石蜡的使用,存在一定的消防隐患,后期应配合表面阻燃处理。石蜡基防水剂的主要防水机制是通过石蜡的疏水作用[19],石蜡的使用同时增强了木材的尺寸稳定性[20],石蜡分子量较大,不易进入木材内部,因此需要将其乳化成细小的乳状液,然而,乳化剂的过量使用可能会有石蜡的疏水性降低的风险,需要在以后的开发中引起重视。结合室内耐腐试验菌丝生长状况可以发现:防水剂液体石蜡的加入,可以明显增加药剂的防腐性能,而木材中石蜡的含量很高,当木材与环境中土壤或者水体接触时,石蜡会从木材中自由扩散到环境中,可能会增加药剂流失的风险。
室内防霉测试结果来看,将制剂稀释 5 倍使用,即辐射松试块苯醚甲环唑和碘丙炔醇丁基氨甲酸酯载药量均为 0.165 g·m −2 时,混合霉菌的生长才能被完全抑制,这与李晓文等[21]的IPBC防霉效果结论一致。室内防霉测试所选的温湿度条件适合霉菌生长,且霉菌的孢子液人为接种,因此,通常可以通过室内防霉测试的药剂,在实际生产中的防霉效果也会很好。
室内防白蚁测试结果可知:制剂稀释 20 倍后,试块受白蚁蛀蚀程度仍较低,质量损失率较小,防蚁性能优异。同时,比较单独使用高效氯氟氰菊酯和添加防水剂后的防白蚁效果可以看出:防水剂的添加明显增加了药剂的防白蚁效果。分析原因可能是石蜡是一种化石能源,白蚁不喜食。
4. 结论
为满足木材不同生物危害防治需要,本研究制备出一种含石蜡水基型有机多功能木材防腐剂,可以一次处理基本满足木材常规保护的要求。该木材保护复合制剂同时具有防腐、防霉、防虫、防水多功能,剂型为乳油,质量分数分别为0.20%的苯醚甲环唑和碘丙炔醇丁基氨甲酸酯、0.02%的高效氯氟氰菊酯和40.00%的液体石蜡。
当环境中生物危害较轻时,可将该复合制剂稀释20倍使用,当生物危害较重时,可将复合制剂稀释5倍甚至直接使用。将制剂稀释5到10倍处理木材,即木材中液体石蜡为25.0~50.0 kg·m−3,苯醚甲环唑和碘丙炔醇丁基氨甲酸酯为150.0~300.0 g·m−3,高效氯氟氰菊酯载药量为15.0~30.0 g·m−3,可满足多大多数生物危害的防治需求。
-
表 1 样地概况
Table 1. Survey of sample plots
样地编号 样地面积/(m×m) 林分密度/(株·hm−2) 树种组成 平均胸径/cm 平均树高/m 1 30×30 1 433 5落叶松3白桦2山杨 13.6±6.6 13.2±4.2 2 40×40 1 019 9白桦1落叶松+山杨 10.8±3.9 9.9±2.6 3 40×40 1 994 6白桦4落叶松+山杨 8.1±2.7 9.4±1.9 4 40×40 2 238 5落叶松5白桦−山杨 10.4±4.1 10.9±3.0 5 20×30 1 983 5白桦5落叶松+山杨 9.1±3.9 10.5±1.9 6 40×40 2 775 7落叶松3白桦+山杨 9.6±3.5 10.7±2.9 7 40×40 1 750 6落叶松3白桦1山杨 12.0±4.6 10.9±2.9 8 40×40 1 425 7落叶松3白桦+山杨 12.8±4.2 12.1±2.4 9 30×30 2 556 7白桦3落叶松−山杨 9.4±3.1 10.0±1.5 10 30×30 1 367 8落叶松2白桦 12.2±3.4 10.3±2.0 11 30×30 2 067 8落叶松1白桦1山杨 11.8±4.7 10.5±2.1 12 30×30 1 722 7落叶松3白桦−山杨 12.7±5.7 11.1±2.8 13 30×30 2 233 7落叶松3白桦 11.4±4.6 10.2±2.2 14 30×40 892 9落叶松1白桦−山杨 15.5±7.1 10.0±2.6 说明:树种组成式中,数字表示树种的数量比,“+”表示该树种蓄积量占林分总蓄积量2%~5%;“−”表示该树种蓄积量少于林 分总蓄积量的2% 表 2 各样地林分空间利用率
Table 2. Stand space utilization ratio of various sample plots
样地编号 水平空间
利用率/%垂直空间
利用率/%综合空间
利用率/%样地编号 水平空间
利用率/%垂直空间
利用率/%综合空间
利用率/%1 68.1 33.7 50.1 8 75.0 43.1 58.3 2 73.8 31.2 51.6 9 71.5 57.9 64.4 3 85.9 44.0 64.0 10 65.3 50.8 57.7 4 80.9 38.8 58.9 11 72.2 65.5 68.7 5 81.3 43.5 61.5 12 62.5 52.7 57.4 6 81.6 36.0 57.8 13 72.2 58.3 65.0 7 75.8 39.6 56.9 14 64.6 49.5 56.7 表 3 水平空间利用率与各因子相关性分析
Table 3. Correlation coefficients between horizontal space utilization ratio and each factor
样地林木株数 林分蓄积量 更新密度 林木聚集系数 林分平均胸径 0.811** −0.561* 0.855** 0.761** −0.787** 说明:*表示P<0.05;**表示P<0.01 表 4 垂直空间利用率与各因子相关性分析
Table 4. Correlation coefficients between vertical space utilization ratio and each factor
样地林木株数 更新密度 林木聚集系数 垂直层次数 主林层高 演替层高 更新层高 主林层与更新层高差 演替层与更新层高差 更新层株数 −0.569* −0.612* −0.563* −0.822** −0.671** −0.741** 0.788** −0.874** −0.881** −0.719** 说明:*表示P<0.05;**表示P<0.01 表 5 综合空间利用率与各因子相关性分析
Table 5. Correlation coefficients between stand space utilization ratio and each factor
林分密度 垂直层次数 主林层高 演替层高 主林层与更新层高差 主林层株数 0.591* −0.633* −0.718** −0.651* −0.664** 0.591* 说明:*表示P<0.05;**表示P<0.01 表 6 林分空间利用率(Y)与影响因子(X)的回归分析
Table 6. Stepwise regression analysis of stand space utilization ratio (Y) and influence factors (X)
项目 逐步回归模型 R2 df 显著性 水平空间利用率 Y= 66.427 83+0.003 98X1 0.732 13 0.000 垂直空间利用率 Y=65.032 49−4.582 53X2 0.777 13 0.000 综合空间利用率 Y=77.416 47−1.014 22X3+ 0.005 61X4−2.560 84X5 0.912 13 0.000 说明:X1为更新密度;X2为演替层与更新层高差;X3为主林层高;X4为林分密度;X5为演替层高 -
[1] 曹小玉,李际平. 林分空间结构指标研究进展[J]. 林业资源管理, 2016(4): 65 − 73. CAO Xiaoyu, LI Jiping. Research progress on indicators of the stand spatial structure [J]. For Resour Manage, 2016(4): 65 − 73. [2] 玉宝,乌吉斯古楞,王百田,等. 兴安落叶松天然林不同林分结构林木水平分布格局特征研究[J]. 林业科学研究, 2010, 23(1): 83 − 88. YU Bao, WU Jisiguleng, WANG Baitian, et al. Study on the distribution pattern characteristics of different stand structures in Larix gmelinii natural forest [J]. For Res, 2010, 23(1): 83 − 88. [3] 陈辉荣, 周新年,蔡瑞添,等. 天然林不同强度择伐后林分空间结构变化动态[J]. 植物科学学报, 2012, 30(3): 230 − 237. CHEN Huirong, ZHOU Xinnian, CAI Ruitian, et al. Tracking analysis of forest spatial structure change after different selective cutting intensities in a natural forest [J]. Plant Sci J, 2012, 30(3): 230 − 237. [4] 沈林,杨华,亢新刚,等. 择伐强度对天然云冷杉林空间分布格局的影响[J]. 中南林业科技大学学报, 2013, 33(1): 68 − 74. SHEN Lin, YANG Hua, KANG Xingang, et al. Effects of selective cutting intensity on spatial distribution pattern of natural spruce-fir forests [J]. J Cent South Univ For Technol, 2013, 33(1): 68 − 74. [5] 马映栋,张宋智,王鹏,等. 不同采伐强度对小陇山辽东栎天然林空间结构的影响[J]. 西北林学院学报, 2014, 29(6): 164 − 170. MA Yingdong, ZHANG Songzhi, WANG Peng, et al. Effect of different cutting intensities on spatial structure of Quercus wutaishanica natural secondary forests in Xiaolong Mountains [J]. J Northwest For Univ, 2014, 29(6): 164 − 170. [6] 董灵波, 刘兆刚,马妍,等. 天然林林分空间结构综合指数的研究[J]. 北京林业大学学报, 2013, 35(1): 16 − 22. DONG Lingbo, LIU Zhaogang, MA Yan, et al. A new composite index of stand spatial structure for natural forest [J]. J Beijing For Univ, 2013, 35(1): 16 − 22. [7] 董灵波,刘兆刚,李凤日,等. 大兴安岭主要森林类型林分空间结构及最优树种组成[J]. 林业科学研究, 2014, 27(6): 734 − 738. DONG Lingbo, LIU Zhaogang, LI Fengri, et al. Quantitative analysis of forest spatial structure and optimal species composition for the main forest types in Daxing’ anling, northeast China [J]. For Res, 2014, 27(6): 734 − 738. [8] 徐海,惠刚盈,胡艳波,等. 天然红松阔叶林不同径阶林木的空间分布特征分析[J]. 林业科学研究, 2006, 19(6): 687 − 691. XU Hai, HUI Gangying, HU Yanbo, et al. Analysis of spatial distribution characteristics of trees with different diameter classes in natural Korean pine broad leaved forest [J]. For Res, 2006, 19(6): 687 − 691. [9] 玉宝,张秋良,王立明. 中幼龄兴安落叶松过伐林垂直结构综合特征[J]. 林业科学, 2015, 51(1): 132 − 139. YU Bao, ZHANG Qiuliang, WANG Liming. Comprehensive characteristics of the vertical structure middle young over cutting forest in Larix gmelinii [J]. Sci Silv Sin, 2015, 51(1): 132 − 139. [10] 方精云,李意德,朱彪,等. 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J]. 生物多样性, 2003, 12(1): 29 − 43. FANG Jingyun, LI Yide, ZHU Biao, et al. Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China [J]. Biodiversity Sci, 2003, 12(1): 29 − 43. [11] 安慧君,惠刚盈,郑小贤,等. 不同发育阶段阔叶红松林空间结构的初步研究[J]. 内蒙古大学学报(自然科学版), 2005, 36(6): 713 − 718. AN Huijun, HUI Gangying, ZHENG Xiaoxian, et al. Study on the spatial structure of broad-leaved Korean pine forest in the different growth stage [J]. Acta Sci Nat Univ Nei Mongol, 2005, 36(6): 713 − 718. [12] 吕勇,臧颢,万献军,等. 基于林层指数的青椆混交林林层结构研究[J]. 林业资源管理, 2012(3): 81 − 83. LÜ Yong, ZANG Hao, WAN Xianjun, et al. Storey structure study of Cyclobalanopsis myrsinaefolia mixed stand based on storey index [J]. For Resour Manage, 2012(3): 81 − 83. [13] 刘世荣,马姜明,缪宁. 中国天然林保护、生态恢复与可持续经营的理论与技术[J]. 生态学报, 2015, 35(1): 212 − 218. LIU Shirong, MA Jiangming, MIAO Ning. Achievements is natural forest protection, ecological restoration, and sustainable management in china [J]. Acta Ecol Sin, 2015, 35(1): 212 − 218. [14] 贾亚运,何宗明,周丽丽,等. 造林密度对杉木幼林生长及空间利用的影响[J]. 生态学杂志, 2016, 35(5): 1177 − 1181. JIA Yayun, HE Zongming, ZHOU Lili, et al. Effects of planting densities on the growth and space utilization of young Cunninghamia lanceolata plantation [J]. Chin J Ecol, 2016, 35(5): 1177 − 1181. [15] 张成程,李凤日,赵颖慧. 落叶松人工林空间结构优化的探讨[J]. 植物研究, 2008, 28(5): 632 − 636. ZHANG Chengcheng, LI Fengri, ZHAO Yinghui. Discussion on opti mization of forest spatial structure of Larix olgensis plantation [J]. Bull Bot Res, 2008, 28(5): 632 − 636. [16] 欧建德,吴志庄,康永武. 峦大杉与杉木人工林的生长形质、林分分化和空间利用比较[J]. 东北林业大学学报, 2018, 46(7): 7 − 11. OU Jiande, WU Zhizhuang, KANG Yongwu. Comparison of growth, stand differentiation, form quality and space utilization of Cunninghamia konishii and C. lanceolata plantation [J]. J Northeast For Univ, 2018, 46(7): 7 − 11. [17] 马履一,王希群. 生长空间竞争指数及其在油松、侧柏种内竞争中的应用研究[J]. 生态科学, 2006, 25(5): 385 − 389. MA Lüyi, WANG Xiqun. Growth space competition index(GSCI) and application in the individual intraspecies competition of Pinus tabulaeformis and Platycladus orientalis forests [J]. Ecol Sci, 2006, 25(5): 385 − 389. [18] 邱陆旸,张丽萍, 陆芳春,等. 基于熵权法的林下土壤抗蚀性评价及影响因素分析[J]. 水土保持学报, 2016, 30(4): 74 − 79. QIU Luyang, ZHANG Liping, LU Fangchun, et al. Evaluation of forest soil anti-erodibility and influencing factors analysis based on entropy method [J]. J Soil Water Conserv, 2016, 30(4): 74 − 79. [19] MOKTAN M R, GRATZER G, RICHARDS W H, et al. Regeneration of mixed conifer forests under group tree selection harvest management in western Bhutan Himalayas [J]. For Ecol Manage, 2009, 257(10): 2121 − 2132. [20] 玉宝, 张秋良,王立明. 兴安落叶松中幼龄过伐林林木空间格局对更新格局的影响[J]. 浙江农林大学学报, 2015, 32(3): 346 − 352. YU Bao, ZHANG Qiuliang, WANG Liming. Distribution pattern for regeneration of a middle to young cut-over Larix gmelinii forest [J]. J Zhejiang A&F Univ, 2015, 32(3): 346 − 352. [21] MIAO Ning, LIU Shirong, YU Hang, et al. Spatial analysis of remnant tree effects in a secondary Abies-Betula forest on the eastern edge of the Qinghai-Tibetan Plateau, China [J]. For Ecol Manage, 2014, 313: 104 − 111. [22] 曹小玉,李际平,封尧,等. 杉木生态公益林林分空间结构分析及评价[J]. 林业科学, 2015, 51(7): 37 − 48. CAO Xiaoyu, LI Jiping, FENG Yao, et al. Analysis and evaluation of the stand spatial structure of Cunninghamia lanceolata ecological forest [J]. Sci Silv Sin, 2015, 51(7): 37 − 48. 期刊类型引用(4)
1. 张景朋,蒋明亮,张斌. 嘧菌酯高效液相色谱分析方法及防腐材抗流失性能研究. 浙江农林大学学报. 2025(01): 185-192 . 本站查看
2. 刘于莜,王小燕,云虹. 生物基防腐技术的研究进展及其在木包装中的应用展望. 包装工程. 2023(03): 8-15 . 百度学术
3. 马星霞,乔云飞,黎冬青,王艳华. 古建筑木构件生物危害预防性保护体系框架构建. 木材科学与技术. 2023(01): 83-90 . 百度学术
4. 陈利芳,王剑菁,马红霞,谢桂军,高婕. 防腐树脂增强改性木材力学及耐久性能研究. 安徽农业大学学报. 2023(03): 389-395 . 百度学术
其他类型引用(0)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190382