留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械损伤及埋土深度对杉木萌蘖及抗氧化酶活性的影响

张吉玲 陈钢 曹光球 林思祖 郑宏 李勇

张斌, 马星霞, 张景朋, 等. 含石蜡水基型有机木材保护复合制剂的性能研究[J]. 浙江农林大学学报, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
引用本文: 张吉玲, 陈钢, 曹光球, 等. 机械损伤及埋土深度对杉木萌蘖及抗氧化酶活性的影响[J]. 浙江农林大学学报, 2021, 38(2): 304-310. DOI: 10.11833/j.issn.2095-0756.20200323
ZHANG Bin, MA Xingxia, ZHANG Jingpeng, et al. Preparation and properties of containing paraffin water based organic wood protective agent[J]. Journal of Zhejiang A&F University, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
Citation: ZHANG Jiling, CHEN Gang, CAO Guangqiu, et al. Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2021, 38(2): 304-310. DOI: 10.11833/j.issn.2095-0756.20200323

机械损伤及埋土深度对杉木萌蘖及抗氧化酶活性的影响

DOI: 10.11833/j.issn.2095-0756.20200323
基金项目: “十三五”国家重点研发计划资助项目(2016YFD0600301)
详细信息
    作者简介: 张吉玲(ORCID: 0000-0003-1919-4717),从事森林资源培育研究。E-mail: 2325953750@qq.com
    通信作者: 曹光球(ORCID: 0000-0001-7034-5272),副研究员,博士,从事人工林高效培育技术研究。E-mail: cncgq@126.com
  • 中图分类号: Q945

Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata

  • 摘要:   目的  研究分析机械损伤处理下杉木Cunninghamia lanceolata无性系萌蘖能力与抗氧化酶活性的相关关系,从酶活性代谢生理角度阐述杉木萌蘖机制,为解决杉木无性系萌蘖问题提供理论依据。  方法  以杉木无性系洋020的1年生扦插苗为材料,通过盆栽试验,设置去顶和未去顶处理,0、3、6 cm埋土深度处理,在萌蘖初期、中期、后期分别取样,观测无性系萌蘖状况,通过酶活吸光度方法测定杉木无性系萌蘖过程中枝叶、基部韧皮部、根尖等不同器官超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性差异,并进行相关性分析。  结果  随着埋土深度的增加,去顶和未去顶不同埋土深度杉木无性系苗萌蘖能力均呈降低的趋势,且不同埋土深度处理会影响植物的抗氧化酶的活性。随着埋土深度的增加,杉木幼苗枝叶SOD活性呈上升趋势,CAT活性呈下降趋势;埋土6 cm处理有利于增强枝叶及根尖POD的活性。  结论  机械损伤和不同埋土深度对杉木无性萌蘖有一定的影响;同一埋土深度,去顶处理杉木无性系的萌蘖能力高于未去顶处理。不同器官植物抗氧化酶活性是影响杉木无性系机械损伤和不同埋土深度处理萌蘖的主要影响因子之一。图3表3参18
  • 随着环境保护要求的不断提高,环保型木材防腐剂越来越受到重视,此类防腐剂多以高效低毒的有机农药为主成分,配合其他助剂制备成有机型或水基型防腐剂[1-2]。三唑类杀菌剂,如丙环唑、戊唑醇、环丙唑醇、氟环唑和苯醚甲环唑等,既可以单独使用,又可以与铜制剂复配[3-4],是目前常用的木材防腐剂;这些三唑类杀菌剂杀菌谱不尽相同,作用机制也有所差异,应用较广泛的是丙环唑和戊唑醇[5-6]。常见的木材防霉剂有异噻唑啉酮类如卡松、1,2-苯并异噻唑-3-酮(BIT)、4,5-二氯-2-正辛基-3-异噻唑啉酮(DCOI)等,有机碘类如碘丙炔醇丁基氨甲酸酯(IPBC),三唑类等[7],杀菌谱也不尽相同;常用的仓储水果防霉剂如溴菌腈和抑霉唑[8-9],防霉活性较高,但较少应用于木材防霉。菊酯类杀虫剂是常见的防治白蚁的药剂,具有用量少、成本较低、废弃物易回收、环境相对友好等优点;高效氯氟氰菊酯在菊酯类杀虫剂中活性较高、稳定性较强、耐雨水冲刷性能较好。因含有大量羟基等亲水基团[10],木材变色、发霉、腐朽、变形等问题频发,品质降低[11-13],常用亚麻油、桐油、豆油、核桃油等含甘油三脂肪酸酯的植物油[14]和沥青、石蜡等含长链烷烃的矿物油用作木材防水;现代工业多将植物油与动植物蜡等复配成木蜡油[15],用作木材的表面防水处理剂。如马红霞等[16]使用56号石蜡制备木材防水剂,当石蜡质量浓度为5%时,防水效率可达54%;由此可见,石蜡可作为良好的木材防水剂。液体石蜡是经原油分馏得到的无色无味的液态烃类混合物,室温下为液态,用作防水剂时可省去加热融化环节,节约了能源和时间。木材在使用过程中需要多重保护,如防腐、防霉、防虫和防水等,存在工序繁琐、成本高昂等问题,为满足木材不同生物危害防治需要,本研究拟制备一种同时具有防腐、防霉、防虫和防水多项功能的水基型有机木材保护复合制剂,通过室内抑菌圈法筛选不同杀菌剂的抑菌活性,从中挑选活性较好、杀菌谱互补的防腐成分与防霉成分进行复配,并筛选两者的最佳配比;将其与杀虫成分和防水成分复配,制备成可以兑水自动乳化的乳油制剂。制备的复合制剂稳定性好,兼具防水、防腐、防霉、防白蚁等性能,同时处理工序简单,可达到常规生物危害防治要求的目的,为木材保护提供参考。

    1.1.1   杀菌剂、杀虫剂和防水剂

    杀菌剂包括氟环唑(FCZ)、戊唑醇(TEB)、丙环唑(PPZ)、苯醚甲环唑(DCZ)、碘丙炔醇丁基氨甲酸酯(IPBC)、溴菌腈(BMN)、抑霉唑(IMZ)。杀虫剂为高效氯氟氰菊酯(CLT)。防水剂为液体石蜡(化妆品级)。以上试剂购自上海麦克林生化科技有限公司。

    1.1.2   测试菌种

    木材腐朽菌有褐腐菌密粘褶菌Gloeophyllun trabeum、白腐菌彩绒革盖菌Coriolus versicolor。木材混合霉菌有黑曲霉Aspergillus sp.、木霉Trichoderma sp.、青霉Penicillium sp.。木材变色菌可可球二孢Botryodiplodia theobromae。所有菌株均为实验室保存的生物测试标准用菌株。

    测试树种为辐射松Pinus radiata

    预实验通过满细胞法确定辐射松边材吸液(水)量为750~850 kg·m−3;根据三唑类药剂防腐有效载药量(200.0~400.0 g·m−3)[17],换算药剂质量浓度为150.0~300.0 mg·L−1,确定试验用药质量浓度为200.0 mg·L−1

    1.2.1   防腐、防霉成分及配比筛选

    通过室内抑菌效果普筛挑选出效果较好且杀菌谱互补的杀菌剂作为防腐和防霉成分。将挑选出的防腐和防霉成分按照不同配比混合进行复配,再次测试室内抑菌效果,确定效果较好的复配比例作为药剂配伍。

    1.2.2   室内抑菌圈测试

    参照《中华人民共和国药典》的“抗生素微生物检定法”测试抑菌圈。将5种防腐剂(FCZ、TEB、PPZ、DCZ、IPBC)统一配制成质量分数为5.00%的乳油,分别加水稀释到200.0 mg·L−1;防霉剂IMZ配制为400.0 mg·L−1,BMN分别配制为400.0、600.0和800.0 mg·L−1。在各涂满真菌孢子液的马铃薯葡萄糖琼脂(PDA)培养基中,分别摆放4个装有0.3 mL待测药液的牛津杯。随着药液的扩散,培养基上的真菌菌丝会受到抑制形成抑菌圈,抑菌圈直径越大,说明药剂抑菌效果越好。

    1.2.3   制剂性能测试

    乳液稳定性测试。参照GB/T 1603—2001《农药乳液稳定性测定方法》,在100.0 mL室温标准硬水中慢慢加入不同体积样品,边加入边搅拌,加完后继续搅拌30 s;然后在30 ℃恒温水浴中静置1 h,观察不同稀释倍数下样品乳状液分离情况。无浮油、沉淀或沉油则视为乳液稳定性合格。

    防水性能测试。将含液体石蜡质量分数为40.00%的复合制剂分别兑水,稀释液体石蜡质量分数为2.00%、4.00%、8.00%,满细胞法处理试块。辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,室温平衡21 d后称质量,然后蒸馏水浸泡30 min,取出试块,称质量,参照GB/T 1934.1—2009《木材吸水性测定方法》计算吸水率;测量弦向尺寸变化,参照GB/T 29901—2013《木材防水剂的防水效率测试方法》计算防水效率。

    室内防腐性能测试。参照GB/T 13942.1—2009《木材耐久性能第1部分:天然耐腐性实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍备用,辐射松边材尺寸为20 mm×20 mm×10 mm,每组6块试块,经真空−0.09 MPa处理10 min,常压浸渍10 min,参照标准测试防腐性能。试块质量损失率<10%,属于Ⅰ级强耐腐;质量损失率为11%~24%,属于Ⅱ级耐腐;质量损失率为25%~44%,属于Ⅲ级稍耐腐;质量损失率>45%,属于Ⅳ级不耐腐。

    室内防霉性能测试。参照GB/T 18261—2013《防霉剂对木材霉菌及变色菌防治效力的试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,参照标准方法处理试块,测试防霉性能。试块表面无菌丝、霉点时,定义侵染值为0;试块表面感染面积<1/4,定义为1;试块表面感染面积1/4~1/2,定义为2;试块表面感染面积1/2~3/4,定义为3;试块表面感染面积>3/4,定义为4。

    室内防白蚁测试。参照GB/T 18260—2015《木材防腐剂对白蚁毒效实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为20 mm×20 mm×10 mm,每组5块试块,参照标准方法处理试块,测试室内防白蚁性能。试块蚁蛀程度为完好无损,定义试样完好等级为10;微痕蛀蚀,定义为9.5;轻微蛀蚀,截面面积<3%的蛀蚀,定义为9;中等蛀蚀,截面面积3%~10%的蛀蚀,定义为8;中等蛀蚀,截面面积10%~30%的蛀蚀,定义为7;严重蛀蚀,截面面积30%~50%的蛀蚀,定义为6;非常严重蛀蚀,截面面积50%~75%的蛀蚀,定义为4;试块几乎完全被蛀毁,定义完好等级为0。

    表1可以看出:5种防腐剂(FCZ、TEB、PPZ、DCZ和 IPBC)对木材腐朽菌(彩绒革盖菌和密粘褶菌)均具有较好的抑制效果,但FCZ、TEB和PPZ对变色菌(可可球二孢)和混合霉菌几乎没有抑制作用,只有DCZ对可可球二孢有抑制效果,因此优选DCZ作为防腐成分。IPBC和IMZ对所测试菌种均有较好的抑制效果,BMN和IMZ虽然对混合霉菌和变色菌有抑制作用,但抑菌圈均小于IPBC。因此,优先IPBC作为防霉成分。

    表 1  各杀菌剂的室内抑菌效果
    Table 1  Result of inhibition zones test by bactericide
    杀菌剂质量浓度/
    (mg·L−1)
    抑菌圈大小/mm
    彩绒革
    盖菌
    密粘
    褶菌
    可可球
    二孢
    混合
    霉菌
    FCZ 200.0 >45.0 >45.0 0 0
    TEB 200.0 >45.0 >45.0 0 0
    PPZ 200.0 >45.0 >45.0 0 0
    DCZ 200.0 >45.0 >45.0 11.4 0
    IPBC 200.0 >45.0 >45.0 34.6 21.9
    BMN 800.0 37.2 35.4 12.8 10.6
    600.0 38.1 29.0 9.0 9.4
    400.0 26.8 31.8 8.3 7.1
    IMZ 400.0 39.2 41.6 26.9 12.7
    下载: 导出CSV 
    | 显示表格

    将DCZ和IPBC按质量比1∶1、1∶3、3∶1的比例配制混合药剂,测试DCZ+IPBC复配药剂对腐朽菌和霉菌的抑制效果;将其他3种三唑类防腐药剂(FCZ、TEB和PPZ)与IPBC按照质量比1∶1配制复配药剂,作为对照测试抑菌效果。由表2可以看出:DCZ+IPBC复配药剂对木材腐朽菌、变色菌和混合霉菌的抑制效果较好,其中按照1∶1比例复配的药剂效果最高。相其他三唑类与IPBC的复配药剂,抑菌效果亦有所提高。由此确认防腐/防霉复配药剂,DCZ和IPBC按照1∶1进行配制。

    表 2  不同三唑类药剂与IPBC复配的抑菌效果
    Table 2  Result of inhibition zones test by compounded of different preservatives
    组分质量浓度/
    (mg·L−1)
    抑菌圈大小/mm
    彩绒革
    盖菌
    密粘
    褶菌
    可可球
    二孢
    混合
    霉菌
    DCZ 200.0 >45.0 >45.0 11.4 0
    DCZ+IPBC 150.0+50.0 >45.0 >45.0 22.4 15.1
    DCZ+IPBC 100.0+100.0 >45.0 >45.0 31.0 23.6
    DCZ+IPBC 50.0+150.0 >45.0 >45.0 29.1 23.7
    IPBC 200.0 >45.0 >45.0 30.6 21.9
    FCZ+IPBC 100.0+100.0 >45.0 >45.0 25.7 21.8
    PPZ+IPBC 100.0+100.0 >45.0 >45.0 25.8 22.5
    TEB+IPBC 100.0+100.0 >45.0 >45.0 24.0 21.0
    下载: 导出CSV 
    | 显示表格

    为探索CLT对白蚁的防治效果,设计含梯度载药量的辐射松边材室内抗白蚁效果测试,拟定辐射松边材载药量分别为5.0、10.0、15.0、20.0、30.0 g·m−3。由表3可知:试块中CLT载药量达10.9 g·m−3以上时,白蚁蛀蚀完好值>8.0,质量损失率<11%,而未添加药剂处理的对照木材,完好值仅4.6,质量损失率>40%。因此,设计的复合制剂中防虫成分的目标载药量为7.5~30.0 g·m−3

    表 3  不同CLT载药量木材的白蚁蛀蚀结果
    Table 3  Result of lab anti-termite test of cyhalothrin
    载药量/
    (g·m−3)
    白蚁蛀蚀
    完好值
    质量损
    失率/%
    载药量/
    (g·m−3)
    白蚁蛀蚀
    完好值
    质量损
    失率/%
    4.642.9±14.615.58.010.5±1.4
    5.38.011.3±0.721.89.15.2±1.4
    10.98.65.9±1.532.18.45.1±1.9
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格

    综上,本研究设计制备了含苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯、液体石蜡等多种有效成分的木材保护复合制剂,通过调试乳化剂和助溶剂的用量和配比,最终配制出稳定、均相、透明、入水可自乳化的乳油制剂。制剂制备时按比例称取原药和乳化剂,加入助溶剂,充分溶解混匀后加入液体石蜡,搅拌均匀即可。测试使用的制剂为乳油,组成成分质量分数为0.20%苯醚甲环唑、0.20%碘丙炔醇丁基氨甲酸酯、0.02%高效氯氟氰菊酯和40.00%液体石蜡。

    2.2.1   乳液稳定性测试

    制剂兑水稀释250倍,制剂呈乳白色,初入水时呈乳白色团雾状,可自动扩散,摇匀后呈均匀的乳状液,静置1 h未见分层、析油和沉淀,稳定性可保持3~4 h;过夜后破乳,药液表面有大量浮油,颠倒摇匀后可恢复乳液状,不影响正常使用。

    2.2.2   防水性能测试

    参照标准方法用该制剂处理辐射松边材,经水浸泡30 min后测试试块的吸水率和防水效率。由表4可知:未添加药剂处理的木材,吸水率为54.7%;随着制剂中石蜡质量分数升高,木材试块中石蜡含量相应增加,试块吸水率依次降低,从43.5%下降到26.6%,木材防水效率则随之增强,从44.4%提升到了77.8%。

    表 4  防水剂处理后试块的防水性能
    Table 4  Efficiency of waterproof
    稀释
    倍数
    制剂中液体石
    蜡质量分数/%
    试块中液体石
    蜡含量/(kg·m−3)
    吸水
    率/%
    防水效
    率/%
    5849.126.6±7.477.8±19.1
    10419.435.0±17.368.9±22.1
    20210.543.5±15.144.4±20.6
    0054.7±5.80
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.3   室内耐腐性能测试

    表5可知:未处理木材受白腐菌侵染后质量损失率达75.7%,受褐腐菌侵染质量损失率为19.4%,而所有处理试块质量损失率均低于6%,达到强耐腐。制剂稀释20倍后处理试块,试块中DCZ和IPBC载药量超过71.1 g·m−3,试块质量损失率可达1%,达到Ⅰ级强耐腐。值得注意的是,稀释20倍的药液处理后,试块质量损失率低于稀释5倍的药液,原因是高质量浓度制剂处理后,试块内含有大量的液体石蜡,在长达3个月的试验期内,液体石蜡自动扩散到培养基,试块质量损失增加。但取样现场也发现:高质量浓度制剂处理的试块无腐朽菌菌丝附着生长,说明添加防水剂实际进一步提升了制剂的防腐性能。

    表 5  制剂处理后试块的室内耐腐性能
    Table 5  Result of lab sand block test on sapwood P. radiate
    稀释
    倍数
    彩绒革盖菌密粘褶菌
    试块DCZ+IPBC
    载药量/(g·m−3)
    质量损
    失率/%
    试块DCZ+IPBC
    载药量/(g·m−3)
    质量损
    失率/%
    5311.2+311.25.5±0.6320.6+320.63.6±0.3
    10150.9+150.92.7±0.2139.0+139.03.4±0.4
    2071.2+71.20.6±0.171.1+71.11.0±0.2
    075.7±4.3019.4±2.1
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.4   室内防霉性能测试

    参照标准方法用该制剂处理辐射松边材,测试室内防霉效果。由表6可知:未处理木材的霉菌和变色菌侵染值为4,该制剂稀释5倍时,试块表面的DCZ和IPBC含量均达0.165 g·m−2,处理试块变色菌和混合霉菌侵染值均为0,防治效果优良。在实际使用中可根据木材树种的天然耐腐性及所处环境适当增减制剂的用量,以达到理想的防霉效果。

    表 6  室内防霉测试结果
    Table 6  Result of lab mildew proof test
    稀释
    倍数
    可可球二孢混合霉菌
    DCZ+IPBC载药
    量/(g·m−2)
    侵染值DCZ+IPBC载药
    量/(g·m−2)
    侵染值
    50.165+0.16500.202+0.2020
    100.106+0.1061.50.148+0.1480.5
    200.045+0.0454.00.048+0.0483.3
    04.004.0
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.5   室内抗白蚁测试

    表7可知:不同稀释倍数的制剂处理后,试块质量损失率均<3%,而未添加抗虫剂的对照试块,质量损失率为42.9%;制剂稀释5倍时,试块载药量达29.1 g·m−3,试块白蚁蛀蚀完好值为9.6;稀释20倍时,试块载药量为7.6 g·m−3, 试块白蚁蛀蚀完好值为8.9,而未处理木材的白蚁蛀蚀后完好值仅为4.7,质量损失率达42.9%,显示该制剂的防治白蚁效果优良。结合表3可知:相比单用高效氯氟氰菊酯时,复合制剂处理材在同等载药量下对白蚁的防治效果要好得多;当高效氯氟氰菊酯质量浓度为15.0、30.0 g·m−3时,该复合制剂防治白蚁的效果远远优于单剂,由此可知其他组分的加入起到了增效作用。

    表 7  室内抗白蚁测试结果
    Table 7  Result of lab anti-termite test
    稀释
    倍数
    木材中高效氯氟氰菊酯
    载药量/(g·m−3)
    质量损
    失率/%
    白蚁蛀蚀
    完好值
    529.12.8±0.59.6
    1014.72.6±0.39.2
    207.62.5±0.78.9
    042.9±14.64.7
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格

    针对不同的木材败坏防治需求,本研究制备了一种具有防腐、防霉、防虫、防水多功能的复合制剂,类型为乳油,有效成分为苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯和液体石蜡。

    该制剂兑水稀释后呈乳液状,稳定性可保持3~4 h,符合GB/T 1603—2001 《农药乳液稳定性测定方法》的规定。石蜡作为常见的防水剂被广泛应用,多数所使用的时熔点较高的固体石蜡[18],而该制剂以液体石蜡为防水组分,优点是室温下即为液体,无需加热融化,缺点是液体石蜡密度较小,相较常规药剂,兑水稀释后稳定性差,药液兑水约 4 h 后就会分层破乳;不过,稍微搅拌即可恢复乳状,基本不影响正常使用。该制剂防水性能较好,然而应注意的是防水剂含量很大,大剂量液体石蜡的使用,存在一定的消防隐患,后期应配合表面阻燃处理。石蜡基防水剂的主要防水机制是通过石蜡的疏水作用[19],石蜡的使用同时增强了木材的尺寸稳定性[20],石蜡分子量较大,不易进入木材内部,因此需要将其乳化成细小的乳状液,然而,乳化剂的过量使用可能会有石蜡的疏水性降低的风险,需要在以后的开发中引起重视。结合室内耐腐试验菌丝生长状况可以发现:防水剂液体石蜡的加入,可以明显增加药剂的防腐性能,而木材中石蜡的含量很高,当木材与环境中土壤或者水体接触时,石蜡会从木材中自由扩散到环境中,可能会增加药剂流失的风险。

    室内防霉测试结果来看,将制剂稀释 5 倍使用,即辐射松试块苯醚甲环唑和碘丙炔醇丁基氨甲酸酯载药量均为 0.165 g·m −2 时,混合霉菌的生长才能被完全抑制,这与李晓文等[21]的IPBC防霉效果结论一致。室内防霉测试所选的温湿度条件适合霉菌生长,且霉菌的孢子液人为接种,因此,通常可以通过室内防霉测试的药剂,在实际生产中的防霉效果也会很好。

    室内防白蚁测试结果可知:制剂稀释 20 倍后,试块受白蚁蛀蚀程度仍较低,质量损失率较小,防蚁性能优异。同时,比较单独使用高效氯氟氰菊酯和添加防水剂后的防白蚁效果可以看出:防水剂的添加明显增加了药剂的防白蚁效果。分析原因可能是石蜡是一种化石能源,白蚁不喜食。

    为满足木材不同生物危害防治需要,本研究制备出一种含石蜡水基型有机多功能木材防腐剂,可以一次处理基本满足木材常规保护的要求。该木材保护复合制剂同时具有防腐、防霉、防虫、防水多功能,剂型为乳油,质量分数分别为0.20%的苯醚甲环唑和碘丙炔醇丁基氨甲酸酯、0.02%的高效氯氟氰菊酯和40.00%的液体石蜡。

    当环境中生物危害较轻时,可将该复合制剂稀释20倍使用,当生物危害较重时,可将复合制剂稀释5倍甚至直接使用。将制剂稀释5到10倍处理木材,即木材中液体石蜡为25.0~50.0 kg·m−3,苯醚甲环唑和碘丙炔醇丁基氨甲酸酯为150.0~300.0 g·m−3,高效氯氟氰菊酯载药量为15.0~30.0 g·m−3,可满足多大多数生物危害的防治需求。

  • 图  1  机械损伤和不同埋土深度处理下杉木幼苗SOD活性

    Figure  1  SOD activity of Chinese fir seedlings under mechanical damage and different soil depth treatments

    图  2  机械损伤和不同埋土深度处理下杉木幼苗CAT活性

    Figure  2  CAT activity of Chinese fir seedlings under mechanical damage and different soil depth treatments

    图  3  机械损伤和不同埋土深度处理下杉木幼苗POD活性

    Figure  3  POD activity of young Chinese fir treated with mechanical damage and different soil depth

    表  1  机械损伤和不同埋土深度处理下杉木无性系萌蘖差异

    Table  1.   Difference of tillering of Chinese fir clones treated by mechanical damage and different soil depth

    处理萌蘖/株
    2019-06-302019-07-312019-08-31
    TP10.65 ± 0.08 ab2.90 ± 0.20 bc3.50 ± 0.50 ac
    TP20.54 ± 0.06 bc2.40 ± 0.18 a3.10 ± 0.30 b
    TP30.43 ± 0.03 a2.13 ± 0.16 b2.54 ± 0.30 a
    ck11.50 ± 0.02 b2.89 ± 0.40 a3.35 ± 0.42 b
    ck21.20 ± 0.11 a2.20 ± 0.30 b3.00 ± 0.40 a
    ck30.80 ± 0.06 a2.10 ± 0.20 b2.20 ± 0.30 a
      说明:同列不同小写字母表示差异显著(P<0.05)
    下载: 导出CSV

    表  2  杉木幼苗SOD、CAT和POD活性方差分析

    Table  2.   Variance analysis of SOD, CAT and POD enzyme activities in Chinese fir seedlings

    因素SOD活性CAT活性POD活性
    均方F均方F均方F
    时期82 807.91535.981**97 192.403734.535**34 187.29654.764**
    机械损伤44 879.39319.501**19 211.774145.194**43 239.49669.264**
    埋土深度6 918.1063.0062 910.45421.996**2 831.0714.535*
    器官部位114 489.45449.747**2 658.56920.092**54 248.12786.899**
    时期×机械损伤5 232.7122.27431 600.742238.824**92 412.000148.032**
    时期×埋土深度25 120.65510.915**3 616.95027.335**2 911.3184.664**
    时期×器官部位41 964.81818.234**2 074.81315.680**4 762.1977.628**
    机械损伤×埋土深度5 197.3252.2582 605.10619.688*2 015.7233.229*
    机械损伤×器官部位4 442.0491.930978.8747.398**1 977.1183.167*
    埋土深度×器官部位1 881.6790.8181 063.0938.034**1 069.2961.713
    时期×机械损伤×埋土深度1 147.7520.4992 396.59018.112**7 094.74711.365**
    时期×机械损伤×器官部位23 470.57210.198**761.7695.757**3 770.8596.040**
    时期×埋土深度×器官部位7 876.3663.422**402.7103.043**1 433.9272.297**
    机械损伤×埋土深度×器官部位9 597.7204.170**331.1242.502*1 302.1482.086
    时期×机械损伤×埋土深度×器官部位10 678.3064.640**179.3721.3562 428.7583.891**
      说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上极显著相关
    下载: 导出CSV

    表  3  机械损伤和不同埋土深度处理杉木无性系萌蘖酶活性相关性

    Table  3.   Correlation between mechanical damage and tillering enzyme activity of Chinese fir clones under different soil depth treatments

    项目机械损伤萌蘖时期萌蘖数SOD活性CAT活性POD活性
    机械损伤1.000
    萌蘖时期0.0001.000
    萌蘖数 −0.613**0.540**1.000
    SOD活性0.0170.445**0.125*1.000
    CAT活性0.293**−0.670**−0.614**−0.387**1.000
    POD活性0.1090.239*0.082*0.290**−0.269*1.000
      说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)
    下载: 导出CSV
  • [1] 薛瑶芹, 张文辉, 马莉薇, 等. 不同生境下栓皮栎伐桩萌苗的生长特征及在种群更新中的作用[J]. 林业科学, 2012, 48(7): 23 − 29.

    XUE Yaoqin, ZHANG Wenhui, MA Liwei, et al. The growth features of Quercus variabilis stump sprouts and its contribution to population regeneration in different habitats [J]. Sci Silv Sin, 2012, 48(7): 23 − 29.
    [2] 俞新妥. 中国杉木研究[J]. 福建林学院学报, 1988, 8(3): 203 − 220.

    YU Xintuo. Study on Chinese fir [J]. J Fujian For Univ, 1988, 8(3): 203 − 220.
    [3] 潘洁琳, 李晨燕, 王讷敏, 等. 杉木采穗圃管理技术研究[J]. 亚热带农业研究, 2017, 13(3): 211 − 215.

    PAN Jielin, LI Chenyan, WANG Namin, et al. Study on the management technology of Chinese fir cutting nursery [J]. Subtrop Agric Res, 2017, 13(3): 211 − 215.
    [4] 张敏, 蓝芳菊. 杉木优良无性系采穗圃营建与扦插育苗技术评价[J]. 现代农业科技, 2014(3): 183 − 186.

    ZHANG Min, LAN Fangju. Evaluation on the construction of scion collecting nursery and cutting seedling raising technology of fine Chinese fir clones [J]. Mod Agric Sci Technol, 2014(3): 183 − 186.
    [5] BOHLMANN J, CROCK J, JETTER R, et al. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-a- bisabolene synthase from grand fir (Abies grandis) [J]. Proc Nat Acad Sci, 1998, 95(12): 6756 − 6761.
    [6] 高雪. 植物苯丙氨酸解氨酶研究进展[J]. 现代农业科技, 2009(1): 30 − 33.

    GAO Xue. Research progress of plant phenylalanine ammonia lyase [J]. Mod Agric Sci Technol, 2009(1): 30 − 33.
    [7] 方海涛, 段立清. 机械损伤诱导林木抗虫性研究进展[J]. 西北林学院学报, 2011, 26(6): 91 − 94.

    FANG Haitao, DUAN Liqing. Research progress on insect resistance of trees induced by mechanical damage [J]. J Northwest For Univ, 2011, 26(6): 91 − 94.
    [8] 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2002: 415 − 419.
    [9] 丁红, 张智猛, 戴良香, 等. 水分胁迫和氮肥对花生根系形态发育及叶片生理活性的影响[J]. 应用生态学报, 2015, 26(2): 450 − 456.

    DING Hong, ZHANG Zhimeng, DAI Liangxiang, et al. Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities [J]. Chin J Appl Ecol, 2015, 26(2): 450 − 456.
    [10] SHALATA A, MITTOVA V, VOLOKITA M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress antioxidative system [J]. Physiol Plant, 2001, 112(1): 487 − 494.
    [11] WANG Yibo, FENG Huyuan, QU Ying, et al. The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings [J]. Environ Exp Bot, 2005, 57(1): 141 − 147.
    [12] 丁国华, 程淑婉, 叶镜中. 杉木不同季节采伐伐桩萌芽的内源激素动态[J]. 福建林学院学报, 1996, 16(2): 109 − 113.

    DING Guohua, CHENG Shuwan, YE Jingzhong. The dynamics of endogenous hormones in the germination of Chinese fir stumps in different seasons [J]. J Fujian For Univ, 1996, 16(2): 109 − 113.
    [13] 郑荣梁. 自由基医学与农学基础[M]. 北京: 高等教育出版社, 2001: 217 − 230.
    [14] 孙存普, 张建中, 段绍瑾. 自由基生物学导论[M]. 合肥: 中国科技大学出版社, 1999: 280.
    [15] 白令君, 王建英, 崔乃杰, 等. 抗坏血酸与铁离子反应的ESR及UV-VIS研究[J]. 生物化学与生物物理学报, 1997, 29(6): 527 − 532.

    BAI Lingjun, WANG Jianying, CUI Naijie, et al. ESR and UV-vis studies on the reaction of ascorbic acid with iron ion [J]. J Biochem Biophysics, 1997, 29(6): 527 − 532.
    [16] 梁婵娟, 徐青, 陶文沂, 等. 油菜光合作用及CAT对UV-B与AR胁迫的响应(Ⅰ)[J]. 农业环境科学学报, 2004, 23(4): 642 − 645.

    LIANG Chanjuan, XU Qing, TAO Wenyi, et al. Response of defense enzyme and photosynthesis in rape seedling under combined stress of elevated ultraviolet-B radiation and acid rain (Ⅰ) [J]. J Agric Environ Sci, 2004, 23(4): 642 − 645.
    [17] 李惠梅, 师生波. 增强UV-B辐射对麻花艽叶片的抗氧化酶的影响[J]. 西北植物学报, 2005, 25(3): 519 − 524.

    LI Huimei, SHI Shengbo. Effects of enhanced UV-B radiation on antioxidant enzymes of Gentiana straminea leaves [J]. Acta Bot Boreal-Occident Sin, 2005, 25(3): 519 − 524.
    [18] 唐光辉, 田鹏鹏, 陈安良, 等. 2种农药树干注射对垂柳叶内PPO和POD活性及同工酶谱的影响[J]. 西北农林科技大学学报(自然科学版), 2007, 35(4): 145 − 149.

    TANG Guanghui, TIAN Pengpeng, CHEN Anliang, et al. Effects of trunk injection of two pesticides on PPO and POD activities and isozyme patterns in leaves of weeping willow [J]. J Northwest A&F Univ Nat Sci Ed, 2007, 35(4): 145 − 149.
  • [1] 胡晓飘, 韩佳琳, 夏宏蕾, 王蕾, 方朝储, 王敏艳, 张进, 单胜道.  不同生物质炭浸提液对萝卜种子萌发与幼苗生长的毒害效应 . 浙江农林大学学报, 2024, 41(1): 145-153. doi: 10.11833/j.issn.2095-0756.20230227
    [2] 谢德志, 魏子璐, 朱峻熠, 杜莹, 金水虎, 岳春雷.  水禾对镉胁迫的生理响应 . 浙江农林大学学报, 2020, 37(4): 683-692. doi: 10.11833/j.issn.2095-0756.20190407
    [3] 顾帆, 季梦成, 顾翠花, 郑钢, 郑绍宇.  高温干旱胁迫对黄薇抗氧化防御系统的影响 . 浙江农林大学学报, 2019, 36(5): 894-901. doi: 10.11833/j.issn.2095-0756.2019.05.007
    [4] 韩一林, 王鑫朝, 许馨露, 高岩, 温国胜, 张汝民, 王玉魁.  毛竹幼苗抗氧化酶和AsA-GSH循环对高温干旱及协同胁迫的响应 . 浙江农林大学学报, 2018, 35(2): 268-276. doi: 10.11833/j.issn.2095-0756.2018.02.010
    [5] 徐圆圆, 陆明英, 蒋维昕, 程飞, 谭玲, 杨梅.  铝胁迫下不同耐铝型桉树无性系根和叶抗氧化特征的差异 . 浙江农林大学学报, 2016, 33(6): 1009-1016. doi: 10.11833/j.issn.2095-0756.2016.06.012
    [6] 杜秀芳, 刘盟盟, 贾丽, 马元丹, 张汝民, 高岩.  冷蒿非结构性碳水化合物代谢对机械损伤的响应 . 浙江农林大学学报, 2016, 33(4): 629-635. doi: 10.11833/j.issn.2095-0756.2016.04.011
    [7] 贾丽, 刘盟盟, 张洪芹, 臧晓琳, 宝音陶格涛, 高岩, 张汝民.  冷蒿抗氧化防御系统对机械损伤的响应 . 浙江农林大学学报, 2016, 33(3): 462-470. doi: 10.11833/j.issn.2095-0756.2016.03.013
    [8] 庞景, 童再康, 黄华宏, 林二培, 刘琼瑶.  杉木纤维素合成酶基因CesA的克隆及表达分析 . 浙江农林大学学报, 2015, 32(1): 40-46. doi: 10.11833/j.issn.2095-0756.2015.01.006
    [9] 刘盟盟, 贾丽, 张洪芹, 臧晓琳, 张汝民, 高岩.  机械损伤对冷蒿叶片次生代谢产物的影响 . 浙江农林大学学报, 2015, 32(6): 845-852. doi: 10.11833/j.issn.2095-0756.2015.06.004
    [10] 李朝会, 陈斯, 岳春雷, 郭玮龙, 左照江, 金水虎.  苦楝和水芹菜对空心莲子草的化感防治作用 . 浙江农林大学学报, 2014, 31(3): 442-449. doi: 10.11833/j.issn.2095-0756.2014.03.018
    [11] 庄明浩, 李迎春, 陈双林, 李应, 顾大形.  四季竹对大气臭氧体积分数倍增的生理响应 . 浙江农林大学学报, 2012, 29(1): 12-16. doi: 10.11833/j.issn.2095-0756.2012.01.003
    [12] 朱向辉, 汪传佳, 王仁东, 翁永发, 马飞杰, 过路, 方怀远, 朱汤军.  CDM-ARP杉木林碳汇监测方法学研究 . 浙江农林大学学报, 2008, 25(3): 336-341.
    [13] 梁宏温, 黄恒川, 黄承标, 黄海仲, 梁欣, 蒙跃环.  不同树龄秃杉与杉木人工林木材物理力学性质的比较 . 浙江农林大学学报, 2008, 25(2): 137-142.
    [14] 李迎春, 樊卫国, 陈双林.  干旱胁迫对梨属4个重要种幼苗膜脂过氧化和抗氧化酶活性的影响 . 浙江农林大学学报, 2008, 25(4): 437-441.
    [15] 蒋宗垲.  福建柏与杉木人工林细根氮磷养分现存量的动态变化 . 浙江农林大学学报, 2007, 24(1): 33-38.
    [16] 付顺华, 董汝湘, 吴隆高, 冯建民, 刘伟宏, 华朝晖, 孙鸿有.  杉木种子园子代性状相关性研究 . 浙江农林大学学报, 2007, 24(3): 272-278.
    [17] 徐凤兰, 魏坦, 刘爱琴.  杉木泡桐混交幼林地土壤的物理性质 . 浙江农林大学学报, 2000, 17(3): 285-288.
    [18] 何福基, 余象煌, 李平.  杉木雄性不育性遗传机理初步分析* . 浙江农林大学学报, 1995, 12(2): 219-220.
    [19] 程淑婉, 王改萍, 丁国华, 叶镜中.  杉木伐桩萌芽的氮素营养* . 浙江农林大学学报, 1995, 12(2): 133-138.
    [20] 管康林, 严逸伦, 郑钢.  杉木发育生理研究 . 浙江农林大学学报, 1994, 11(2): 105-115.
  • 期刊类型引用(4)

    1. 张景朋,蒋明亮,张斌. 嘧菌酯高效液相色谱分析方法及防腐材抗流失性能研究. 浙江农林大学学报. 2025(01): 185-192 . 本站查看
    2. 刘于莜,王小燕,云虹. 生物基防腐技术的研究进展及其在木包装中的应用展望. 包装工程. 2023(03): 8-15 . 百度学术
    3. 马星霞,乔云飞,黎冬青,王艳华. 古建筑木构件生物危害预防性保护体系框架构建. 木材科学与技术. 2023(01): 83-90 . 百度学术
    4. 陈利芳,王剑菁,马红霞,谢桂军,高婕. 防腐树脂增强改性木材力学及耐久性能研究. 安徽农业大学学报. 2023(03): 389-395 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200323

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/304

图(3) / 表(3)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  154
  • PDF下载量:  25
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-12-04
  • 网络出版日期:  2021-04-01
  • 刊出日期:  2021-04-01

机械损伤及埋土深度对杉木萌蘖及抗氧化酶活性的影响

doi: 10.11833/j.issn.2095-0756.20200323
    基金项目:  “十三五”国家重点研发计划资助项目(2016YFD0600301)
    作者简介:

    张吉玲(ORCID: 0000-0003-1919-4717),从事森林资源培育研究。E-mail: 2325953750@qq.com

    通信作者: 曹光球(ORCID: 0000-0001-7034-5272),副研究员,博士,从事人工林高效培育技术研究。E-mail: cncgq@126.com
  • 中图分类号: Q945

摘要:   目的  研究分析机械损伤处理下杉木Cunninghamia lanceolata无性系萌蘖能力与抗氧化酶活性的相关关系,从酶活性代谢生理角度阐述杉木萌蘖机制,为解决杉木无性系萌蘖问题提供理论依据。  方法  以杉木无性系洋020的1年生扦插苗为材料,通过盆栽试验,设置去顶和未去顶处理,0、3、6 cm埋土深度处理,在萌蘖初期、中期、后期分别取样,观测无性系萌蘖状况,通过酶活吸光度方法测定杉木无性系萌蘖过程中枝叶、基部韧皮部、根尖等不同器官超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性差异,并进行相关性分析。  结果  随着埋土深度的增加,去顶和未去顶不同埋土深度杉木无性系苗萌蘖能力均呈降低的趋势,且不同埋土深度处理会影响植物的抗氧化酶的活性。随着埋土深度的增加,杉木幼苗枝叶SOD活性呈上升趋势,CAT活性呈下降趋势;埋土6 cm处理有利于增强枝叶及根尖POD的活性。  结论  机械损伤和不同埋土深度对杉木无性萌蘖有一定的影响;同一埋土深度,去顶处理杉木无性系的萌蘖能力高于未去顶处理。不同器官植物抗氧化酶活性是影响杉木无性系机械损伤和不同埋土深度处理萌蘖的主要影响因子之一。图3表3参18

English Abstract

张斌, 马星霞, 张景朋, 等. 含石蜡水基型有机木材保护复合制剂的性能研究[J]. 浙江农林大学学报, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
引用本文: 张吉玲, 陈钢, 曹光球, 等. 机械损伤及埋土深度对杉木萌蘖及抗氧化酶活性的影响[J]. 浙江农林大学学报, 2021, 38(2): 304-310. DOI: 10.11833/j.issn.2095-0756.20200323
ZHANG Bin, MA Xingxia, ZHANG Jingpeng, et al. Preparation and properties of containing paraffin water based organic wood protective agent[J]. Journal of Zhejiang A&F University, 2022, 39(2): 423-429. DOI: 10.11833/j.issn.2095-0756.20210264
Citation: ZHANG Jiling, CHEN Gang, CAO Guangqiu, et al. Effects of mechanical damage and deep soil treatment on sprouting and antioxidant enzyme activities of Cunninghamia lanceolata[J]. Journal of Zhejiang A&F University, 2021, 38(2): 304-310. DOI: 10.11833/j.issn.2095-0756.20200323
  • 杉木Cunninghamia lanceolata是中国南方最重要速生树种之一,具有较强的萌芽能力[1-2]。随着现代林业的发展,无性林业成为当今社会林业发展的一个主要方向。随着近十几年来的杉木苗木繁育技术的研究,杉木无性繁殖取得了较大的突破,无性系造林面积越来越大。组培和扦插是杉木无性繁育的2个主要途径。由于杉木组培工厂化育苗过程中还普遍存在增殖系数低、生根率低等问题,扦插繁殖是杉木无性繁育的最主要途径。杉木采穗圃是提供穗条的最主要场所,为促进杉木的萌蘖能力,提高穗条的产量,去顶、压弯及基部损伤处理是常用的几种措施。目前,对母树的弯干、截干、浅栽、施肥等方面进行了研究[3-4]。机械损伤后,植物产生一系列次生代谢产物,如酚类、黄酮类、萜类、生物碱等,它们集中在伤口及其附近,参与伤口愈合反应,抵抗昆虫或病原体的入侵[5]。抗氧化酶在催化这一途径中起着非常重要的作用,对植物生长发育、紫外线辐射防治、抗虫害和植物支持系统的形成具有重要的意义和价值,其活性可作为衡量植物抗逆性强弱的指标[6]。酚类物质在植物抗生物胁迫机制中起着重要作用。机械损伤也被认为是诱导植物防御的重要手段之一[7]。虽然近年来对机械损伤影响植物防御酶的影响研究较多,但是关于机械损伤和不同埋土深度处理对杉木无性系萌蘖抗氧化酶活性的机制研究却鲜少报道。本研究以萌蘖能力较强的杉木无性系洋020扦插苗为研究对象,通过室内盆栽试验,分析机械损伤和不同埋土深度对无性系萌蘖能力及不同器官抗氧化酶活性的影响,为揭示杉木萌蘖机制以及杉木人工林的高效培育奠定理论依据。

    • 材料为福建省洋口国有林场提供的1年生杉木洋020扦插苗。挑选生长健壮、长势一致、无病虫害的苗木,平均苗高30 cm,地径为5 mm。盆栽土壤为山地黄心土,有机质49.00 g·kg−1,全氮1.09 g·kg−1,水解氮1.32 mg·kg−1,速效磷2.30 mg·kg−1,速效钾151.30 mg·kg−1

    • 试验在福建农林大学国家林业草原杉木工程技术研究中心田间实验室内进行。2019年3月中旬将杉木无性系洋020扦插苗种植于花盆(21 cm×26 cm×27 cm)中,3株·盆−1。培养基为黄心土。采用随机区组试验,6个处理,处理1为去顶埋土深度0 cm (TP1),处理2为去顶埋土深度3 cm (TP2),处理3为去顶埋土深度6 cm (TP3),处理4为未去顶埋土深度0 cm (ck1),处理5为未去顶埋土深度3 cm (ck2),处理6为未去顶埋土深度6 cm (ck3);去顶处理为苗木培养7 d后剪去顶稍1 cm;每个处理40盆,共240盆。盆栽后定期调查不同处理杉木基部的萌芽数。培养期间定期给苗木浇自来水,保持土壤含水率在65%左右;定期除草。2019年6月30日(萌蘖初期)、7月31日(萌蘖中期)、8月31日(萌蘖后期)取已萌芽的洋020扦插苗的枝叶、基部皮及根尖样品,每个处理采集9株,每3株混成1个待测样,每个部位待测样3个重复。不同部位样品取样后迅速放入液氮中,置于−80 ℃超低温冰箱中保存待测。

    • 2019 年4月30日、5月31日、6月30日、7月31日、8月31日分别调查不同处理幼苗的萌蘖数。

    • 参照李合生的方法[8]取叶片、基部皮及根尖0.2 g,加入0.05 mol·L−1 pH 7.8磷酸缓冲液228.75 mL,母液B(NaH2PO4)21.25 mL,用蒸馏水稀释至1 000 mL。在冰浴中用研钵研磨成匀浆,稀释至4 mL刻度离心管,在4 ℃下以10 000 r·min−1的速度冷冻离心20 min,并将上清液置于4 ℃冰箱中冷藏。超氧化物歧化酶(SOD)活性测定参照丁红等[9]方法,以抑制氮蓝四唑(NBT)光还原的50%为1个酶活性单位。过氧化物酶(POD)和过氧化氢酶(CAT)活性参照SHALATA等[10]的方法测定。

    • 数据用Excel 2010和SPSS 22.0软件进行整理和相关性分析。

    • 表1结果显示:随着培养时间的延长,杉木萌蘖均呈上升趋势,随着埋土深度的增加,杉木萌蘖能力呈逐渐下降的趋势,在相同埋土深度条件下,去顶处理比未去顶处理杉木萌蘖能力更强。萌蘖后期(8月),埋土深度0、3、6 cm去顶处理苗的萌蘖数与同一埋土深度未去顶处理相比分别提高15.11%、6.73%及3.49%;去顶处理苗埋土深度6 cm处理的萌蘖数分别比埋土深度3及0 cm处理降低5.67%及34.29%,未去顶处理苗埋土深度6 cm处理的萌蘖数分别比埋土深度3及0 cm处理降低4.21%及25.87%。

      表 1  机械损伤和不同埋土深度处理下杉木无性系萌蘖差异

      Table 1.  Difference of tillering of Chinese fir clones treated by mechanical damage and different soil depth

      处理萌蘖/株
      2019-06-302019-07-312019-08-31
      TP10.65 ± 0.08 ab2.90 ± 0.20 bc3.50 ± 0.50 ac
      TP20.54 ± 0.06 bc2.40 ± 0.18 a3.10 ± 0.30 b
      TP30.43 ± 0.03 a2.13 ± 0.16 b2.54 ± 0.30 a
      ck11.50 ± 0.02 b2.89 ± 0.40 a3.35 ± 0.42 b
      ck21.20 ± 0.11 a2.20 ± 0.30 b3.00 ± 0.40 a
      ck30.80 ± 0.06 a2.10 ± 0.20 b2.20 ± 0.30 a
        说明:同列不同小写字母表示差异显著(P<0.05)
    • 图1看出:在萌蘖后期,杉木幼苗基部皮SOD活性除TP2较低外,其余处理均显著高于前期和中期。ck1、ck2、ck3、TP1、TP3的杉木幼苗枝叶萌蘖后期SOD活性相比于前期分别提高36.08%、45.76%、63.65%、31.56%、57.27%,相比于中期分别提高了41.99%、25.77%、49.59%、49.00%、21.23%。杉木幼苗枝叶SOD活性普遍以TP1较低,在萌蘖前期、中期和后期分别为300.99、343.08、354.89×16.67 nkat·g−1。在后期,ck3、ck2和TP3的杉木幼苗枝叶SOD活性相比于前期和中期显著上升,其中相比于前期分别提升了40.57%、54.06%和76.00%,相比于中期分别提升了18.28%、46.95%和45.86%。而杉木幼苗不同机械损伤和不同埋土深度间处理下的杉木幼苗根尖SOD活性则不具有明显规律。

      图  1  机械损伤和不同埋土深度处理下杉木幼苗SOD活性

      Figure 1.  SOD activity of Chinese fir seedlings under mechanical damage and different soil depth treatments

    • 图2可以看出:在萌蘖前期,杉木幼苗枝叶、基部皮和根尖CAT活性,从高到低排序均为TP3、TP2、TP1,ck1、ck2和ck3。TP3处理杉木枝叶CAT活性相比于TP2、TP1、ck3、ck2和ck1分别高出了459.29%、1 004.03%、366.34%、81.98%和20.30%,基部皮分别高出了419.75%、241.20%、204.15%、86.01%和43.44%;根尖分别高出了1 123.06%、933.10%、125.46%、63.93%和23.83%。在中期和后期,杉木幼苗枝叶、基部皮和根尖CAT活性均迅速下降,在中期,TP3、TP2、TP1、ck3、ck2和ck1的杉木叶片CAT活性相比于前期分别下降了36.35%、41.02%、57.08%、85.01%、89.90%和90.82%,杉木基部皮CAT活性相比于前期分别下降了20.56%、66.32%、84.29%、94.55%、85.56%和95.33%,杉木根尖CAT活性相比于前期分别下降了−47.49%、−18.77%、88.11%、92.36%、87.91%、4.52%。杉木幼苗枝叶CAT活性在中期ck2和ck1较高,在后期TP2、TP1、ck2和ck1较高。在中期和后期,杉木幼苗基部皮和根尖CAT活性规律较为统一,且总体处于较低水平。基部皮CAT活性在中、后期从高到低排序为ck2、TP3、ck3、ck1、TP1、TP2,根尖CAT活性在中、后期从高到低排序为ck2、ck3、TP3、TP2、ck1、TP1

      图  2  机械损伤和不同埋土深度处理下杉木幼苗CAT活性

      Figure 2.  CAT activity of Chinese fir seedlings under mechanical damage and different soil depth treatments

    • 图3可以看出:在萌蘖前期,未去顶的杉木枝叶、基部皮和根尖POD活性高于中期和后期。杉木枝叶POD活性前期ck1、ck2和ck3比中期分别提高了109.85%、61.63%和102.35%,比后期分别提高了135.99%、62.85%和115.02%;杉木基部皮POD活性前期ck1、ck2和ck3比中期分别提高了147.98%、141.16%和187.70%,比后期分别提高了59.14%、22.82%和61.56%;杉木根尖POD活性前期ck1、ck2和ck3比中期分别提高了174.74%、107.14%和134.69%,比后期分别提高了143.91%、45.47%和85.89%。在萌蘖前期,未去顶的杉木苗枝叶、基部皮和根尖POD活性普遍较高,POD活性从高到低依次为ck1、ck3、ck2。在中期,杉木幼苗基部皮和根尖POD活性以TP2、TP3较高。

      图  3  机械损伤和不同埋土深度处理下杉木幼苗POD活性

      Figure 3.  POD activity of young Chinese fir treated with mechanical damage and different soil depth

    • 由多因素方差分析(表2)可知:不同时期、不同机械损伤和不同部位之间SOD和POD活性具有极显著差异(P<0.01),且3种因素之间具有极显著的交互作用(P<0.01)。不同时间、不同机械损伤、不同埋土深度和不同部位之间CAT活性具有极显著差异(P<0.01),4种因素之间具有极显著的交互作用(P<0.01)。

      表 2  杉木幼苗SOD、CAT和POD活性方差分析

      Table 2.  Variance analysis of SOD, CAT and POD enzyme activities in Chinese fir seedlings

      因素SOD活性CAT活性POD活性
      均方F均方F均方F
      时期82 807.91535.981**97 192.403734.535**34 187.29654.764**
      机械损伤44 879.39319.501**19 211.774145.194**43 239.49669.264**
      埋土深度6 918.1063.0062 910.45421.996**2 831.0714.535*
      器官部位114 489.45449.747**2 658.56920.092**54 248.12786.899**
      时期×机械损伤5 232.7122.27431 600.742238.824**92 412.000148.032**
      时期×埋土深度25 120.65510.915**3 616.95027.335**2 911.3184.664**
      时期×器官部位41 964.81818.234**2 074.81315.680**4 762.1977.628**
      机械损伤×埋土深度5 197.3252.2582 605.10619.688*2 015.7233.229*
      机械损伤×器官部位4 442.0491.930978.8747.398**1 977.1183.167*
      埋土深度×器官部位1 881.6790.8181 063.0938.034**1 069.2961.713
      时期×机械损伤×埋土深度1 147.7520.4992 396.59018.112**7 094.74711.365**
      时期×机械损伤×器官部位23 470.57210.198**761.7695.757**3 770.8596.040**
      时期×埋土深度×器官部位7 876.3663.422**402.7103.043**1 433.9272.297**
      机械损伤×埋土深度×器官部位9 597.7204.170**331.1242.502*1 302.1482.086
      时期×机械损伤×埋土深度×器官部位10 678.3064.640**179.3721.3562 428.7583.891**
        说明:*表示在0.05水平(双侧)上显著相关;**表示在0.01水平(双侧)上极显著相关
    • 表3可见:萌蘖数与机械损伤呈极显著负相关(P<0.01);萌蘖数与萌蘖时期呈极显著正相关(P<0.01),SOD活性与萌蘖时期呈极显著正相关(P<0.01);SOD活性与萌蘖数呈显著正相关(P<0.05),CAT活性与机械损伤呈极显著正相关(P<0.01);CAT活性与萌蘖时期、萌蘖数和SOD活性呈极显著负相关(P<0.01),POD活性与萌蘖时期、萌蘖数呈显著正相关(P<0.05);POD活性与SOD活性呈极显著正相关(P<0.01),POD与CAT活性呈显著负相关(P<0.05)。

      表 3  机械损伤和不同埋土深度处理杉木无性系萌蘖酶活性相关性

      Table 3.  Correlation between mechanical damage and tillering enzyme activity of Chinese fir clones under different soil depth treatments

      项目机械损伤萌蘖时期萌蘖数SOD活性CAT活性POD活性
      机械损伤1.000
      萌蘖时期0.0001.000
      萌蘖数 −0.613**0.540**1.000
      SOD活性0.0170.445**0.125*1.000
      CAT活性0.293**−0.670**−0.614**−0.387**1.000
      POD活性0.1090.239*0.082*0.290**−0.269*1.000
        说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)
    • 本研究表明:随着培养时间的延长,杉木萌蘖均呈上升趋势;随着埋土深度的增加,杉木萌蘖能力逐渐呈下降的趋势。在萌蘖后期,TP1、TP2和TP3的萌蘖数与同一埋土深度ck1、ck2和ck3相比分别提高15.11%、6.73%及3.49%。说明适度的机械损伤对杉木萌蘖影响较大,利于无性系的繁殖。植物通过自然选择和人工选择,逐渐形成相应的防御机制,有助于损伤部位的愈合,并诱发全株反应,防止进一步损伤的发生。可以根据植物对机械损伤的特殊反应强化植物的抗虫抗病能力,减少施药对人类健康以及生态环境的损害,也可以探索防御反应的发生机制,以期遏制植株的“过度反应”,减少生产上的经济损失[1112]

      生物转化是利用细胞、器官或酶等生物体系进行催化的反应。由于生物转化的多样性涉及到许多酶,SOD活性过高,会影响某些正常的氧化代谢过程[13]。由于SOD具有亲核性和还原性,一定微环境下,具有很强的氧化损伤作用[14]。低CAT活性的植株对过氧化氢(H2O2)胁迫更加敏感,CAT作为植物体内重要活性氧清除酶,可与质膜透性一起表征植物受逆境伤害的程度,两者在胁迫发生后一段时间内的变化态势,可反映植物自身修复过程中的一些信息[15-16]。POD在回收过程中具有双重功能。一方面,POD可以在逆境或衰老的早期表达以去除H2O2,是活性氧保护酶系统的成员之一;另一方面,POD也可以在逆境或衰老的后期表达以参与活性氧的产生和叶绿素的降解,引起膜脂过氧化,这是植物衰老的产物,可以作为衰老的指标。本研究表明:去顶后埋土3 cm和去顶后埋土6 cm处理下的杉木幼苗叶片SOD活性相比于萌蘖前期和后期明显上升,不同部位中CAT活性总体呈下降趋势,叶、基部皮和根尖中POD活性呈增长趋势。李惠梅等[17]研究了增强UV-B辐射对麻花龙胆Gentiana straminea抗氧化酶系统的影响。结果表明:UV-B处理后,麻花龙胆叶片中SOD和POD活性在处理初期升高,但随着处理时间的延长,SOD和POD活性降低,CAT活性显著降低。这与本研究结果有一致和不同之处。生物代谢中酶活性的变化反映了环境物理化学变化,可以为环境变化提供早期预测。因此,越来越多的学者关注逆境下植物体内酶的变化,试图利用酶的变化来判断植物对环境的响应[18]。不同植物对逆境的应激方式不尽相同,适应逆境的机制十分复杂。

    • 随着埋土深度的增加,不同埋土深度杉木无性系苗萌蘖能力均呈降低的趋势,同一埋土深度下机械损伤处理无性系苗萌蘖力高于未机械损伤。随着埋土深度的增加,杉木幼苗枝叶SOD活性呈上升趋势,CAT活性呈下降趋势;埋土6 cm处理有利于枝叶及根尖POD的积累;杉木幼苗不同器官植物抗氧化酶活性的差异应与杉木对机械损伤和埋土深度处理的生理应答机制有关。本研究结果在一定程度上反映机械损伤和不同埋土深度处理后杉木无性系萌蘖SOD、CAT和POD活性的变化规律,但在杉木萌蘖过程中抗氧化酶活性之间如何维持平衡,以及如何协同作用调控杉木萌蘖等的机制尚不清楚,这有待于今后进一步深入研究。

参考文献 (18)

目录

/

返回文章
返回