-
木塑复合材料增材制造是一种新兴的木质材料成型技术,具有成型速度快、材料利用率高、绿色环保等特点。目前木塑复合材料增材制造方式主要包括熔融沉积(fused deposition modelling, FDM)技术[1]、选择性激光烧结(selective laser sintering, SLS)技术[2]和三维打印与胶黏(three dimensional printing and gluing, 3DP)技术[3]。木塑复合材料3DP主要是针对木质纤维物理力学特性,利用微滴喷射与紫外光固化技术,实现木塑粉末材料常温下的高精度成型[4]。成型过程结合了紫外线固化黏结剂(UV胶)常温成型特性和微滴喷射技术高精度、高通量和高驱动频率等特点,解决了传统3D打印中木质纤维不耐高温的问题,为木质材料的3D打印提供新方案。
在3DP工艺中,液滴质量和液滴速度等液滴参数是打印过程的重要变量[5−8],对3DP成型质量具有重要影响。木塑复合材料3DP中液滴参数受到喷射阀结构和液滴成形过程的影响,存在喷胶量偏大、高速打印液滴冲击导致粉层飞溅等问题,不能完全适应木塑复合材料3DP的成型需求。为实现对阀体结构参数和工艺参数的优化,提高打印过程的精度和稳定性。预试验测定了UV胶黏度、撞针工作速度等关键参数,基于喷射阀结构、撞针位移特性构和UV胶参数,建立了微滴喷射过程的流体体积函数(volume of fluid, VOF)仿真模型,并验证了模型的准确性。基于有限元模拟仿真和试验设计(design of experiment, DOE)方法[9],通过单因素试验阐释喷射参数对液滴参数的影响过程,得到了合理的仿真参数范围,正交试验得到了最优微滴喷射因素组合,为木塑复合材料3DP微滴喷射过程的研究提供理论模型和数据支持。
-
采用的木塑复合材料3DP设备为自主设计研发,3DP设备系统主要由铺粉系统、微滴喷射系统、控制系统等部分组成。喷射阀作为喷射系统的重要部件,其工作原理如图1所示。撞针在工作中处于常开状态,用于控制阀体的开闭,其工作过程可分为开阀、下降、关阀和上升等4个阶段,在微滴喷射过程中,下降阶段撞针的动能和关阀阶段的压差是液滴质量产生的主要因素[10]。本研究重点对撞针下降阶段和关阀阶段进行仿真分析。
UV胶(A332,奥斯邦);科研级旋转流变仪(Kinexus Ultra+,耐驰);激光位移传感器(LK-G5001,基恩士);高速相机(FASTCAM NovaS16,活图隆)。
-
采用旋转流变仪对UV胶进行恒定温度的流变特性测试。UV胶的流变特性曲线如图2所示。UV胶黏度受剪切速率影响明显。打印过程中喷嘴处UV胶的剪切速率高于100 s−1,需要考虑黏度变化对微滴喷射过程的影响[11]。采用激光位移传感器对针阀内撞针位移进行测定,测得撞针稳定振幅为0.185 mm,最大振幅为0.230 mm,撞针位移和时间呈线性关系,因为震荡时间较短,仿真过程中通常将撞针下降速度视为匀速[12],其速度为0.1~0.9 m·s−1。
-
根据预试验结果和实际工况,喷射过程中工艺参数如下:UV胶的密度为1 050 kg·m−3,UV胶黏度为0.094γ−0.945 Pa·s (γ指剪切速率),撞针的下降速度为0.1~0.9 m·s−1,供胶压力为0.1~0.5 MPa。流体在流道内中流动状态可以分为层流和紊流,通常用雷诺数(Re)来表征流体流动情况[13]。取喷嘴处液体的最大流速为0.9 m·s−1,计算喷嘴处的Re远小于2 100,判定UV胶喷射过程流动状态为层流。根据已知公式推知,在微滴喷射过程中,供胶压力、撞针速度、UV胶黏度、喷嘴直径等喷射参数对微滴喷射过程有重要影响[14]。
-
建立包含阀体结构参数和工艺参数的简化喷射阀二维模型如图3所示。其中撞针球头半径(R)为1.00 mm,撞针直径(D)为0.1 mm,喷嘴长度(l)为1.4 mm,腔体高度(h)为5 mm,喷嘴直径(d)0.10~0.30 mm,撞针行程(s)取最大振幅为0.23 mm,阀座锥角(θ)为90°~130°,阀座间隙($ {{\delta}} $)为0.25~0.45 mm,空气域的面积为3 mm×10 mm。将撞针球面壁面设置为动网格,采用UDF中宏函数Define CG_motion控制撞针沿y轴方向匀速下降。为验证阀体结构参数和工艺参数对微滴喷射过程的影响,分别在喷嘴入口和出口处设置压力、流量和速度监测点,设置每一仿真步数为1 μs,输出一次点位的仿真数据。并二维(Q2D)与三维(Q3D)质量流率的计算公式:Q3D =1/2πR Q2D ,以积分换算的方式获得三维液滴的仿真质量参数。
-
模拟属于瞬态模拟,需要进行网格无关性试验,研究网格数量与仿真结果的相关性[15]。取计算时间6 ms处主液滴最大速度验证。当网格密度为0.04、0.08、0.16 mm时液滴速度分别为1.130、1.120和1.122 m·s−1,速度变化范围在2%以内,达到了仿真的要求。为了兼顾仿真效率和准确度,取面网格密度为0.08 mm组进行后续仿真分析。
采用木塑复合材料3DP设备作为液滴发生装置,以A332UV胶作为分散剂,由空压机提供压力,经输气管与胶筒连通,利用高速相机进行图像采集,设置采集频率为5 kHz。高速相机获取液滴的速度范围为0.616~1.080 m·s−1,仿真过程中液滴的速度变化范围为0.730 ~1.120 m·s−1。此外运动初期仿真液滴速度高于液滴实际速度。这主要由撞针运动过程的震荡被仿真简化为匀速运动引起。仿真过程误差小于20%,达到仿真的要求。
-
以撞针速度、供胶压力、喷嘴直径、阀座锥角和腔体间隙等喷射参数为自变量,选取出口速度、出口压力和质量流率为过程参数,以液滴质量和主液滴速度等液滴参数为评价指标,研究自变量对微滴喷射成形过程的影响。
以单因素试验(表1)结果为基础,选取撞针速度、供胶压力、喷嘴直径3组参数为试验因素设计3因子3水平试验绘制L9(43)正交试验表(表2)。A、B、C分别指代喷嘴直径、撞针速度、供胶压力共3个变量,下标1、2、3分别指代低、中、高共3个参数水平。
表 1 单因素试验各水平取值
Table 1. Values for each level of single factor experiment
水平 撞针速度/
(m·s−1)驱动气压/
MPa喷嘴直径/
mm阀座锥角/
(º)阀体间隙/
mm1 0.1 0.1 0.10 90 0.25 2 0.3 0.2 0.15 100 0.30 3 0.5 0.3 0.20 110 0.35 4 0.7 0.4 0.25 120 0.40 5 0.9 0.5 0.30 130 0.45 中间组 0.5 0.2 0.20 120 0.35 表 2 正交试验因素表
Table 2. Orthogonal experiment table
组合
编号喷嘴直径
(A)/mm撞针速度
(B)/(m·s−1)供胶压力
(C)/MPa液滴质量/
μg液滴速度/
(m·s−1)A1B1C1 0.10 0.3 0.1 1.162 2 0.90 A1B2C2 0.10 0.6 0.2 1.162 1 2.20 A1B3C3 0.10 0.9 0.3 1.166 8 3.60 A2B1C2 0.15 0.3 0.2 9.450 7 3.62 A2B2C3 0.15 0.6 0.3 7.299 5 3.38 A2B3C1 0.15 0.9 0.1 2.945 2 2.07 A3B1C3 0.20 0.3 0.3 21.563 4 5.84 A3B2C1 0.20 0.6 0.1 10.426 9 1.68 A3B3C2 0.20 0.9 0.2 12.048 1 3.95 -
根据UDF函数设定,当撞针速度为0.1、0.3、0.5、0.7、0.9 m·s−1时撞针达到最大行程时间(即撞针与阀座撞击时间点)分别为2.296、0.765、0.458、0.327、0.254 ms。根据仿真试验,因阀座间隙液滴参数的影响较小,故未列出其对液滴参数的影响曲线。
-
由图4可知:液滴质量的变化率和终值均与喷嘴直径呈正相关。在喷嘴直径小于0.20 mm时,UV胶以液滴形式生成,喷嘴直径与液滴速度呈负相关,当喷嘴直径大于0.20 mm时,UV胶以液柱的形式喷射,出口速度和出口压力的峰值提前。随着喷嘴半径的升高,主液滴断裂时间延后,破碎液滴产生更高的相对初速度,因导致液滴速度呈先升高后降低的变化趋势。
-
图5显示:出口速度和出口压力的峰值大小与液滴阀座锥角呈正相关。UV胶速度和压力在撞针与阀座接触时产生剧烈变化。在下降阶段,阀座锥角对微滴喷射过程影响较小,随着撞针接近阀座,液滴质量急剧变化,且数值大小呈与阀座锥角呈负相关。较小的阀座锥角具有更大的纵向速度分量,可以在撞击过程产生更大的液滴驱动力,从而获得更高的液滴质量和速度。
-
图6显示:速度和压力的峰值与撞针速度呈正相关。液滴质量与撞针速度呈负相关,主液滴速度与撞针速度呈正相关。撞针速度与UV胶流体剪切速率呈正相关,根据UV胶流变特性,UV胶流体黏度大幅减小,导致出口速度极值和质量流率随撞针速度升高。随着剪切速率升高,黏度变化范围减小,液滴出口速度和质量流率随撞针速度增高变化不再显著,且由于撞针运动时间的差异(T0.1=9T0.9),在撞针速度较低时,时间成为影响液滴质量的主要因素,在撞针速度为0.1 m·s−1时,得到较大的液滴质量。
-
图7A显示:供胶压力与液滴质量呈正相关,主液滴速度则随着供胶压力升高呈现先降低后升高的趋势。由图7B和C可得,供胶压力的主要作用阶段为下降阶段。随着供胶压力增高,下降阶段自喷嘴流出的液滴质量增加。关阀阶段,撞针惯性力成为液滴断裂和喷射的主要驱动力。当供胶压力较高时,在喷嘴处形成的液滴体积增加,相较于低供胶气压组,液滴断裂时间延后,导致主液滴速度产生非规律性变化。
图 7 不同供胶压力下液滴质量、液滴速度、出口压力变化线图
Figure 7. Droplet mass, droplet velocity and outlet pressure change line chart under different glue supply pressure
由图8可得:阀体锥角较小时,液滴下落过程会产生破碎,不适合UV胶材料的微滴喷射。较小的撞针速度无法驱动UV胶液柱断裂形成稳定液滴,随着撞针速度增加,UV胶黏度减小,流动性增强,因此获得较高的液滴速度。当供胶压力和喷嘴直径过高时,过量液滴在关阀阶段前自喷嘴出口流出,使液滴获得较大的成形体积。根据单因素结论和仿真相图分析,能够实现单液滴喷射的参数范围为:撞针速度0.3~0.9 m·s−1,喷嘴直径0.10~0.20 mm,供胶压力0.1~0.3 MPa,阀座锥角120°~130°。因阀座锥角加工困难,且在范围内液滴质量和主液滴速度变化极小,以最小液滴质量为原则,确定阀座锥角为130°。选取撞针速度、喷嘴直径和供胶压力作为自变量进行正交试验。
-
如表3所示:以液滴质量为评测标准,3因素的排序为A>B>C;以主液滴速度为评价标准,3因素的排序为C>A>B。液滴质量的最优标准为A1B3C1,液滴速度的最优标准为A1B2C1。考虑在微滴喷射过程中,液滴质量为主要结果参数,因此按照一定的系数比对极差结果进行折算,得到液滴的最优参数组为A1B3C1。即撞针直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa。
表 3 正交试验极差表
Table 3. Orthogonal experiment range table
项目 液滴质量 项目 主液滴速度 A B C A B C K1 1.164 10.725 4.845 K1 2.233 3.420 1.550 K2 6.565 6.296 7.554 K2 3.023 2.420 3.257 K3 14.679 5.387 10.010 K3 3.790 3.207 4.240 R 13.516 5.339 5.165 R 1.557 1.000 2.690 -
如表4所示:建立了喷射参数关于液滴质量和液滴速度的一次线性回归模型,液滴速度=3.016−0.782A1+0.008A2+0.774A3+0.404B1−0.596B2+0.190B3−1.466C1+0.241C2+1.224C3。液滴质量=7.469−6.306A1+0.904A2+7.210A3+3.256B1−1.173B2−2.083B3−2.625C1+0.084C2+2.540C3。对于液滴质量,各喷头参数的F由大到小分别为A、B、C,可以验证极差的结论,且喷嘴直径是影响液滴质量的显著因素(P<0.05)。撞针速度和供胶压力对微滴喷射参数影响较小。对于液滴速度,各喷头参数的F由大到小分别为C、A、B,供胶压力是影响液滴速度的显著因素(P<0.05)。因此在能完成喷射的前提下,减少喷嘴直径和供胶压力,可以得到更小的液滴质量和速度。
表 4 正交试验方差表
Table 4. Orthogonal experiment variance table
方差来源 液滴质量 液滴速度 df SS MS F P df SS MS F P A 2 277.694 138.847 51.72 0.019 2 3.6351 1.8175 6.75 0.129 B 2 48.948 24.474 9.12 0.099 2 1.6644 0.8322 3.09 0.245 C 2 40.050 20.025 7.46 0.118 2 11.1158 5.5579 20.63 0.046 误差 2 5.369 2.685 2 0.5388 0.2694 合计 8 372.061 8 16.954 0 R2=98.56% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=98.56\% $ R2=96.82% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=87.29\% $ 说明:df. 自由度;SS. 离差平方和;MS. 均方值。 根据以上分析,获得最优的喷射参数:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa、阀座锥角为130°。经过仿真结果分析,得到液滴质量为0.437 μg,液滴速度为0.96 m·s−1。对比最小数据,液滴速度增加了6%,但是液滴质量缩小62%。综合速度和质量指标,可得到A1B3C1为最优参数组合。
-
正交试验得到了液滴速度和液滴质量的一次回归模型,验证了喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素,根据极差和方差分析,得到了最优的喷射参数:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa,阀座锥角为130°。
-
木塑复合材料 3DP 设备利用撞针式阀体驱动UV胶喷射到塑粉床,将UV胶这种黏结剂喷射与紫外光固化成型结合后,可以大大提高设备打印成型效率。木塑复合材料3DP是一种节能环保的成型技术,在木塑复合材料增材制造方面有很大的应用前景 [4, 16]。本研究针对目前设备存在的喷射稳定度低、喷胶量不易控制等问题,研究了撞针式阀体结构和工艺参数对液滴形成过程及液滴质量的影响,阐释了喷嘴直径、阀体锥角、供胶压力和撞针速度等参数对液滴成形参数的作用机制[17]。仿真试验中选择喷嘴直径0.10 mm、撞针速度0.9 m·s−1、供胶压力0.1 MPa的打印组合,得到0.437 μg液滴质量。相较于喷嘴直径为0.15与0.20 mm试验组,液滴质量得到明显改善。在实际试验中,换用0.10 mm喷嘴直径得到的液滴质量明显降低,且需要保持一定的撞针速度和供胶压力以实现喷射。在打印过程中喷嘴直径减小将增大喷射过程的黏滞力,形成较小的喷胶量,且需要较大的惯性力和供胶压力实现喷射过程,这与仿真结论一致。仿真试验表明对液滴质量影响因素的排序为喷嘴直径>撞针速度>供胶压力。实际过程中对于液滴质量的影响因素分别为喷嘴直径>供胶压力>撞针速度。可能因为当供胶压力过大时,开阀阶段残余的液滴质量、气道的内部结构均对仿真结果产生了影响,这是仿真模型中未考虑的部分。未来优化仿真过程的结构参数和初始条件,建立包含微滴喷射连续过程的流体体积函数有限元模型,以期实现在更加复杂的工况下分析应用,获得更可靠的研究结论。
本研究得到喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素。获得最优喷射参数组合:喷嘴直径为0.10 mm,撞针速度为0.9 m·s−1,供胶压力为0.1 MPa,阀座锥角为130°。本研究设计的木塑复合材料3DP微滴喷射流体体积函数模型可以实现对UV胶液滴参数的预测,实现对撞针运动过程中阀体参数对速度、体积和压力影响过程的分析,优化了木塑复合材料3DP的打印参数,为木塑复合材料3DP成型参数的研究提供数据基础。
Simulation of micro-droplet injection process and key parameters based on 3DP equipment of wood-plastic composites
-
摘要:
目的 以自主研发的木塑复合材料三维打印与胶黏(3DP)微滴喷射系统为基础,开展紫外线固化黏结剂(UV胶)微滴喷射过程的研究,优化喷射系统工艺参数和阀体结构参数,为木塑复合材料3DP工艺液滴铺展渗透研究提供数据支撑。 方法 对喷射阀撞针的位移特征、UV胶的流变特性进行测定分析,确定了影响木塑复合材料3DP设备微滴喷射过程的喷射参数。采用有限元法对微滴喷射过程进行仿真,分析了微滴喷射过程中UV胶在喷嘴处速度、压力和质量流率的变化特征,获得了喷射参数对微滴喷射过程的影响规律。选取撞针速度、喷嘴直径、供胶压力为自变量,以液滴成形质量和主液滴速度为评价指标,开展仿真试验求解优化参数组。 结果 单因素试验得到了撞针速度0.3~0.9 m·s−1,喷嘴直径0.10~0.20 mm,供胶压力0.1~0.3 MPa,阀座锥角120°~130°的合理喷射参数范围。正交试验得到了喷嘴直径是影响液滴质量的显著因素,供胶压力是影响液滴速度的显著因素,并获得最优的喷射参数组合为喷嘴直径0.10 mm,撞针速度0.9 m·s−1,供胶压力0.1 MPa、阀座锥角130°。 结论 建立了基于木塑复合材料3DP微滴喷射过程的VOF有限元模型,完成了喷射参数对微滴喷射影响的研究,获得了最优的喷射参数组合。图8表4参17 -
关键词:
- 木塑复合材料 /
- 三维打印与胶黏(3DP) /
- 撞针式喷射阀 /
- 紫外光胶黏剂 /
- 喷射参数
Abstract:Objective Based on the self-developed wood-plastic composite material 3DP equipment micro-droplet injection system, research on the process of UV adhesive micro-droplet injection is aimed to optimize the processing parameters and the structural parameters of the micro-droplet injection system, and provide data support for the study of droplet spreading and infiltration in the 3DP process of wood plastic composite materials. Method The displacement characteristics of the needle-type jet valve and the rheological properties of the UV adhesive were analyzed to determine the injection parameters affecting the micro-droplet injection process of the wood plastic composite 3DP processing. The finite element method was used to simulate the micro-droplet injection process to analyze the influence of injection parameters and obtain the variation characteristics of droplet velocity, pressure and mass flow rate at the nozzle during the micro-droplet injection process. The needle velocity, nozzle diameter and UV adhesive supply pressure as evaluation factors, and the mass of the droplet and the main droplet velocity as evaluation indicators, simulation experiments were conducted to optimize parameter combination. Result The results of the single factor experiment indicated that needle speed 0.3 − 0.9 m·s−1, nozzle diameter 0.10 − 0.20 mm, UV adhesive supply pressure 0.1 − 0.3 MPa were reasonable printing parameters. The results of the orthogonal experiment indicated that nozzle diameter is a significant factor of droplet mass, and the UV adhesive supply pressure is a significant factor of the droplet velocity. The droplet mass and droplet velocity are optimal when the nozzle diameter is 0.10 mm, the needle speed is 0.9 m·s−1, the UV adhesive supply pressure is 0.1 MPa, and the valve seat cone angle is 130°. Conclusion The VOF finite element model of 3DP micro-droplet injection process of wood-plastic composite was established on the basis of pre-experiment and theoretical analysis. The study on the influence of injection parameters on micro-droplet injection has been completed, and the optimal combination of injection parameters has been obtained. [Ch, 8 fig. 4 tab. 17 ref.] -
种子的呼吸作用是指在酶的参与下将种子本身的储藏物质进行一系列的氧化分解,同时释放二氧化碳、水以及能量的过程,是种子萌发过程中不可或缺的能量来源,其变化会直接影响种子的生理现象。种子的呼吸强度又称呼吸速率是衡量其呼吸作用强弱的重要生理指标[1],反映了种子的活力与代谢等生理现象的强弱,与种子的储藏存在密切关系。呼吸代谢途径的顺利启动是种子萌发并健康成长为幼苗的关键因素,对植物的后续生长发育具有重要影响。储藏过程中种子的呼吸作用会改变种子的质量和品质,影响种子活力,能否控制好种子呼吸是关系种子储藏成败的主要问题[2],因此,对种子呼吸过程进行精准检测十分必要。本研究对种子呼吸检测方法及其原理进行了综述,分析了各种检测方法的优点与存在的问题,讨论了种子呼吸检测方法在种子呼吸代谢、种子储藏和种子活力等方面的研究与应用。
1. 种子呼吸检测方法
呼吸强度是种子生命活动最重要的指标之一,有效检测种子呼吸强度是研究种子呼吸作用的重要前提。种子呼吸消耗氧气(O2),释放二氧化碳(CO2),所以氧气消耗量或者CO2释放量可以在一定程度上反映种子的呼吸强度。检测种子呼吸耗氧量的方法有瓦氏微量法、Clark氧电极法和氧传感技术检测法(Q2技术)等;检测种子呼吸CO2释放量的方法有小篮子法、红外线CO2分析仪法和可调谐二极管激光吸收光谱(TDLAS)技术检测法等。种子呼吸检测方法向着检测速度快、效率高、重现性好的方向发展,并将成为研究热点。
1.1 小篮子法
小篮子法主要通过测量种子在密闭容器中呼吸产生CO2增加量来测定种子呼吸的强度。将种子放入小篮子中,密封广口瓶,利用饱和碱液氢氧化钡[Ba(OH)2]吸收种子呼吸过程中产生的CO2。待测试结束后,再用草酸溶液滴定残留的Ba(OH)2,记录消耗的草酸溶液量为V1,另取空白组滴定记录草酸溶液量为V0。根据呼吸过程中Ba(OH)2减少量可定量测出种子在整个检测过程中CO2的增加量。基于小篮子法测定种子呼吸强度的计算公式为:种子呼吸强度(mg·g−1·h−1)=( V0−V1)/(mt),其中:m为种子鲜质量(g),t为测定时间(h)。
在不同激素、药物和生长环境下,种子萌发过程的呼吸作用会出现很大差异,利用小篮子法能够直观地研究种子在不同外界环境下呼吸作用的变化情况。张璇等[3]利用小篮子法观测到适当浓度的赤霉素浸种可以提高香果树Emmenopterys henryi种子的呼吸速率;李佳等[4]利用小篮子法测定经不同浓度赤霉素处理后的杜仲Eucommia ulmoides种子的呼吸强度,发现随着赤霉素浓度上升,种子的呼吸速率下降;方能虎等[5]采用小篮子法对水稻Oryza sativa种子进行呼吸检测,观察到种子萌发初期稀土元素对其呼吸速率动态变化具有影响;杨雪鹏等[6]利用小篮子法研究不同浓度的维生素吡咯喹啉醌对水芹Oenanthe javanica种子萌发的影响。上述研究表明:利用小篮子法测定种子呼吸,能够简单高效地获取不同浸种环境下种子的呼吸变化规律,为不同环境因素对种子萌发生理效应的探索奠定了基础。
小篮子法操作简便,但不能完全反映种子呼吸CO2浓度的动态变化过程,难以避免外界CO2的侵入和干扰,反应不敏感,在一定程度上影响了种子呼吸强度检测的精度,且计算相对复杂。李海霞等[7]对此做了改进,以利于小篮子法的推广。
1.2 瓦氏微量法
瓦氏呼吸仪(Warburg Respirometer)是测定生物因新陈代谢而产生的气压变化所用的装置。其工作原理为在恒温、恒体积的密闭系统中,用氢氧化钾(KOH)溶液吸收CO2使得气体压力降低,利用测压计显示压力值,从而得到种子呼吸过程中O2消耗量。利用瓦氏呼吸仪测量种子呼吸时,首先将种子称量后放入反应瓶中,并将反应瓶放入恒温控制器。实验开始后调节U型测压管底部的旋钮,使右侧闭管内测压液的液面保持在h=150 mm,读取左侧开管液面高度值。关闭三通活塞使压力计与反应瓶相通,待种子呼吸一段时间后,将右侧液面仍调节至原处,并记录左侧液面高度,然后关闭测压管。瓦氏微量法具有微量和多组测定的特点,灵敏度较高,压力计上只要有1 mm的测压液水柱变化就可以进行测定,比小篮子法的灵敏度和精确度好。
吕洪飞等[8]利用瓦氏呼吸仪对杉木Cunninghamia lanceolata不同无性系小孢子叶球的呼吸强度进行了测量,比较不育株与可育株小孢子叶球及其子叶的呼吸强度,并将所测结果与Clark氧电极法进行比较,2种方法所测结果趋势一致。黄真池等[9]参照黄学林等[10]的瓦氏微量法,使用Shw-2型呼吸仪在25 ℃下测定不同活力等级的白菜Brassica pekinensis种子在不同吸水时间下的呼吸速率,发现了高活力种子和中等活力种子在吸水初期(1~12 h)呼吸速率相差不明显,低活力种子的呼吸速率在吸水前4 h明显低于前两者,但随着吸水时间延长,低活力种子的呼吸速率大小与高、中等级活力种子的呼吸速率逐渐接近。王亚文等[11]利用瓦氏呼吸仪测定在暗反应与光反应条件下黑豆Glycine max种子萌发时产生CO2和消耗O2之间的变化关系,发现黑豆种子的呼吸速率变化符合“S”形曲线,存在明显的呼吸滞缓期。
利用瓦氏呼吸仪测定种子呼吸强度在一定程度上提高了测量的灵敏度和准确性。需要注意的是在瓦氏实验过程中需要保持温度恒定,进行温度校准,并尽可能采用小的呼吸室。为了避免瓦氏呼吸仪中压力和温度对呼吸室的容积产生影响,瓦氏微量法要求所取样品体积小,因此,难以用于大粒种子呼吸强度的测量。此外,Gilson差分呼吸仪和Warburg呼吸计根据呼吸作用产生的压力变化测得种子的呼吸速率,也属于瓦氏微量法,但目前Gilson差分呼吸仪在种子呼吸检测领域应用较少。
1.3 Clark氧电极法
Clark氧电极(Clark oxygen electrode)是一种极谱电极,最早用于测定水溶液中溶解氧的含量,在20世纪30年代就有人利用裸露的银-铂电极研究藻类的光合作用。CLARK[12]在1956年提出薄膜氧电极,1983年,日本学者首次采用微机械加工技术将氧电极微型化,使得测氧技术更加简便稳定[13]。Clark氧电极一般是用银作阳极,铂作阴极,加上一层氧分子可以通过但液体不能通过的薄膜以防止电极被污染,充以氯化钾(KCl)作为电解液。2个电极之间加上0.07 V左右的恒定电压,在极化电压及温度恒定的条件下,将扩散电流的大小作为溶解氧定量测定的基础,即电流大小反应溶解氧含量。Clark氧电极具有反应快、灵敏度高、可连续测量、能够记录O2的动态变化过程等优点,因此常用于研究植物根系、芽、种子、果实、叶片等组织的呼吸速率和耗氧情况,分析糖酵解、三羧酸循环等呼吸代谢途径,从而研究植物组织的休眠和休眠解除等变化过程。
线粒体与种子呼吸直接相关,是细胞进行三羧酸循环和生物氧化的场所[14-15]。BENAMAR等[16]在25 ℃下用校准氧电极检测种子碎片和线粒体耗氧量,证实了线粒体功能与种子品质之间具有相关性。王伟青等[17]利用Clark氧电极分别测定黄皮Clausena lansium种子胚轴、子叶和线粒体的耗氧速率,研究黄皮种子的脱水敏感性与种子呼吸速率显著降低的关系。陶宗娅等[18]采用Clark氧电极测定大豆Glycine max和豌豆Pisum sativum种子子叶和去子叶胚的耗氧量,研究低温吸胀对种子呼吸代谢的影响。
Clark氧电极法实现了种子呼吸的连续测量,提高了测量精度和灵敏度,但该方法对温度变化较为敏感,在测定中需要维持温度恒定。除此之外,测定前需要先从种胚中提取和纯化线粒体,操作方法较为繁琐,且需保持良好的线粒体结构不被其他细胞器污染,对操作要求较高。
1.4 红外线CO2分析仪法
20世纪50年代,为了克服传统气体测压方法操作复杂、难以实现自动化等缺点,利用CO2气体能够强烈吸收红外线特定波段能量的特点,设计制造了红外线CO2分析仪(Infrared CO2 Analyzer)[19],其工作原理为:由光源发出的红外线经反射镜分成2束能量相等的平行光束,分别通过参比气室与分析气室2个气室。由于气体吸收红外线能量,使得原来能量相等的2束红外线产生了能量差,被电容检测器接收后转变成1个电信号,从而间接测量出待测CO2的浓度。红外线CO2分析仪具有操作简单,反应灵敏,读数直观,数据可存储等优点,已被国内外学者广泛应用于各种农业和气体监测等领域[20-21]。
诸多学者利用红外线CO2分析仪测定种子呼吸强度,探究种子呼吸与其萌发过程之间的关系,发现了很多重要的呼吸现象。如陈润政等[22]利用FQ-W-002型红外线CO2分析仪对花生Arachis hypogaea种子呼吸强度进行了研究,证实了种子呼吸强度与其生活力的密切相关。陈禅友等[23]使用GXH-3010E型便携式红外线CO2分析仪测定黄秋葵Hibiscus esculentus种子在萌发期间的呼吸速率,发现其呼吸速率变化曲线符合“快—慢—快”的规律,并且发芽率高的种子比发芽率低的种子呼吸速率更高。刘美[24]利用GXH-305型便携式红外线CO2分析仪测量不同温度条件下小麦‘山农17’ Triticum aestivum ‘Shannong 17’种子萌发期间呼吸速率变化,证明了温度对种子的萌发进程具有重要影响,温度过高或过低均不利于种子萌发。
与小篮子法和瓦氏呼吸仪相比,利用红外线CO2分析仪测定种子呼吸强度,精度较高,能够在一定程度上减少人为干涉,提高种子呼吸强度测量的准确度。目前,国内红外线CO2分析仪多是进口仪器,价格较为昂贵,且在测量过程中环境温度变化会影响红外光源的稳定,直接影响测量结果。
1.5 氧传感技术检测法(Q2技术)
氧传感技术(oxygen sensing technology)检测法是在密闭环境中,通过测量种子萌发过程中氧气的消耗情况来检测种子呼吸强度,由荷兰ASTEC Global公司开发。该技术基于荧光猝灭原理,由氧传感检测仪向含有荧光材料的种子萌发试管中释放蓝光,蓝光被荧光物质吸收并发出红光返回传感器。O2分子可以消耗红光能量(即猝灭效应)。当种子萌发消耗氧气时,试管内O2浓度降低,返回的红光随之增强,所以红光的强度与O2分子的浓度成反比。在测量过程中,操作软件会根据O2浓度和时间自动绘制成耗氧曲线,测定种子呼吸时消耗O2的浓度,得到种子呼吸强度。根据耗氧曲线的特征,设定不同的氧代谢值,通过种子萌发启动时间(IMT)、萌发O2消耗速率(OMR)、临界O2压强(COP)、理论萌发时间(RGT)和理论萌发率(RGR)等值,快速区分不同活力种子。
诸多学者对不同植物种子进行测量,分析了氧传感技术测定种子呼吸的原理、测定方法和测定结果,取得了较多研究成果。陈能阜等[25]利用氧传感技术测定了番茄Solanum lycopersicum、辣椒Capsicum annuum、黄瓜Cucumis sativus、茄Solanum melongena、杉木和马尾松Pinus massoniana等6种植物种子耗氧情况,发现不同种类、活力等级相同的种子,其耗氧曲线形状类似。利用耗氧曲线分析了IMT、OMR、COP和RGT等参数,全面分析了种子O2消耗曲线的特征。陈合云[26]选用浙江省主栽的籼稻和粳稻各20个品种,通过室内标准发芽试验、田间出苗试验和氧传感检测试验,确定了适用于常规籼稻种子和粳稻种子最佳氧传感指标分别为RGR和OMR,并且基于氧传感技术研究了经处理后种子活力的变化情况,表明氧传感技术测定种子呼吸可以有效地将老化处理、未处理与引发处理的种子区分开。
氧传感技术是集生物技术与信息技术于一体的自动化测定种子呼吸耗氧能力的新技术,目前已经被应用于多种类型种子的活力水平测定[27-28]。该方法可以测量单粒种子在萌发过程中的呼吸速率,然而该方法需要对种子进行萌发,属于有损检测,检测时间较长,需要每间隔30 min或1 h对种子呼吸耗氧数据进行1次采样,无法展示种子耗氧曲线的细节。
1.6 TDLAS技术检测法
可调谐二极管激光吸收光谱技术(tunable diode laser absorption spectroscopy, TDLAS)利用激光器发出的光被待测气体选择性吸收来测量气体的浓度。HINKLEY[29]和REID等[30]在20世纪中期最早提出通过吸收光谱来检测气体浓度。1981年,REID等[31]利用波长调制技术采集数据,最终得到了和气体浓度成正比的二次谐波表达式,从而推动了TDLAS技术向高精度气体浓度检测的研究方向发展。由于TDLAS技术目前已经能够达到10−9级别甚至10−12级别的检测限,因此,很多学者利用TDLAS技术检测CO2的浓度[32-33]。目前,TDLAS技术在农业领域的研究主要包括:土地排放的气体浓度和通量的检测[34]、植物叶片水分蒸腾速率的测量[35]、农产品运输冷藏车内CO2浓度的检测[36]等方面,而对种子呼吸检测的研究较少。种子代谢产物成为种子活力检测的新思路[37]。
贾良权等[38]基于TDLAS技术自主搭建了一套种子呼吸检测系统。相较于近红外光谱技术、高光谱技术和 X 光谱技术,该系统检测成本较低,能够反演出水稻和玉米Zea mays种子呼吸过程中产生的CO2浓度曲线。通过与发芽试验数据进行相关性分析,证明种子呼吸强度与种子活力等级的之间存在高度相关性。从水稻和玉米等种子呼吸与活力实验结果来看,TDLAS技术可以对种子呼吸强度进行连续实时的监测,检测精度可以达到10−6。通过优化设计光路和选择合适波长,可以进一步提高检测精度,实时监测单粒种子的呼吸情况。可见该方法具有较广阔的发展前景。此外,理论上TDLAS技术既可以检测CO2,也可以检测O2,因此,该方法也可以通过测定耗氧量来检测种子的呼吸强度,但在实际测量时参数选择会直接影响最终检测结果,选择实验参数的依据仍有待完善。
表1归纳了上述几种种子呼吸检测方法的原理及优缺点,小篮子法、瓦氏微量法、Clark氧电极法、红外线CO2分析仪法等由于其检测精度限制,只能检测批量种子的呼吸强度或者长时间累计种子的呼吸强度。新兴技术如氧传感技术检测法和TDLAS技术检测法等在种子呼吸检测领域具有较好的发展潜力。其中,小篮子法、瓦氏微量法、Clark氧电极法等单次最小样本检测量通常为1批或数克,其检测精度取决于溶液或滴定反应沉淀物称量的准确性,检测时间取决于人为操作时间。
表 1 种子呼吸检测方法比较Table 1 Comparison of respiration detection methods for seeds检测方法 检测原理 连续测量/
自动存储优点 缺点 预处理方法 检测时间 最少样本
检测量小篮子法[3] 化学 否 装置简单;应用范围广 易受外界环境干扰;反应
不敏感浸种、萌发 10 ~20 min 1批(约2 g) 瓦氏微量法[10] 化学/物理 否 灵敏度高;可多组同时
测定受温度影响大;难以用于
大粒种子测量浸种、萌发 10~20 min 1批(约1 g) Clark氧电极法[20] 电化学 是 响应快;灵敏度高 对温度敏感;需破碎种子 破碎、吸胀 10~20 min 1批 红外线CO2分析仪法[26] 光学 是 反应灵敏;检测精度高 价格昂贵;温度影响光源
稳定浸种、萌发 约5 s 1批(约1.5 g) 氧传感技术检测法[27] 化学 是 检测氧气,实现单粒种
子和多粒种子同步测量有荧光物质的消耗,无法
实时监测浸种、萌发 约30 min 单粒 TDLAS技术检测法[39] 光学 是 灵敏度高;分辨率高 尚在实验阶段;参数选择
对结果有影响清洗 约0.1 s 单粒 2. 种子呼吸及其应用研究
2.1 种子呼吸与代谢关系研究
呼吸代谢是生命活动的中心,种子内存在多条呼吸代谢途径,最基本的3条途径为糖酵解(EMP)途径、三羧酸(TCA)循环和磷酸戊糖(PPP)途径。不同的代谢途径提供不同的能荷和还原力,在各发育阶段有不同的代谢途径与之相适应。呼吸代谢各途径的强弱与呼吸速率和种子萌发密切相关[40-41],通过探索种子的代谢途径及其各阶段呼吸强度的变化,研究呼吸代谢在种子休眠与萌发中的作用,有助于找到打破种子休眠机制的依据,从而控制种子的休眠与萌发,缩短育种年限,提高育种效率[42]。
在研究种子休眠与萌发过程各呼吸代谢途径的变化规律中,种子的呼吸速率是重要的测定指标[43]。SIMMONDS等[44]在验证PPP途径在种子休眠解除起重要作用的研究中,利用Warburg呼吸仪测量不同后熟期种子0~10 h的呼吸变化。利用此测定方法只能对收集的数据进行回归分析,计算种子呼吸速率,不能实时反映种子呼吸连续变化情况。浦心春等[45]在研究休眠及打破休眠种子的发芽过程中加入了各种呼吸抑制剂,得出各代谢途径呼吸速率占总呼吸速率的比例,分析结果表明:TCA途径及PPP途径没有充分活化是导致休眠种子不能发芽的原因之一。采用小篮子法测定种子呼吸CO2的释放速率,虽操作简便,但受环境影响较大,并且只能人工读取结果,容易造成误差。陈丽培等[46]将培养过程中的油松Pinus tabuliformis种子每隔9 h取出并放入LI-6400光合作用呼吸仪中测量其呼吸速率,获得呈“S”形曲线的呼吸速率变化结果,并结合代谢途径关键酶活性的测定,得出种子在培养初期以EMP途径为主,而中后期由EMP途径转向PPP途径和TCA途径。该研究采用的LI-6400光合作用呼吸仪基于红外线CO2测量原理,可以有效地测定种子呼吸速率,具有测量相对精确、自动化程度高等优点,但该方法需要间隔较长时间(9 h)取出样品进行测量,时间分辨率较低,对获得的呼吸曲线质量有一定影响。
呼吸代谢由EMP/TCA途径转向PPP途径对种子休眠的解除具有重要作用,通过呼吸速率测定可以了解种子各代谢途径的活化程度。为了进一步探究种子休眠与萌发机制,需要综合分析多种因素及其相互作用,结合种子呼吸速率、酶活性和内源激素调控,全面把握种子生理变化,使呼吸代谢的研究具有更大的理论意义和实际效益。种子呼吸检测方法在种子休眠解除与促进萌发的研究中具有关键作用,研究者们采用不同的呼吸代谢检测方法对种子呼吸代谢途径的呼吸速率进行测定。传统方法受环境因素影响较大,灵敏度低,时间分辨率有限,并且由人工读取测量结果容易造成实验误差,合理选取或研究新型高灵敏度且自动化程度高的种子呼吸代谢测定方法有助于提高种子呼吸代谢效率以及结果的准确性。
2.2 种子呼吸与储藏关系研究
种子储藏是种质资源离体保存、年度间用种余缺调剂与应急用种的有效措施[47]。种子的呼吸作用是种子储藏期间的重要生理活动,控制好种子的呼吸作用,减少储藏物质的消耗,保持种子旺盛的生命力,才能达到种子安全储藏的目的[48]。测定种子的呼吸强度可以衡量其呼吸作用的强弱,有利于了解储藏过程中种子生理状态、环境影响因素与种子呼吸强度之间的关系,为改善储藏条件提供必要数据支撑。胡小荣等[49]将储藏12个月的大葱Allium fistulosum和油菜Brassica campestris种子分别存于50、35、20和−18 ℃环境下,并利用GC-7AG气相色谱仪测定种子呼吸速率,研究发现:随着储藏温度的升高,大葱和油菜种子的CO2释放量增大,同一储藏温度下,随着含水量的降低,种子CO2释放量减少。LIU等[50]在常温与低温2种环境下,用小篮子法测定储藏第4年的马尾松种子的呼吸强度,发现在常温开放储藏环境下,种子呼吸旺盛、养分消耗快,易丧失生活力,而采用低温密封法可以较好地保持种子的生活力。可见,在一定范围内,呼吸作用的强度会随温度的上升而增强。在储藏期间,温度变化导致的种子呼吸变化还可能影响种子的感官品质。王道营等[51]将玉米种子在不同温度条件下储藏一段时间后,取出放入密闭玻璃瓶中,通过GXH-3010D型红外CO2分析仪测定一段时间内种子的呼吸变化情况,发现在不同温度下含糖量递减速率随温度的升高而加大,在较低储藏温度下甜玉米含糖量较高,呼吸强度和失水量较低,能够保持较高的食用品质。种子的水分含量与空气成分同样是种子呼吸的重要影响因素。王若兰等[52]取适量预处理后的小麦种子放入SKW-3仪器的呼吸瓶内,测定在不同温度、水分和氧气浓度下小麦种子呼吸速率的变化。结果表明:在一定条件下,小麦种子呼吸作用的强度随着温度或水分的升高而加强,随着氧气浓度的降低而逐渐被抑制。
部分学者指出:种子呼吸作用在储藏期间受温度、湿度及环境中O2、CO2等因素的影响[53],通过降温、干燥、缺氧储藏等手段能够有效抑制种子的呼吸作用[54],使种子处于极微弱的呼吸状态,保持种子品质,延长储藏时间,减少农业生产中的经济损失。然而在不同环境中,部分呼吸检测仪器同样会受到环境因素变化的影响,如小篮子法难以避免外界CO2气体的干扰,且仅能测量取出后储藏种子的呼吸强度,无法及时反映不同储藏环境下种子的呼吸情况;Gilson差分呼吸仪和Warburg呼吸计2种仪器对压强或温度变化都极为敏感,设置不同温度与O2浓度环境,都需要对仪器进行平衡,且耗费时间较长;红外线CO2分析仪和TDLAS技术等方法可以通过调节气室环境来测量不同温度、气体浓度下种子的呼吸作用,能有效避免环境因素对仪器产生的影响。可见,在储藏环境因素对种子呼吸强度影响的研究中,所采用的种子呼吸检测方法不仅要结果精确、自动化程度高,还需尽量减少环境因素干扰,才可以实时反映不同储藏环境下种子的呼吸变化情况。
2.3 种子呼吸与活力关系研究
种子活力作为衡量种子质量的一个重要指标,对农业生产和自然环境等民生问题有着重要影响[55]。种子的呼吸强度与其活力存在一定的正相关性[56-57]。国内外学者尝试采用不同的检测技术对种子呼吸过程中O2的消耗量或产生的CO2量进行检测,研究种子呼吸与活力相关性。在种子活力研究中采用测定耗氧量的方法有:Gilson差分呼吸仪法、瓦氏微量法、Clark氧电极法[58]和氧传感技术检测法等。
WOODSTOCK等[59]将玉米种子置于装有5 mL水的反应瓶中并连接Gilson差分呼吸仪,测量种子吸水开始后2~30 h的耗氧情况,得出在空气环境下种子的呼吸速率与根长、芽长的相关系数分别为0.82和0.79,表明种子呼吸速率与发芽和幼苗生长之间呈显著正相关。赵光武等[37]探讨了氧传感测定指标与杉木种子发芽测定指标之间的相关性,应用氧传感技术软件自动绘制耗氧曲线并计算,得到COP,指出呼吸强度开始降低时O2浓度与发芽率呈显著负相关。钟希琼等[60]在水稻种子萌发进行到80~88 h时,用滴定法(同小篮子法)测定种子呼吸速率,研究发现:其生活力、发芽势、发芽率、发芽指数均与呼吸速率呈显著正相关,相关系数分别为0.847、0.931、0.937和0.870。贾良权等[38]基于TDLAS检测技术选取3个活力等级的甜玉米种子,将预处理后的种子放入基于TDLAS技术的种子呼吸容器中,启动设备自动存储数据并绘制呼吸产生的CO2浓度曲线图,计算得到第3~8小时各时刻种子的呼吸强度与活力指数的相关系数均大于0.900。这表明种子的呼吸强度可以快速反映种子的活力水平。
上述研究结果表明:玉米、水稻、杉木等种子的呼吸强度与其发芽率、发芽势、发芽指数等呈现一定的正相关性。但目前还存在一些科学问题尚未解决,如在同一遗传品系内部种子呼吸强度与种子活力的定量关系,以及不同遗传品系间种子的活力与呼吸强度相关度等具体问题。针对上述问题,可通过种子呼吸检测及发芽试验,定量研究种子呼吸强度与种子活力之间的相关关系,以期通过呼吸强度的检测来准确判定种子活力的高低,从而提高制种效率。氧传感技术与TDLAS技术在种子呼吸检测领域的应用,使得种子活力检测向着快速、准确且自动化程度高的方向发展。相比发芽、田间出苗等试验,氧传感技术与TDLAS技术操作更加简便、耗时较短、效率更高,可将呼吸强度作为鉴定种子活力的生理指标,并在种子选择、检验、储藏等领域广泛应用。
3. 展望
种子呼吸强度的检测可以用于研究种子休眠解除过程中各代谢途径,了解种子的活力情况及收获后的生理状态,指导选用和生产高活力种子,在研究种子呼吸代谢、种子活力和种子储藏等方面具有重要的意义与价值。结合目前种子呼吸检测方法和应用领域的研究进展,笔者认为应着力从以下几个方面开展进一步研究:①小篮子法、瓦氏微量法等目前常用的种子呼吸检测方法多数存在不能实时反映种子呼吸变化等缺陷且属于有损检测。新型技术如红外线CO2分析仪法、氧传感技术法等近年得到了较好的应用与发展,这些方法能够获得种子呼吸检测的变化曲线,然而这些方法多针对批量种子长时间呼吸积累量进行检测,对单粒种子以及种子萌发前的呼吸检测尚无能为力,因此具有一定的应用局限。总体种子呼吸检测方法的研究进展缓慢,对种子生理生化的深入研究产生了一定的影响。以TDLAS技术为代表的新型光学检测方法具有高灵敏度、快速检测等优点,其检测精度能够达10−6以下,通过选用强吸收线的激光器光源并配合长光程种子吸收池,种子呼吸CO2检测精度甚至可以达到10−9,种子呼吸消耗O2检测精度达10−6级别。可见,TDLAS技术是一种颇具前途的种子呼吸检测方法,能够有效地避免上述问题,且TDLAS技术可以进行CO2和O2等多种气体的同步监测,能够全面掌握种子呼吸代谢过程变化情况。因此,随着种子呼吸与生理生化、储藏环境等相关领域的研究进展,基于TDLAS等光学检测技术的研究,同时开展呼吸代谢中CO2和O2的同步监测,研究出灵敏度更高、操作更为简单的种子呼吸检测方法及装备具有可行性。②目前,种子呼吸研究主要集中在种子呼吸代谢与休眠、萌发、代谢途径等相关领域。随着技术手段的提升,可以进一步加强种子休眠、种子早期萌发机制以及盐碱、温度等环境胁迫与种子呼吸代谢关系研究,深入分析种子呼吸代谢及其影响因素的关系,从而完善种子呼吸代谢相关理论。③保持种子储藏活力的关键因素之一在于降低种子的呼吸强度和减缓劣变进程。在种子储藏仓库中除了设置测温仪、水分测定仪、发芽箱等设备,还应该增加呼吸检测仪器,监测储藏过程中种子的呼吸强度,及时了解种子的生理活动状态。开展低成本种子储藏呼吸CO2在线气体监测系统研制具有重要价值。④目前种子呼吸与种子活力的研究主要为定性研究,定量研究还相对较少。两者定量关系模型的研究和建立可为利用种子呼吸进行种子活力检测提供重要的理论支撑。此外,在种子呼吸与种子活力关系研究中,应将种子呼吸指标和种子活力参数(种子发芽率、发芽势、发芽指数、活力指数)以及种子发育过程中内含物的变化情况相结合,全面分析种子呼吸强度与种子活力的定量关系,并以此为依据,探寻能够将种子呼吸强度作为有效判定种子活力的方法,特别应加强种子萌发前的呼吸与活力相关指标的研究。
-
表 1 单因素试验各水平取值
Table 1. Values for each level of single factor experiment
水平 撞针速度/
(m·s−1)驱动气压/
MPa喷嘴直径/
mm阀座锥角/
(º)阀体间隙/
mm1 0.1 0.1 0.10 90 0.25 2 0.3 0.2 0.15 100 0.30 3 0.5 0.3 0.20 110 0.35 4 0.7 0.4 0.25 120 0.40 5 0.9 0.5 0.30 130 0.45 中间组 0.5 0.2 0.20 120 0.35 表 2 正交试验因素表
Table 2. Orthogonal experiment table
组合
编号喷嘴直径
(A)/mm撞针速度
(B)/(m·s−1)供胶压力
(C)/MPa液滴质量/
μg液滴速度/
(m·s−1)A1B1C1 0.10 0.3 0.1 1.162 2 0.90 A1B2C2 0.10 0.6 0.2 1.162 1 2.20 A1B3C3 0.10 0.9 0.3 1.166 8 3.60 A2B1C2 0.15 0.3 0.2 9.450 7 3.62 A2B2C3 0.15 0.6 0.3 7.299 5 3.38 A2B3C1 0.15 0.9 0.1 2.945 2 2.07 A3B1C3 0.20 0.3 0.3 21.563 4 5.84 A3B2C1 0.20 0.6 0.1 10.426 9 1.68 A3B3C2 0.20 0.9 0.2 12.048 1 3.95 表 3 正交试验极差表
Table 3. Orthogonal experiment range table
项目 液滴质量 项目 主液滴速度 A B C A B C K1 1.164 10.725 4.845 K1 2.233 3.420 1.550 K2 6.565 6.296 7.554 K2 3.023 2.420 3.257 K3 14.679 5.387 10.010 K3 3.790 3.207 4.240 R 13.516 5.339 5.165 R 1.557 1.000 2.690 表 4 正交试验方差表
Table 4. Orthogonal experiment variance table
方差来源 液滴质量 液滴速度 df SS MS F P df SS MS F P A 2 277.694 138.847 51.72 0.019 2 3.6351 1.8175 6.75 0.129 B 2 48.948 24.474 9.12 0.099 2 1.6644 0.8322 3.09 0.245 C 2 40.050 20.025 7.46 0.118 2 11.1158 5.5579 20.63 0.046 误差 2 5.369 2.685 2 0.5388 0.2694 合计 8 372.061 8 16.954 0 R2=98.56% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=98.56\% $ R2=96.82% $ {R}_{\mathrm{a}\mathrm{d}\mathrm{j}}^{2}=87.29\% $ 说明:df. 自由度;SS. 离差平方和;MS. 均方值。 -
[1] 查瑶, 饶俊, 关莹, 等. 竹叶/HDPE复合材料的制备及性能[J]. 浙江农林大学学报, 2020, 37(2): 343 − 349. ZHA Yao, RAO Jun, GUAN Ying, et al. Preparation and properties of bamboo leaf/HDPE composites [J]. Journal of Zhejiang A&F University, 2020, 37(2): 343 − 349. [2] 杜春贵, 魏金光, 金春德, 等. 竹碎料/酚醛树脂制备竹材陶瓷的烧结工艺[J]. 浙江农林大学学报, 2016, 33(3): 471 − 476. DU Chungui, WEI Jinguang, JIN Chunde, et al. Sintering process of bamboo ceramics prepared from bamboo chips/phenolic resin [J]. Journal of Zhejiang A&F University, 2016, 33(3): 471 − 476. [3] ROSENTHAL M, HENNEBERGER C, GUTKES A, et al. Liquid deposition modeling: a promising approach for 3D printing of wood [J]. European Journal of Wood and Wood Products, 2018, 76(2): 797 − 799. [4] 闫承琳, 刘子昕, 刘东, 等. 基于黏结剂喷射的木质材料增材制造技术研究进展[J]. 世界林业研究, 2023, 36(1): 90 − 96. YAN Chenglin, LIU Zixin, LIU Dong, et al. Research progress in additive manufacturing technology for wood materials based on 3DP [J]. World Forestry Research, 2023, 36(1): 90 − 96. [5] GAO Xiangyu, YANG Weidong, XIAN Hongxuan, et al. Numerical simulation of multi-layer penetration process of binder droplet in 3DP technique [J]. Computer Modeling in Engineering &Sciences, 2020, 124(1): 227 − 241. [6] HADI M, NIKNAM M, LI Yang. Effect of powder characteristics on parts fabricated via binder jetting process [J]. Rapid Prototyping Journal, 2019, 25(2): 332 − 342. [7] DENESUK M, SMITH G L, ZELINSKI B J J, et al. Capillary penetration of liquid droplets into porous materials [J]. Journal of Colloid and Interface Science, 1993, 158(1): 114 − 120. [8] NEFZAOUI E, SKURTYS O. Impact of a liquid drop on a granular medium: inertia, viscosity and surface tension effects on the drop deformation [J]. Experimental Thermal and Fluid Science, 2012, 41: 43 − 50. [9] 雷永杰, 周建波, 傅万四, 等. 竹材索道集材运输装备跑车及悬索的设计与分析[J]. 浙江农林大学学报, 2023, 40(6): 1348 − 1356. LEI Yongjie, ZHOU Jianbo, FU Wansi, et al. Design and analysis of bamboo cableway skidding transportation equipment sports car and suspension cable [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1348 − 1356. [10] 路崧, 江海, 顾守东, 等. 液压式压电驱动喷射点胶阀设计与实验[J]. 四川大学学报(工程科学版), 2015, 47(3): 167 − 173. LU Song, JIANG Hai, GU Shoudong, et al. Experiment and design for the hydraumatic piezoelectric driven jet dispensing value [J]. Journal of Sichaun University (Engineering Science Edition), 2015, 47(3): 167 − 173. [11] 张伏, 付三玲, 佟金, 等. 玉米淀粉糊的流变学特性分析[J]. 农业工程学报, 2008, 24(9): 294 − 297. ZHANG Fu, FU Sanling, TONG Jin, et al. Rheological properties of maize starch pastes [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(9): 294 − 297. [12] 黄强强, 闫宝瑞, 汪扬烨, 等. 高聚物熔滴形成与断裂过程的数值模拟[J]. 北京化工大学学报(自然科学版), 2017, 44(1): 63 − 68. HUANG Qiangqiang, YAN Baorui, WANG Yangye, et al. Numerical simulation of formation and fracture process in polymer droplets [J]. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(1): 63 − 68. [13] 闫大壮, 杨培岭, 赵桥. 滴头流道内部含沙水流流动特征的试验研究[J]. 农业工程学报, 2008, 24(2): 52 − 56. YAN Dazhuang, YANG Peiling, ZHAO Qiao. Experimental study on suspensions flow hydraulic characteristics in dripper emitter path [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(2): 52 − 56. [14] 陈学锋, 徐言生, 胡建国, 等. 聚合物熔体二维非等温脉动流场模型[J]. 塑料, 2015, 44(2): 85 − 88. CHEN Xuefeng, XU Yansheng, HU Jianguo, et al. Models of 2D non-isothermal pulsating flow of polymer melt [J]. Plastics, 2015, 44(2): 85 − 88. [15] 卢富明, 范雪琪, 丁雨晴, 等. 双向侧风木材干燥窑内流场的数值模拟与优化[J]. 林产工业, 2023, 60(1): 33 − 39. LU Fuming, FAN Xueqi, DING Yuqing, et al. Numerical simulation and optimization of the flow field in bilateral side-fan wood drying kiln [J]. China Forest Products Industry, 2023, 60(1): 33 − 39. [16] 刘东, 刘子昕, 王琦, 等. 基于离散元的竹粉颗粒接触参数标定[J]. 浙江农林大学学报, 2023, 40(4): 875 − 882. LIU Dong, LIU Zixin, WANG Qi, et al. Calibration of contact parameters for bamboo powder particles based on DEM [J]. Journal of Zhejiang A&F University, 2023, 40(4): 875 − 882. [17] 陈恒, 杨俊逸, 张志航, 等. 气动喷射点胶CFD仿真与实验研究[J]. 科学技术与工程, 2017, 17(31): 94 − 100. CHEN Heng, YANG Junyi, ZHANG Zhihang, et al. CFD simulation and experimental study on pneumatic jetting [J]. Science Technology and Engineering, 2017, 17(31): 94 − 100. 期刊类型引用(3)
1. 王娇娇,田歌,王巧华,曹芮,欧超斌. 一体式禽蛋呼吸检测装置设计与试验. 食品科技. 2023(01): 50-55 . 百度学术
2. 叶文兴,孔令琪. 基于氧传感技术测定燕麦种子活力的初步研究. 草地学报. 2023(06): 1714-1719 . 百度学术
3. 王军利,千小绵,周佳,孙越赟,李乐,高潮,冯树林. 低温冷藏对卷丹百合珠芽呼吸强度与萌发生根的影响. 贵州农业科学. 2023(10): 92-99 . 百度学术
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230511