留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珍稀濒危植物堇叶紫金牛生存群落结构特征及物种多样性

马凯 夏国华 闫道良 谢文远 严彩霞 吴家森 李根有

张建云, 吴胜春, 王敏艳, 等. 烟秆炭修复重金属污染土壤的效应及对烟草生长的影响[J]. 浙江农林大学学报, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
引用本文: 马凯, 夏国华, 闫道良, 等. 珍稀濒危植物堇叶紫金牛生存群落结构特征及物种多样性[J]. 浙江农林大学学报, 2012, 29(4): 498-509. DOI: 10.11833/j.issn.2095-0756.2012.04.004
ZHANG Jianyun, WU Shengchun, WANG Minyan, et al. Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production[J]. Journal of Zhejiang A&F University, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
Citation: MA Kai, XIA Guo-hua, YAN Dao-liang, et al. Structural characteristics and species diversity of the endangered plant Ardisia violacea[J]. Journal of Zhejiang A&F University, 2012, 29(4): 498-509. DOI: 10.11833/j.issn.2095-0756.2012.04.004

珍稀濒危植物堇叶紫金牛生存群落结构特征及物种多样性

DOI: 10.11833/j.issn.2095-0756.2012.04.004
基金项目: 

浙江省科学技术重大项目(2006C12059-2);浙江农林大学科研发展基金资助项目(2008FK53)

详细信息
    通信作者: 李根有

Structural characteristics and species diversity of the endangered plant Ardisia violacea

More Information
    Corresponding author: LI Gen-you
  • 摘要: 以浙江省建德市绿荷塘森林公园堇叶紫金牛Ardisia violacea生存群落为对象,应用标准样地法和每木调查法调查了群落种类和结构特征,并用群落学方法计算了群落内乔木层各树种的重要值,采用Shannon-鄄Weiner指数、Simpson指数、Pielou均匀度指数分别研究了群落内3个样地中乔木层、灌木层、草本层的物种多样性,并根据胸径级频率分布的形状,将主要乔木层树种的种群结构分为3种类型。结果表明:该群落资源丰富,共有维管束植物116种(含变种),隶属于47科79属。从生活型上区分来看,堇叶紫金牛生存群落中共出现木本植物83种,其中针叶树2种,常绿阔叶树48种,落叶阔叶树33种,群落以小高位芽植物和矮高位芽植物的种类较多。根据分布生境、群落结构和种类组成,可以将堇叶紫金牛生存群落分为3个类型:甜槠Castanopsis eyrei-栲树Castanopsis fargesii林,杉阔混交林和杉木Cunninghamia lanceolata人工林。在垂直结构方面,大体包括乔木层、灌木层、草本层,此外还有一些层间植物,而且种类较为丰富,并且3种类型群落的高度结构大致相同。在3个样地中灌木层中的物种丰富度指数均为最大。杉阔混交林中草本层的Shannon-Weiner指数最大,而甜槠-栲树林和杉木人工林中灌木层Shannon-Weiner指数最大。Simpson指数在甜槠-栲树林和杉木人工林中乔木层最大,而在杉阔混交林中灌木层最大。主要乔木层种群结构为单峰型的枫香Liquidambar formosana,拟赤杨Alniphyllum fortunei,马尾松Pinus massoniana为阳性乔木树种,无正常更新能力,在演替后期比较稳定的群落中,将最终衰退消失;间歇型的青冈Cyclobalanopsis glauca,木荷Schima superba,乌药Lindera aggregata等为不连续生长型,更新具有波动性和机会性,介于顶极群落先锋种和优势种之间;逆J-字型的杉木、甜槠、栲树、山矾Symplocos caudata等常绿阔叶乔木树种,为顶极群落的优势种。图2表7参29
  • 烟草Nicotiana tabacum是中国重要的经济作物之一。中国烟草种植面积高达100万hm2,烟叶产量达450~500万t·a-1,其中烟秆产量约为150万t·a-1[1],由于管理比较粗犷,烟叶收获后大量烟秆被堆砌焚烧,不仅造成农林秸秆资源的巨大浪费,且焚烧产生的烟气对大气环境造成了严重影响。另一方面,有研究发现,中国部分烟草种植区土壤受到了不同程度的重金属污染,如贵阳和安顺镉的单项污染指数分别为1.581和1.103[2],当烟叶中含有过量重金属时,抽吸过程中,重金属会以气溶胶或金属氧化物的形式通过主流烟气进入人体,造成潜在危害[3];此外,连作会使重茬种植后的烟草生长迟缓、植株矮小、产量品质降低、土传病虫害加重等现象[4-5],严重影响当地烟农的经济收益。因此,寻找一种既能解决烟秆有效利用,同时又能降低土壤重金属生物有效性,并能提高重金属污染烟田经济价值的方法尤为重要。生物质炭是富含碳的生物质在缺氧或者无氧的条件下通过高温裂解或者不完全燃烧,生成的一种含碳量大、孔隙结构复杂的固体物质[6-7]。近年来,有研究表明:生物质炭可以提高土壤肥力[8],降低二氧化碳排放量[9];其含有的高比表面积、孔隙结构、碱性阳离子和官能团,对重金属有良好的修复作用[10];还可以改善土壤团聚体、降低土壤容重[11],促进土壤微生物活性[12],提高土壤酶活性[13]。因此,生物质炭化资源化利用不仅是低端农林废物如烟秆高值化利用的新技术途径,也是土壤学、环境科学、生态学等专业领域研究的一个重大热点。本研究利用贵州省毕节地区烟叶收获后的废弃烟秆制备成的烟秆炭改良重金属污染土壤,进行烟草种植试验,主要考察①烟秆炭对重金属污染土壤理化性质的影响;②烟秆炭对重金属污染土壤金属有效性的影响;③烟秆炭对烟叶生产及重金属质量分数的影响。希望通过本试验研究,为烟秆废弃物的炭化资源化再生使用及重金属污染土壤的修复利用提供理论依据。

    供试土壤采自浙江富阳朱家坞一块重金属复合污染水稻田。该采样点受到周边铜冶炼小作坊废水直排和大气沉降污染,因长期施用石灰,呈弱碱性。采样时取0~20 cm的表层土,带回实验室后剔除植物根系等杂物,风干后混匀、磨碎、过2 mm尼龙筛备用。实验用生物质炭是以贵州毕节地区烟叶收获后的废弃烟秆为原料在600 ℃下热裂解1 h制成,炭化后的产物过2 mm筛储备待用。土壤样品碱解氮、有效磷、有机质分别为132.67,13.31,63 600 mg·kg-1,pH值为pH 7.68,铜、铅、镉分别为296.66,5.91,291.39 mg·kg-1。烟秆炭的总氮、炭、氢、硫分别为20.1,597.5,32.6,3.6 g·kg-1,pH 10.51,铜、镉、铅分别为38.16,1.33,6.93 mg·kg-1,比表面积为368.92 m2·g-1,孔隙度为0.30 cm2·g-1,孔径大小为3.71 nm-1

    盆栽试验在浙江农林大学温室大棚进行。用土4.0 kg·盆-1,烟秆炭用量按0(对照TB0), 20, 40, 80 g·kg-1[m(炭): m(土)]计算施入(分别以TB20,TB40,TB80计),重复4次·处理-1。随机区组排列,并且隔15 d调换1次以保证每盆烟草苗生长受外界环境条件的影响基本一致。基肥选择硝酸铵、过磷酸钙和硫酸钾,用量分别为0.30, 0.80和0.30 g·盆-1,将基肥与土壤、烟秆炭充分混匀后装入塑料桶中(高32 cm,直径21 cm)。烟草种植采用直播方式,于2016年3月27日播种,苗高至10 cm时间苗,留长势一致的烟苗1株·盆-1。试验期间每天为每盆植物补充蒸馏水,使土壤含水量保持在田间最大持水量的65%左右。盆栽试验于8月6日结束。

    植物样的采集:先采收烟叶,然后将植株连根拔起,带回实验室区分根系和地上部,充分漂洗干净,待水珠自然风干后称量各部位鲜质量,然后装入牛皮纸袋105 ℃杀青30 min,60 ℃烘干至恒量,用植物粉碎机(CS-700,中国)粉碎后过0.125 mm筛,装入塑料封口袋中保存待测。

    土壤样的采集:用环刀(长40 cm,直径1 cm)按梅花采样法采集盆栽土壤,采样约500 g·盆-1,充分混匀后带回实验室阴干,用行星式球磨机(QM-3SP04-1,中国)磨碎后过0.125 mm筛,转入塑料封口袋中保存待测。

    土壤pH值采用酸度计(FE20,中国)测定[m(土): m(水)= 1.0: 2.5];有效磷测定采用Olsen法,经过0.5 mol·L-1碳酸氢钠(NaHCO3)浸提[m(土): m(水)=1: 20],比色法测定;有机碳采用低温外热重铬酸钾氧化-比色法[14]

    土壤重金属有效态提取采用二乙三胺五乙酸(DTPA)浸提法[m(土): m(水)=1: 20),重金属质量分数用电感耦合等离子体发射光谱仪(ICP-OES,Prodigy 7,美国)测定[15]。烟叶中重金属质量分数采用硝酸(HNO3)消解,ICP-OES测定[15]。测定过程分别采用土壤(GBW07447)和植物标准物质(GBW10012)进行质量控制。

    土壤脲酶的测定采用苯酚钠-次氯酸钠比色法;碱性磷酸酶采用磷酸苯二钠比色法,缓冲液选柠檬酸缓冲液(pH 7.0);脱氢酶采用TTC分光光度法。为衡量土壤酶综合活性值,对土壤氧化还原酶活性求取集合平均数,计算公式为:$ {G_{{\rm{Mea}}}} = \sqrt[3]{{脲酶活性 \times 脱氢酶活性 \times 碱性磷酸酶活性}} $[16]

    烟秆炭碳、氮、氢和硫质量分数用元素自动分析仪(Vario EL Ⅲ,德国)测定。炭比表面积由比表面积及孔隙度分析仪(SI-MP-10,美国)测定。烟秆炭官能团由傅里叶变换近红外光谱仪(FT-IR,IR Prestige 21,日本)测定。

    应用SPSS 17.0进行数据统计分析,采用单因素方差分析和Duncan's多重比较评价不同处理对土壤pH值、有效磷、碱解氮质量分数和有效态重金属质量分数等指标影响的显著性。采用Person法分析重金属有效性与土壤理化性质之间的相关性。应用Origin 8.5和Excel软件作图。

    烟秆炭主要成分是碳(≈60%),含有少量的氮、氢、硫,pH 10.51,呈碱性,比供试土壤高2.83个单位。烟秆炭比表面积(BET)高达368.92 m2·g-1,与稻草炭(500 ℃裂解30 min,比表面积为29.97 m2·g-1)[17]和死猪炭(800 ℃裂解1 h,比表面积为29.15 m2·g-1)[18]相比有较高的比表面积,能为金属离子提供更多的吸附点位。由图 1可知:生物质炭表面含有丰富的芳香族和脂肪族官能团[19],这些含氧官能团决定了生物质炭具有亲水、疏水性,并增强其对酸碱的缓冲能力,也是土壤pH升高的关键因素。

    图  1  烟秆炭FT-IR表征
    Figure  1.  FT-IR characterization of the tobacco stalk biochar

    表 1显示:施用烟秆炭可以显著提高土壤pH值,且随着炭施加量的增加,土壤pH值显著提高。其中处理TB80效果最为显著,与对照相比土壤pH显著提高了0.38个单位。土壤有机质的变化趋势与pH值一致(表 1),但土壤溶解性有机碳质量分数只有在烟秆炭施加量增加到80 g·kg-1时,才呈现显著性提高(23.4%)。

    表  1  不同处理下土壤pH值和养分质量分数
    Table  1.  Soil pH and nutrient contents under different treatments
    处理 pH值 ω有机质/(g·kg-1) ω水溶性碳/(mg·kg-1) ω有效磷/(mg·kg-1) ω碱解氮/(g·kg-1)
    TB0 7.76 ± 0.06 d 29.73 ± 2.74 d 222.76 ± 16.58 b 19.71 ± 3.38 c 0.10 ± 0.003 bc
    TB20 7.85 ± 0.03 c 39.38 ± 2.46 c 228.51 ± 22.21 b 27.10 ± 7.66 c 0.11 ± 0.006 c
    TB40 7.97 ± 0.04 b 47.43 ± 7.11 b 231.26 ± 24.88 b 42.80 ± 6.76 b 0.12 ± 0.005 ab
    TB80 8.14 ± 0.05 a 60.08 ± 4.97 a 274.96 ± 15.49 a 67.50 ± 8.74 a 0.12 ± 0.008 a
    说明:TB0为对照,英文小写字母代表同列不同处理间的显著性差异水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    另外,施用一定数量的烟秆炭也能显著增加土壤碱解氮和有效磷质量分数(表 1)。与对照相比,施加20 g·kg-1烟秆炭对土壤碱解氮和有效磷质量分数提高不明显;当施加量增加到40 g·kg-1时,土壤有效磷质量分数显著提高,当增加到80 g·kg-1时,土壤有效磷比40 g·kg-1时又增加了约60.0%;但只有将烟秆炭施加量提高到80 g·kg-1时,与对照相比土壤碱解氮质量分数才显著增加(20.0%)。

    土壤重金属有效态主要指植物有效态,它与重金属形态关系密切[20]。中国现行土壤重金属有效态的提取采用二乙三胺五乙酸(DTPA)浸提法[NY/T 890-2004]。从图 2可见:施加烟秆炭能显著降低土壤中铜、镉和铅的有效态质量分数,但不同施用量对3种重金属的钝化效果表现不同。以土壤施加40 g·kg-1的烟秆炭为分界点,施用20 g·kg-1烟秆炭就能显著降低土壤有效态铜、铅和镉质量分数,与对照相比分别下降了16.6%,18.7%和19.6%;增加炭的施用量至40 g·kg-1,土壤中有效态镉质量分数并没有持续降低,而铜和铅又显著降低了20.5%和13.2%;再提高烟秆炭的施用量至80 g·kg-1,并不能继续降低土壤DTPA可提取态铜和铅的质量分数,但是镉质量分数却显著降低了26.7%。

    图  2  不同处理下DTPA有效态土壤重金属
    Figure  2.  Concentrations of the DTPA extractable heavy metals in soils under different treatments

    土壤酶参与碳、氮、磷、硫等各类物质的循环,是土壤新陈代谢的重要物质。土壤酶活性是反映土壤肥力和质量的重要指标。从表 2可知:土壤中施加烟秆炭会显著降低脱氢酶的活性,而一定数量的烟秆炭能显著提高土壤脲酶和磷酸酶活性。

    表  2  不同烟秆炭使用量对土壤酶活性的影响
    Table  2.  Effects of tobacco stalk biochar on soil enzymes activities under different application rates
    处理 脲酶/(mg·g-1·h-1) 碱性磷酸酶/(mg·g-1·h-1) 脱氢酶/(mg·g-1·h-1 土壤酶综合活性值
    TB0 13.83 ± 0.41 c 0.67 ± 0.52 b 0.36 ± 0.08 a 1.49 c
    TB20 16.54 ± 1.75 b 0.96 ± 0.72 ab 0.25 ± 0.12 b 1.58 b
    TB40 16.93 ± 3.81 b 0.97 ± 0.74 ab 0.23 ± 0.04 b 1.56 b
    TB80 20.49 ± 3.06 a 1.50 ± 1.12 a 0.21 ± 0.03 b 1.86 a
    说明:英文小写字母表示同列不同处理间的显著性差异水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    具体讲,土壤施加20 g·kg-1烟秆炭,脲酶活性显著提高了19.6%,但将烟秆炭的施用量增加到40 g·kg-1,并没有继续提高土壤脲酶活性(表 2),只有将施用量增加到80 g·kg-1时,土壤脲酶活性才显著又提高了21.0%,与对照相比约显著提高了50%。土壤施加20 g·kg-1或40 g·kg-1的烟秆炭,并不能显著提高土壤磷酸酶活性,但将炭的施用量提高到80 g·kg-1时,土壤磷酸酶活性与对照相比显著提高了2倍多。但是施加80 g·kg-1烟秆炭,土壤磷酸酶活性与施加20和40 g·kg-1烟秆炭的土壤磷酸酶活性对比没有显著性差异。烟秆炭的施用会降低土壤脱氢酶的活性,不同比例烟秆炭施用对土壤脱氢酶活性也没有显著性差异。

    因此,不同烟秆炭施用量处理对土壤酶活性综合性指标的影响效果为TB80>TB40=TB20>TB0。综上所述,处理TB80对土壤酶活性影响最为显著。

    由于重金属本身的化学性质各异且在土壤中存在的形态也不同,土壤理化性质对重金属有效态质量分数影响各不相同。从表 3中可知:烟秆炭施用量与铜、铅有效态质量分数呈负相关关系,其中与镉呈显著负相关关系,说明烟秆炭施用量对降低有效态镉效果更好。土壤基本理化性质如pH值和有机质、水溶性碳、碱解氮和有效磷质量分数与土壤有效态重金属铜、镉、铅均呈负相关关系。土壤有机质质量分数与有效态镉呈极显著负相关关系,pH值、有效磷质量分数与有效态镉呈显著负相关性,表明土壤有机质对镉的钝化作用比土壤pH值、有效磷质量分数大。有效态铅与有效态铜呈显著正相关性,表明土壤中铜与铅具有伴生性关系[21]

    表  3  土壤重金属有效态与烟秆炭施用量及土壤理化性质的相关性分析
    Table  3.  Correlation between soil DTPA-extractable heavy metals and soil physical and chemical properties
    炭施用量 有效磷 水溶性碳 有机质 pH值 碱解氮
    -0.88 -0.86 -0.66 -0.92 -0.90 -0.74 0.91 0.99*
    -0.98* -0.96* -0.89 -0.99** -0.98* -0.81 1.00 0.95
    -0.90 -0.871 -0.71 -0.94 -0.92 -0.71 0.95 1.00
    说明: *表示P<0.05(双尾检测);**表示P<0.01(双尾检测)
    下载: 导出CSV 
    | 显示表格

    表 4可见:施用烟秆炭对烟草生长各农艺指标影响各异。土壤施加烟秆炭能显著增加烟草有效叶数和叶片的宽度,但不同比例炭施用量对烟草株高和叶片的长度并没有显著影响。不同的是,烟叶鲜质量随生物炭施用量的增加而显著增加。20,40和80 g·kg-1的烟秆炭施用量收获的烟叶鲜质量分别比对照显著提高了45.0%,47.1%和61.2%。

    表  4  不同烟秆炭施用量对烟草农艺指标的影响
    Table  4.  Effects of different tobacco biochar application rates on agronomic indexes of tobacco stems
    处理 茎高/cm 有效叶数/片 叶宽/cm 叶长/cm 鲜叶质量/g
    TB0 87.25 ± 3.20 a 15.00 ± 0.00 b 16.00 ± 1.41 b 36.25 ± 2.36 a 85.00 ± 10.98 c
    TB20 95.75 ± 5.56 a 16.25 ± 0.96 a 19.75 ± 2.22 a 41.00 ± 4.08 a 119.00 ± 11.05 b
    TB40 94.00 ± 8.37 a 16.25 ± 0.96 a 22.25 ± 3.77 a 40.00 ± 3.46 a 125.00 ± 10.07 ab
    TB80 95.75 ± 4.35 a 16.25 ± 0.50 a 20.38 ± 1.10 a 41.13 ± 1.93 a 137.00 ± 5.72 a
    说明:同列数字后面英文小写字母表示不同处理间差异性水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    烟叶是烟草的重要经济部位,叶片中重金属质量分数是衡量烟叶品质的重要指标。从图 3可见:土壤添加一定量的烟秆炭可以显著降低烟叶中重金属质量分数,其中铜和镉的变化趋势相似。在土壤施加20 g·kg-1的烟秆炭时,叶片中铜和镉的质量分数比对照(无烟秆炭添加)显著降低了13.6%和18.4%;烟秆炭施用量增加到40 g·kg-1时,与20 g·kg-1相比,烟叶中铜、镉的质量分数没有显著变化;但当烟秆炭的施用量继续增加到80 g·kg-1时,与烟秆炭低施用量(20和40 g·kg-1)相比,叶片中铜和镉质量分数反而显著上升了。与对照相比,随着土壤施加烟秆炭的量的增加,烟叶中铅质量分数有下降趋势,但各处理间并没有显著差异。

    图  3  不同处理对烟叶中重金属的影响
    Figure  3.  Effects of different treatments on concentration of heavy matals in leaves on tobacco

    本研究中,施用烟秆炭可显著提高土壤pH值。原因可能归结为烟秆炭在高温裂解过程中,其灰分含有大量碱性盐基物质,当施入土壤后,盐基离子与氢离子(H+)及铝离子(Al3+)进行离子交换,生成中性盐,从而提高土壤pH值[21]。从表 1可知:使用烟秆炭可有效提高土壤养分质量分数。本研究结果表明:添加烟秆炭对提高土壤有机质质量分数有显著效果,且随着炭施用量的增加有机质显著增加。原因可能是烟秆炭本身炭质量分数高、氢/碳比小、芳香性强,化学稳定性较高,不易被微生物分解,从而有利于有机质的积累。

    本研究结果显示:施入烟秆炭后,土壤有效磷、碱解氮和水溶性有机碳均比对照高。虽然土壤碱解氮质量分数显著提高,但是增幅不大。这可能是由于烟秆炭表面丰富的含氧官能团带有负电荷,吸附土壤铵(NH4+),从而减少了氮素的损失[22]。有机质是作物所需氮、磷等必要营养元素的主要来源,土壤有效磷质量分数增加可能与有机质质量分数有关。刘方等[23]以生物质炭土壤改良剂为试材,研究了生物质炭对连作蔬菜地土壤有效养分影响的实验中发现,生物质炭能明显提高土壤有效氮和有效磷的质量分数。这与本研究结果相似。

    重金属的生物有效性大小决定着其在土壤中毒性的强弱,因此,降低重金属的生物有效性对于改善土壤质量至关重要[19]。生物质炭具有较大的比表面积和多孔的结构特征,具有良好的吸附特性,施入土壤后可以降低重金属有效性[24]。本研究结果表明:重金属有效态质量分数随着烟秆炭施加量的增加而显著减少。且烟秆炭对不同重金属的修复效果也不尽相同,处理TB40对铜、镉、铅的固定效果顺序为铜(33.7%)>铅(29.5%)>镉(26.4%)。JIANG等[25]采用水稻秸秆制成的生物质炭修复模拟铜、铅、镉污染老成土,结果发现:生物质炭使土壤pH值和阳离子交换量增大,使酸可提取态重金属含量降低,而氧化结合态和有机结合态含量增加,且生物质炭对铜和铅的固化效果优于镉,与本研究结果相似。这可能是生物质炭对铜离子(Cu2+)吸附机制不同于镉离子(Cd2+)和铅离子(Pb2+)的,还有可能是生物质炭表面的孔隙结构有利于铜的固定,具体机制还需进一步深入研究。YANG等[26]在使用烟秆炭修复镉、锌污染土壤的实验中发现,与对照相比,烟秆炭可以显著降低重金属镉、锌的有效态含量,且其固定效果随着烟秆炭施用量的增加而增强。有研究表明,有效磷在中性或碱性条件下易与土壤溶液中的重金属离子形成磷酸盐沉淀[27]。其次,pH值是影响土壤重金属有效性和迁移性的重要因素。土壤pH值随着炭施用量的增加可增加土壤及生物质炭表面的可变电荷,增强阳离子吸附能力和交换作用,降低重金属的解吸,还可促进重金属生成碳酸盐和磷酸盐沉淀[28]进而降低重金属的移动性。此外,有机质对重金属也表现出强烈的吸附固定能力,原因是有机质的主要成分是腐殖质,腐殖质是土壤重要的螯合或络合剂,其中羧基(—COOH),羟基(—OH)和羰基(—C=O)等能与重金属发生络合或螯合作用,使重金属在土壤溶液中失去活性[29]

    土壤酶活性可以反映土壤中生物化学反应的活跃程度以及养分物质循环状况,是衡量土壤质量的重要指标[30]。土壤有机质、pH值、养分及微生物种类等因素均可影响土壤酶活性。

    脲酶是参与土壤氮素循环的重要的水解酶,主要功能是催化土壤中尿素的水解,其活性强度常被用来表征土壤氮素供应状况[30]。本研究中,土壤脲酶活性与烟秆炭施用量密切相关。随着烟秆炭施用量的增加,脲酶活性有升高的趋势,其中处理80 g·kg-1的脲酶活性最高(20.49 mg·g-1·h-1)。碱性磷酸酶参与土壤中磷的矿化和利用,主要功能是在碱性条件下将土壤中的有机磷水解成为磷酸盐,为植物和土壤中的生物提供养分[31]。本研究结果显示:施加烟秆炭可增强重金属污染土壤中碱性磷酸酶的活性。原因可能是烟秆炭施入土壤可以改善土壤理化环境,有利于土壤动物和微生物生长,从而加快了有机物质的分解,为土壤酶的产生提供了更多的底物[32];还有可能是由于烟秆炭的施用增加了土壤活性有机碳质量分数(表 1),从而为土壤微生物的生长提供了充足的碳源,促进了微生物繁殖,刺激了酶活性提高[33]

    生物质炭的吸附性使得生物质炭对土壤酶的作用比较复杂,一方面生物质炭对反应底物的吸附有助于酶促反应的进行而提高土壤酶活性,另一方面生物质炭对酶分子的吸附对酶促反应结合位点形成保护,而阻止酶促反应的进行[32]。脱氢酶活性能反映土壤有机质含量和微生物活性[34]。本研究结果显示:土壤脱氢酶活性随着烟秆炭的增加而显著减少。冯爱青等[35]研究表明:施用控释肥及添加生物炭可提高土壤脲酶活性,抑制土壤脱氢酶活性。原因可能是在强碱性条件下脱氢酶的蛋白构象遭到了破坏进而影响酶活性[36]。具体原因还需进一步深入研究。

    生物质炭施入重金属污染土壤中可以有效增加作物的产量。原因是生物质炭施入土壤后可以增加土壤有效养分[8],促进微生物活性并改善土壤团聚体结构[11],降低重金属的生物有效性[28],从而为作物提供良好的生长环境。本研究结果表明,烟秆炭的施用可以提高烟叶产量,与众多研究结果相似[37-38]

    植物中重金属含量由土壤中重金属有效态含量及植物生理性质决定。植物体蛋白质、有机酸、有机碱及植物络合素、酶可以与植物体内的重金属形成螯合物,降低重金属的生物毒性[39]。在本研究中,适量添加烟秆炭可以降低叶片中重金属质量分数。原因可能是添加烟秆炭后降低了土壤中有效态重金属的质量分数。高瑞丽等[24]研究发现,在铅和镉复合污染土壤中添加生物质炭可显著减少有效态重金属的含量,与本实验研究结果相似。而处理TB80叶片中铜和镉质量分数却比处理TB20和TB40有所增加。原因可能是TB80的叶片生物量高,植物体中的蛋白质、有机物及植物络合素与重金属形成络合素,减轻了重金属对细胞的毒害作用,从而使烟草可以继续吸附重金属。此外,植物蒸腾作用和势能高于处理TB20和TB40,导致重金属质量分数升高。另有研究指出,不同重金属在植物不同器官的迁移能力不同[40],这可能是铅在各处理间没有显著差异的原因,但具体的作用机制还需进一步研究。

    综上所述,烟秆炭的施用可有效提高重金属污染土壤中pH值、有机质、碱解氮和有效磷质量分数;还可以显著提高土壤脲酶和碱性磷酸酶的活性,降低脱氢酶的活性,其中添加80 g·kg-1的烟秆炭对土壤肥力的改善及酶活性指数的提升最为显著。另外,土壤施加烟秆炭能显著增加烟草有效叶数和叶片的宽度,烟叶鲜质量随烟秆炭施用量的增加而显著增加。

    烟秆炭的施用可以降低污染土壤中重金属的生物有效性,施加40 g·kg-1烟秆炭已使铜、铅的钝化效果达到最佳,但80 g·kg-1的烟秆炭使污染土壤中镉的有效性降至最低。但是,施用20 g·kg-1的烟秆炭即可显著降低烟叶中重金属铜和镉的质量分数。

    本研究证明,烟秆炭作为土壤改良剂对重金属污染土壤有着良好的修复效果,且可提高重金属污染土壤中烟草的产量,提高污染农用地的经济价值,同时为因烟秆废弃而造成的环境污染等问题提供了一个合理的解决方案,也为烟秆炭在重金属污染农田中的修复提供了实践理论参考价值。

  • [1] 谢立红, 曹宏杰, 黄庆阳, 杨帆, 王继丰, 王建波, 倪红伟.  五大连池火山森林群落多样性与稳定性 . 浙江农林大学学报, 2021, 38(2): 235-245. doi: 10.11833/j.issn.2095-0756.20200255
    [2] 夏雯, 芦建国, 景蕾.  镇江市低影响开发示范区植物群落特征与物种多样性 . 浙江农林大学学报, 2019, 36(4): 793-800. doi: 10.11833/j.issn.2095-0756.2019.04.020
    [3] 李军, 陆云峰, 杨安娜, 柏志靓, 王洋, 楼炉焕, 童再康.  紫楠天然群落物种多样性对不同干扰强度的响应 . 浙江农林大学学报, 2019, 36(2): 279-288. doi: 10.11833/j.issn.2095-0756.2019.02.009
    [4] 何荣晓, 杨帆, 崔明.  海口市城市森林结构及植物多样性指标相关性分析 . 浙江农林大学学报, 2019, 36(6): 1142-1150. doi: 10.11833/j.issn.2095-0756.2019.06.011
    [5] 吴世斌, 库伟鹏, 周小荣, 纪美芬, 吴家森.  浙江文成珍稀植物多脉铁木群落结构及物种多样性 . 浙江农林大学学报, 2019, 36(1): 31-37. doi: 10.11833/j.issn.2095-0756.2019.01.005
    [6] 郑昌龙, 王健铭, 李景文.  北京松山国家级自然保护区不同林龄胡桃楸林下植物多样性 . 浙江农林大学学报, 2017, 34(5): 825-832. doi: 10.11833/j.issn.2095-0756.2017.05.008
    [7] 郭瑞, 王义平, 翁东明, 程樟峰, 王军旺, 王旭池.  浙江清凉峰不同植物群落步甲物种多样性及其与环境因子的关系 . 浙江农林大学学报, 2016, 33(4): 551-557. doi: 10.11833/j.issn.2095-0756.2016.04.001
    [8] 龚艳宾, 郭建斌, 赵秀海, 于诗卓.  吉林蛟河天然阔叶红松林草本植物多样性及其与土壤因子的关系 . 浙江农林大学学报, 2016, 33(4): 620-628. doi: 10.11833/j.issn.2095-0756.2016.04.010
    [9] 胡军飞, 许洺山, 田文斌, 周伟平, 史青茹, 周刘丽, 赵延涛, 朱丹妮, 程浚洋, 宋彦君, 阎恩荣.  浙江普陀山主要林型群落结构特征分析 . 浙江农林大学学报, 2016, 33(5): 768-777. doi: 10.11833/j.issn.2095-0756.2016.05.007
    [10] 王丽敏, 缪心栋, 严彩霞, 马凯, 马丹丹, 李根有.  浙江省小花花椒群落结构与物种多样性 . 浙江农林大学学报, 2013, 30(2): 215-219. doi: 10.11833/j.issn.2095-0756.2013.02.009
    [11] 王小庆, 刘方炎, 李昆, 陈友根.  元谋干热河谷滇榄仁群落林下物种多样性与幼苗更新特征 . 浙江农林大学学报, 2011, 28(2): 241-247. doi: 10.11833/j.issn.2095-0756.2011.02.011
    [12] 魏琦, 楼炉焕, 冷建红, 包其敏, 钟潮亮, 沈年华.  毛枝连蕊茶群落结构与物种多样性 . 浙江农林大学学报, 2011, 28(4): 634-639. doi: 10.11833/j.issn.2095-0756.2011.04.018
    [13] 吴庆玲, 丁炳扬, 陈贤兴.  浙江石垟森林公园种子植物区系特征的统计分析 . 浙江农林大学学报, 2010, 27(6): 896-902. doi: 10.11833/j.issn.2095-0756.2010.06.015
    [14] 艾训儒, 易咏梅, 姚兰, 王柏泉, 熊彪.  旅游区人为干扰对森林群落物种多样性的影响 . 浙江农林大学学报, 2010, 27(2): 178-184. doi: 10.11833/j.issn.2095-0756.2010.02.003
    [15] 秦景, 贺康宁, 刘硕, 郑佳丽, 王占林.  青海省大通县退耕还林区主要植物群落物种组成与多样性 . 浙江农林大学学报, 2010, 27(3): 410-416. doi: 10.11833/j.issn.2095-0756.2010.03.015
    [16] 沈年华, 万志洲, 汤庚国, 王春, 程红梅.  紫金山栓皮栎群落结构及物种多样性 . 浙江农林大学学报, 2009, 26(5): 696-700.
    [17] 李贵祥, 施海静, 孟广涛, 方向京, 柴勇, 和丽萍, 张正海, 杨永祥.  云南松原始林群落结构特征及物种多样性分析 . 浙江农林大学学报, 2007, 24(4): 396-400.
    [18] 汤孟平, 周国模, 施拥军, 陈永刚, 吴亚琪, 赵明水.  天目山常绿阔叶林群落最小取样面积与物种多样性 . 浙江农林大学学报, 2006, 23(4): 357-361.
    [19] 王贵霞, 李传荣, 许景伟, 夏江宝.  温带森林群落多样性的测度方法比较评述 . 浙江农林大学学报, 2004, 21(4): 486-491.
    [20] 陈世品.  福建青冈林恢复过程中植物物种多样性的变化 . 浙江农林大学学报, 2004, 21(3): 258-262.
  • 期刊类型引用(3)

    1. 贾方方,滕世华,何琳,付安旗,陈淑萍,赵中原. 基于水分光谱指数的烟草叶片等效水厚度估测. 中国农学通报. 2024(01): 151-156 . 百度学术
    2. 王楠,陈春玲,相爽,金忠煜,白驹驰,于丰华. 基于叶片双层辐射传输机理的水稻叶绿素含量反演. 农业工程学报. 2024(17): 171-178 . 百度学术
    3. 莫佳佳,黄玉清,靳佳,闫妍. 芒果叶片水分含量估算光谱指数模型的建立. 西南农业学报. 2023(08): 1677-1685 . 百度学术

    其他类型引用(5)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2012.04.004

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2012/4/498

计量
  • 文章访问数:  4261
  • HTML全文浏览量:  370
  • PDF下载量:  1555
  • 被引次数: 8
出版历程
  • 收稿日期:  2011-09-06
  • 修回日期:  2012-12-05
  • 刊出日期:  2012-08-20

珍稀濒危植物堇叶紫金牛生存群落结构特征及物种多样性

doi: 10.11833/j.issn.2095-0756.2012.04.004
    基金项目:

    浙江省科学技术重大项目(2006C12059-2);浙江农林大学科研发展基金资助项目(2008FK53)

    通信作者: 李根有

摘要: 以浙江省建德市绿荷塘森林公园堇叶紫金牛Ardisia violacea生存群落为对象,应用标准样地法和每木调查法调查了群落种类和结构特征,并用群落学方法计算了群落内乔木层各树种的重要值,采用Shannon-鄄Weiner指数、Simpson指数、Pielou均匀度指数分别研究了群落内3个样地中乔木层、灌木层、草本层的物种多样性,并根据胸径级频率分布的形状,将主要乔木层树种的种群结构分为3种类型。结果表明:该群落资源丰富,共有维管束植物116种(含变种),隶属于47科79属。从生活型上区分来看,堇叶紫金牛生存群落中共出现木本植物83种,其中针叶树2种,常绿阔叶树48种,落叶阔叶树33种,群落以小高位芽植物和矮高位芽植物的种类较多。根据分布生境、群落结构和种类组成,可以将堇叶紫金牛生存群落分为3个类型:甜槠Castanopsis eyrei-栲树Castanopsis fargesii林,杉阔混交林和杉木Cunninghamia lanceolata人工林。在垂直结构方面,大体包括乔木层、灌木层、草本层,此外还有一些层间植物,而且种类较为丰富,并且3种类型群落的高度结构大致相同。在3个样地中灌木层中的物种丰富度指数均为最大。杉阔混交林中草本层的Shannon-Weiner指数最大,而甜槠-栲树林和杉木人工林中灌木层Shannon-Weiner指数最大。Simpson指数在甜槠-栲树林和杉木人工林中乔木层最大,而在杉阔混交林中灌木层最大。主要乔木层种群结构为单峰型的枫香Liquidambar formosana,拟赤杨Alniphyllum fortunei,马尾松Pinus massoniana为阳性乔木树种,无正常更新能力,在演替后期比较稳定的群落中,将最终衰退消失;间歇型的青冈Cyclobalanopsis glauca,木荷Schima superba,乌药Lindera aggregata等为不连续生长型,更新具有波动性和机会性,介于顶极群落先锋种和优势种之间;逆J-字型的杉木、甜槠、栲树、山矾Symplocos caudata等常绿阔叶乔木树种,为顶极群落的优势种。图2表7参29

English Abstract

张建云, 吴胜春, 王敏艳, 等. 烟秆炭修复重金属污染土壤的效应及对烟草生长的影响[J]. 浙江农林大学学报, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
引用本文: 马凯, 夏国华, 闫道良, 等. 珍稀濒危植物堇叶紫金牛生存群落结构特征及物种多样性[J]. 浙江农林大学学报, 2012, 29(4): 498-509. DOI: 10.11833/j.issn.2095-0756.2012.04.004
ZHANG Jianyun, WU Shengchun, WANG Minyan, et al. Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production[J]. Journal of Zhejiang A&F University, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
Citation: MA Kai, XIA Guo-hua, YAN Dao-liang, et al. Structural characteristics and species diversity of the endangered plant Ardisia violacea[J]. Journal of Zhejiang A&F University, 2012, 29(4): 498-509. DOI: 10.11833/j.issn.2095-0756.2012.04.004

目录

/

返回文章
返回