-
立地质量评价一直是森林可持续经营的一个主要议题。生产实践中,评价立地质量、预测林分生产力对于树种选择、林分经营决策至关重要[1]。同龄林中,立地指数早已作为立地质量评价的一个指标得到全球公认,且作为立地指数基本产量表的关键变量得以应用[2-3]。在小范围、局域尺度开展立地质量评价时,国内外学者们常采用导向曲线法研制立地指数表或者立地指数曲线,用以评价林木生长状况以及林分生产力[4-7]。西南桦Betula alnoides是中国热带、南亚热带地区的一个珍贵乡土用材树种,生长迅速,适应性强,木材纹理细致,质地均匀,密度适中,不翘不裂,加工性能优良,已广泛应用于木地板和家具制作以及房屋装饰[8-9],树皮提取物具有消炎、减肥及降血脂作用[10-11]。近年来,中国西南桦迅猛发展,云南、广西、贵州、广东、福建等地均有栽培,其人工林面积已逾15万hm2[9]。然而,在西南桦人工林快速发展过程中,局部地区因未能适地适树,盲目造林,出现林木生长不良、林分生产力低下等现象[12],严重影响西南桦人工林规模发展和可持续经营。广西大青山是中国西南桦栽培历史最早的地区,自20世纪70年代末即开始西南桦驯化栽培研究,并逐步推广应用,具有从幼龄至成熟龄各个阶段的西南桦林分。西南桦立地指数研究是掌握其立地生产力的基础,对其人工林可持续经营具有重要意义。然而,至今尚未见有关西南桦人工林立地指数表的报道。因此,本研究以广西大青山西南桦人工林为对象,基于样地调查与优势木树干解析,应用导向曲线法编制立地指数表,为该地区及类似地区西南桦人工林立地质量评价、生产力预估提供科学依据。
-
研究地位于广西大青山林区中国林业科学研究院热带林业实验中心(21°57′~22°19′N,106°39′~106°59′E),属南亚热带季风气候,年均气温为20~22 ℃,年均降水量约1 500 mm,主要集中在4-10月,年均日照1 260 h。研究地海拔为130~1 045 m,地形地貌复杂,自然条件优越,是开展热带南亚热带地区珍贵阔叶树种试验示范的理想场所。
-
考虑西南桦林分的立地因子、林分密度等特征,于热带林业实验中心的伏波、青山和白云实验场设置49块临时样地,每样地面积为600 m2。对各样地进行常规立地调查和生长观测,每样地选取5株干形完整、树高最大的树作为优势木,计算优势木平均树高为优势高,并选取1株树高最接近优势高的优势木进行树干解析。
对解析数据按年龄进行整理(表 1),共有825对树高-年龄数据,计算平均高及标准差。因有些样木存在不规则生长时期,剔除超出平均值±3倍标准差范围的异常数据,对剩余的816对数据重新整理、统计,用于编制立地指数表[13]。
表 1 49株西南桦优势木树干解析数据整理
Table 1. Data description of stem analysis for 49 dominant trees of Betula alnoides
年龄/a 样本数/个 平均优势高/m 最小值/m 最大值/m 标准差 1 46* 1.81 0.78 3.35 0.77 2 46* 3.26 1.50 5.88 1.08 3 47* 5.07 1.87 8.72 1.43 4 47* 6.92 3.21 11.70 1.67 5 48* 8.68 4.43 14.23 1.93 6 49 10.35 5.92 15.84 2.07 7 49 11.87 8.18 17.65 2.09 8 49 13.14 9.79 17.52 2.15 9 49 14.26 10.87 18.92 2.28 10 49 15.33 11.34 20.80 2.37 11 48 16.21 12.29 22.27 2.36 12 47 17.21 13.07 24.14 2.49 13 45 18.12 13.53 25.49 2.64 14 40 18.94 14.50 26.95 2.75 15 31 19.13 15.19 27.20 2.68 16 28 19.33 15.78 24.38 2.19 17 21 20.00 16.20 25.25 2.48 18 21 20.42 16.74 25.65 2.45 19 18 20.83 17.20 26.00 2.61 20 10 21.13 18.77 25.02 2.02 21 10 21.46 19.01 25.06 2.03 22 7 21.79 19.06 25.15 2.33 23 4 22.41 19.24 25.47 3.43 24 4 22.84 19.68 26.38 3.04 25 4 22.98 20.32 26.90 3.47 26 3 23.33 20.60 26.30 3.10 27 3 23.54 20.70 26.75 3.33 28 2 25.01 23.02 27.01 2.82 说明:*优势木在树干解析过程中1~5 a的部分数据缺失 -
采用常用的9个模型对树高-年龄数据进行拟合,应用决定系数(R2),平均绝对误差(EAMR),平均相对误差(ERMR)和均方根误差(ERMSE)等4个指标对各模型拟合质量进行评价[14-15],选择最优曲线作为导向曲线。计算上述统计指标时,将对数双曲线式和对数曲线式方程进行变换,保证所有模型的因变量统一为树高(H)。
$$ {R^2} = 1 - \frac{{\sum\limits_{i = 1}^n {{{\left( {{H_i} - {{\hat H}_i}} \right)}^2}} }}{{\sum\limits_{i = 1}^n {{{\left( {{H_i} - {{\bar H}_i}} \right)}^2}} }};{E_{{\rm{AMR}}}} = \sum\limits_{i = 1}^n {\frac{{\left| {{H_i} - {{\hat H}_i}} \right|}}{n}} ;{E_{{\rm{RMR}}}} = \frac{1}{n}\sum\limits_{i = 1}^n {\frac{{\left| {{H_i} - {{\hat H}_i}} \right|}}{{{H_i}}}} ;{E_{{\rm{RMSE}}}} = \sqrt {\frac{{\sum\limits_{i = 1}^n {{{\left( {{H_i} - {{\hat H}_i}} \right)}^2}} }}{{n - p}}} 。 $$ 其中:$ H_{i}, \hat{H}_{i}, \overline{H}$分别表示树高的第i个观测值、估计值、平均观测值;n为观测值数目;p为模型参数的数目。
-
通过优势高平均生长量和连年生长量变化趋势以及优势高龄阶变动系数分析确定西南桦人工林基准年龄[5]。根据基准年龄时的优势高变幅确定指数级距。应用标准差调整法[13]编制立地指数表。
-
应用落点检验[16]、拟合显著性和预测精度检验[16-17]对所编立地指数表的精确性和适用性进行检验。运用Excel和R软件(3.3.2版)进行数据整理分析。
-
由表 2可知:9个方程中,对数曲线式的R2最小,其EAMR,ERMR和ERMSE均最大,说明其拟合效果最差;其他8个方程中,Richards和Weibull方程表现几乎一致,以Richards方程的R2最大,EAMR,ERMR和ERMSE最小,拟合效果最好。因此,选择Richards方程作为最优导向曲线方程。其方程表达式为:H=24.25(1-e-0.118t)1.278。其中:H为优势高,t为年龄。
表 2 9个方程表达式及其拟合结果
Table 2. Nine equations and their fitting results
方程 表达式 a b c R2 EAMR ERMR ERMSE 对数双曲线式 lgH=a+b/t 1.286 7 -1.267 1 0.886 5 1.68 0.19 2.14 对数曲线式 lgH=a+blgt 0.281 8 0.862 9 0.869 9 1.74 0.23 2.29 广义单分子式 lgH=a+bexp(-ct) 25.585 8 -26.809 9 0.094 1 0.896 9 1.54 0.15 2.04 Richards H=a[1-exp(-bt)]c 24.253 3 0.118 5 1.278 0 0.897 6 1.53 0.14 2.03 Weibull H=a[1-exp(-bt)c] 23.748 8 0.068 2 1.175 8 0.897 5 1.53 0.15 2.04 Korf H=aexp(-b/tc) 45.608 5 4.007 5 0.559 7 0.895 7 1.56 0.16 2.06 Logistic H=a/[1+exp(b-ct)] 21.116 1 1.998 7 0.300 3 0.886 2 1.65 0.21 2.15 Gompertz H=aexp[-bexp(-ct)] 22.161 8 2.670 6 0.198 8 0.894 4 1.57 0.17 2.07 Schumacher H=aexp(-b/t) 27.757 8 5.748 0 0.886 5 1.68 0.19 2.14 说明:H优势高,t年龄;a,b和c为模型参数;R2,EAMR,ERMR和ERMSE分别为决定系数、平均绝对误差、平均相对误差以及均方根误差 -
由图 1可知:5 a左右时,优势高连年和平均生长量达到高峰,6 a时两者相交,15 a后优势高连年生长量大致趋于稳定;优势高变异系数的变动幅度在15 a后也基本稳定。因此将西南桦人工林基准年龄确定为15 a。
图 1 广西大青山西南桦人工林优势高平均生长量和连年生长量变化曲线
Figure 1. Curve of dominant height growth in Betula alnoides plantations at Daqing Mountain, Guangxi
中国多以1.0~2.0 m作为指数级距[13]。以15 a作为基准年龄时,优势高为15.2~25.8 m,其绝对变幅为10.6 m,西南桦较为速生,确定其指数级距为2.0 m。可划分为6个指数级(16.0,18.0,20.0,22.0,24.0和26.0 m)。
-
应用标准差调整法编制西南桦人工林立地指数表,结果见表 3。森林经营中,调查获取林分优势高及年龄,可查此表获得所属立地指数级,进行立地质量评价。
表 3 广西大青山西南桦人工林立地指数表
Table 3. Site index table of Betula alnoides at Daqing Mountain, Guangxi
年龄/a 立地指数/m 16.0 18.0 20.0 22.0 24.0 26.0 3 2.9~4.0 4.0~5.1 5.1~6.3 6.3~7.4 7.4~8.5 8.5~9.7 4 4.4~5.7 5.7~6.9 6.9~8.2 8.2~9.4 9.4~10.7 10.7~11.9 5 5.9~7.3 7.3~8.6 8.6~10.0 10.0~11.4 11.4~12.7 12.7~14.1 6 7.2~8.7 8.7~10.1 10.1~11.6 11.6~13.0 13.0~14.5 14.5~15.9 7 8.6~10.1 10.1~11.6 11.6~13.2 13.2~14.7 14.7~16.2 16.2~17.7 8 9.7~11.3 11.3~12.9 12.9~14.5 14.5~16.1 16.1~17.7 17.7~19.3 9 10.7~12.3 12.3~14.0 14.0~15.7 15.7~17.4 17.4~19.0 19.0~20.7 10 11.7~13.4 13.4~15.1 15.1~16.8 16.8~18.6 18.6~20.3 20.3~22.0 11 12.5~14.3 14.3~16.1 16.1~17.9 17.9~19.7 19.7~21.5 21.5~23.3 12 13.2~15.1 15.1~16.9 16.9~18.8 18.8~20.6 20.6~22.5 22.5~24.3 13 13.9~15.8 15.8~17.7 17.7~19.6 19.6~21.5 21.5~23.4 23.4~25.3 14 14.5~16.5 16.5~18.4 18.4~20.4 20.4~22.3 22.3~24.3 24.3~26.2 15 15.0~17.0 17.0~19.0 19.0~21.0 21.0~23.0 23.0~25.0 25.0~27.0 16 15.5~17.5 17.5~19.6 19.6~21.6 21.6~23.7 23.7~25.7 25.7~27.8 17 15.9~18.0 18.0~20.1 20.1~22.2 22.2~24.3 24.3~26.4 26.4~28.5 18 16.2~18.4 18.4~20.5 20.5~22.6 22.6~24.8 24.8~26.9 26.9~29.1 19 16.5~18.7 18.7~20.9 20.9~23.1 23.1~25.3 25.3~27.4 27.4~29.6 20 16.9~19.1 19.1~21.3 21.3~23.5 23.5~25.7 25.7~28.0 28.0~30.2 21 17.1~19.3 19.3~21.6 21.6~23.9 23.9~26.1 26.1~28.4 28.4~30.6 22 17.3~19.6 19.6~21.9 21.9~24.2 24.2~26.5 26.5~28.8 28.8~31.0 23 17.4~19.8 19.8~22.1 22.1~24.4 24.4~26.7 26.7~29.1 29.1~31.4 24 17.7~20.0 20.0~22.4 22.4~24.7 24.7~27.1 27.1~29.5 29.5~31.8 25 17.8~20.2 20.2~22.6 22.6~25.0 25.0~27.4 27.4~29.8 29.8~32.2 26 17.8~20.3 20.3~22.7 22.7~25.1 25.1~27.5 27.5~30.0 30.0~32.4 27 17.9~20.4 20.4~22.9 22.9~25.3 25.3~27.8 27.8~30.3 30.3~32.8 28 18.0~20.5 20.5~23.0 23.0~25.5 25.5~28.0 28.0~30.5 30.5~33.0 说明:基准年龄为15 a,级距为20 m;表中数据为上限排外 -
将编表所用49株优势木树高值作散点图,绘制于立地指数曲线簇上(图 2)。由图 2可以看出:3个点落在立地指数曲线簇外,即所编表能解释93.8%的优势木的生长状况,落点检验合格。
-
利用卡方(χ2)检验进行显著性检验。本研究中立地指数定为16~26,从建模数据中随机抽取3株年龄大于基准年龄的解析木,其立地指数分别为16,20和24 m,χ2计算结果见表 4。查χ2临界值表分别为30.14,22.36和30.14。通过对比分析可知:其χ2值远小于其相应临界值,说明经标准差调整后立地指数曲线与优势木树高生长趋势之间无显著差异。
表 4 立地指数表显著性和预报精度检验
Table 4. Significance and prediction accuracy of site index table
年龄/a m=16.0 m=20.0 m=24.0 Si Hi16 Ho16 Hi20 Ho20 Hi24 Ho24 3 5.6 19.8 4.7 18.2 6.7 21.7 1.36 4 7.7 20.3 6.4 18.1 8.7 21.9 1.55 5 9.0 19.5 7.8 17.8 11.0 22.4 1.05 6 10.2 19.1 9.2 17.8 14.2 24.7 1.19 7 11.6 19.0 10.4 17.3 15.6 24.3 1.10 8 12.5 18.5 11.8 17.6 16.9 24.0 0.74 9 13.0 17.8 13.2 18.0 18.1 23.9 0.50 10 13.2 16.8 14.2 17.9 19.4 23.9 0.82 11 13.7 16.3 15.4 18.2 20.3 23.6 0.97 12 14.6 16.5 16.5 18.5 21.2 23.6 0.87 13 15.3 16.5 17.4 18.7 21.7 23.2 0.84 14 15.7 16.3 18.3 18.9 22.6 23.3 0.99 15 16.6 16.6 19.3 19.3 23.2 23.2 0.95 16 17.2 16.7 19.9 19.3 23.8 23.1 0.90 17 18.3 17.3 24.5 23.2 0.43 18 19.3 17.9 25.0 23.2 0.07 19 20.0 18.2 25.0 22.8 0.30 20 21.1 18.8 25.0 22.4 0.81 21 21.2 18.7 25.1 22.1 0.91 22 21.3 18.5 25.1 21.8 1.01 Hom 17.9 18.3 23.1 χ2 1.71 0.26 0.59 - Sz 1.27 0.61 0.85 - 说明:Him为第i龄阶第m指数级的树高;Hom为基准年龄时第m指数级的树高值(即立地指数);Si为立地指数估计误差 -
不同年龄的立地指数估计误差(Si)和不同立地指数级的估计误差(Sz)计算结果见表 4。由表 4可知:各年龄的估计误差为0.07~1.55 m。3~7 a的估计误差在1.00 m以上,以3和4 a的估计误差为最大;而大于7 a后,各年龄的估计误差基本上小于1.00 m,表明此立地指数表对较大年龄的预报精度高。各立地指数级之间比较,立地指数级为20.0和24.0时估计误差均小于1.00 m,而立地指数级为16.0时略大于1.00 m。由此可见,所编立地指数表整体上预报精度较高。
-
利用导向曲线法编制立地指数表,曲线的选取至关重要。导向曲线既要满足对数据的高质量拟合,又要符合树种的优势高生长规律。大多数树种的高生长过程为慢—快—慢,表现为“S”形;速生树种的高生长常表现为早期生长快,此后生长逐渐减缓并趋于生长停止,即“快—慢”的“肩形”曲线。学者们常用Richards,Weibull等具上渐近线的方程拟合树高生长过程[18-19],且Richards方程具有很强的可塑性,通过引入形状参数c而使Richards方程对树木生长具有广泛的适应能力。西南桦为速生珍贵树种,本研究中Richards和Weibull方程的拟合效果均较好,以Richards方程表现略优,最终选择Richards方程作为导向曲线方程。
西南桦为喜阳树种,大量营林实践及科学研究证实,林龄5~8 a内树高生长迅速且波动性大,而林分优势高的平均和连年生长量则在此后均开始下降且波动性逐渐变小[20-21]。本研究中,6 a左右时西南桦人工林优势高生长达最大值,此后逐渐下降(图 1),其波动性也开始减弱,不同年龄时方程拟合误差亦表现出随着树高生长波动性减弱而降低的趋势,因而7 a以上林龄的立地指数估计误差小于7 a内各年龄。
数据源同样会影响模型拟合质量的高低[22],应用各龄阶平均年龄和平均优势高进行模型拟合,虽然能够显著提高模型的决定系数,但是极大地降低了模型的自由度[6]。本研究针对西南桦树高生长快的生物学特性,以1 a为一个龄阶,用解析木原始数据进行模型拟合,提高了模型自由度,其决定系数约0.90。当然,应用林分优势木的解析数据编表常会造成某些年龄阶段优势高生长的有偏估计,主要是由于林分生长是一个动态过程,临时样地中选取的优势木很难保证其真正一直处于林分优势木地位[23],从本研究中西南桦优势高生长的波动性规律亦可见一斑。
-
本研究以广西大青山林区西南桦人工林为对象,通过样地调查选取49株平均优势木进行树干解析,获得816对优势高-年龄数据,应用9个常见数学模型进行拟合,筛选出Richards方程作为导向曲线。依据优势高连年生长量和各年龄优势高变异系数的变化趋势,确定西南桦基准年龄为15 a;根据15 a时优势高变动幅度确定以2.0 m为指数级距;应用标准差调整法编制了立地指数表。拟合显著性和预报精度检验表明:立地指数表所反映的优势高生长过程与实际的优势高生长曲线一致,所编立地指数表预报精度较高,尤其是7 a以上林分的预测误差小于1.00 m,此表可用于广西大青山及类似地区西南桦人工林立地质量评价和生长潜力预估。
Site index table construction for Betula alnoides plantations in the Daqing Mountains, Guangxi
-
摘要: 立地指数表是评价林木生长状况以及林分生产力的重要工具。为了编制西南桦Betula alnoides人工林立地指数表,于广西大青山林区各种立地设置49块西南桦人工林样地进行生长调查,选取平均优势木1株·样地-1进行树干解析,选用Richards,Weibull,Korf等9个常用方程拟合816对优势高-年龄数据,通过统计指标决定系数(R2)、平均绝对误差(EAMR)、平均相对误差(ERMR)和均方根误差(ERMSE)的对比分析筛选导向曲线,依据49株优势木的生长过程确定基准年龄和指数级距,应用标准差调整法编制立地指数表,并对其进行落点、拟合显著性和预报精度检验。结果表明:9个模型中,Richards方程的拟合效果最优,其R2最大,EAMR,ERMR和ERMSE最小,因而作为导向曲线;西南桦优势高连年生长量和优势高变异系数在15 a后基本稳定,因此确定15 a为基准年龄;基准年龄时优势高变动范围为15.2~25.8 m,考虑到西南桦较为速生,确定2.0 m为指数级距,据此编制了西南桦人工林立地指数表。落点检验表明所编表能解释93.8%的优势木生长状况;χ2检验表明立地指数表所反映的优势高生长过程与实际生长过程无显著差异;立地指数级和林龄2个方面的误差分析得出,此表预报精度较高。本研究编制的西南桦人工林立地指数表,可应用于广西大青山及类似地区西南桦人工林的立地质量评价、生长潜力预估。Abstract: To establish a site index table, an important tool when estimating tree growth and forest productivity, for Betula alnoides plantations, 49 sample plots of B. alnoides plantations were set at all sorts of sites in the Daqing Mountain Forest Area, Guangxi. In each plot, growth performance of all trees was noted, and one average dominate tree was sampled to conduct a stem analysis. Nine equations such as Richards, Weibull, and Korf were used to fit 816 height-diameter data sets obtained from the stem analysis mentioned above, and their statistical indexes including coefficient of determination (R2), absolute mean residual (EAMR), relative mean residual (ERMR), and root mean square error (ERMSE) were calculated for selection of optimal guide curve. Reference age and interval for the site index class were determined by analyzing the growth process of the 49 dominant trees. Afterward a site index table was developed using the standard deviation adjustment method, and it was tested in terms of falling point, fitting significance, and prediction accuracy. Results showed that among the nine models fitted, Richards function performed best with the largest R2 and the smallest EAMR, ERMR, and ERMSE, and was selected as the guide curve. The reference age of B. alnoides was determined as 15 years since the current growth increment and coefficient of variation for dominant heights tended to be stable after 15 years old. Also, the interval of the site index class was two meters based on its fast growth property and range of dominant height (15.2-25.8 m). The site index table developed for plantations of this species indicated that the actual growth process from the falling point test and χ2 test were not significantly different for growth process of dominant height predicted. The estimation error analysis for different aspects of site index and stand age showed that the table had a high forecast accuracy. Thus, this site index table could be applied to site quality evaluation and growth potential prediction for B. alnoides plantations, and it could technically contribute to reasonable plantation management and to matching a site with this species in the Daqing Mountains of Guangxi and regions with similar site conditions.
-
Key words:
- forest mensuration /
- Betula alnoides /
- guide curve /
- standard deviation adjustment method /
- site index
-
表 1 49株西南桦优势木树干解析数据整理
Table 1. Data description of stem analysis for 49 dominant trees of Betula alnoides
年龄/a 样本数/个 平均优势高/m 最小值/m 最大值/m 标准差 1 46* 1.81 0.78 3.35 0.77 2 46* 3.26 1.50 5.88 1.08 3 47* 5.07 1.87 8.72 1.43 4 47* 6.92 3.21 11.70 1.67 5 48* 8.68 4.43 14.23 1.93 6 49 10.35 5.92 15.84 2.07 7 49 11.87 8.18 17.65 2.09 8 49 13.14 9.79 17.52 2.15 9 49 14.26 10.87 18.92 2.28 10 49 15.33 11.34 20.80 2.37 11 48 16.21 12.29 22.27 2.36 12 47 17.21 13.07 24.14 2.49 13 45 18.12 13.53 25.49 2.64 14 40 18.94 14.50 26.95 2.75 15 31 19.13 15.19 27.20 2.68 16 28 19.33 15.78 24.38 2.19 17 21 20.00 16.20 25.25 2.48 18 21 20.42 16.74 25.65 2.45 19 18 20.83 17.20 26.00 2.61 20 10 21.13 18.77 25.02 2.02 21 10 21.46 19.01 25.06 2.03 22 7 21.79 19.06 25.15 2.33 23 4 22.41 19.24 25.47 3.43 24 4 22.84 19.68 26.38 3.04 25 4 22.98 20.32 26.90 3.47 26 3 23.33 20.60 26.30 3.10 27 3 23.54 20.70 26.75 3.33 28 2 25.01 23.02 27.01 2.82 说明:*优势木在树干解析过程中1~5 a的部分数据缺失 表 2 9个方程表达式及其拟合结果
Table 2. Nine equations and their fitting results
方程 表达式 a b c R2 EAMR ERMR ERMSE 对数双曲线式 lgH=a+b/t 1.286 7 -1.267 1 0.886 5 1.68 0.19 2.14 对数曲线式 lgH=a+blgt 0.281 8 0.862 9 0.869 9 1.74 0.23 2.29 广义单分子式 lgH=a+bexp(-ct) 25.585 8 -26.809 9 0.094 1 0.896 9 1.54 0.15 2.04 Richards H=a[1-exp(-bt)]c 24.253 3 0.118 5 1.278 0 0.897 6 1.53 0.14 2.03 Weibull H=a[1-exp(-bt)c] 23.748 8 0.068 2 1.175 8 0.897 5 1.53 0.15 2.04 Korf H=aexp(-b/tc) 45.608 5 4.007 5 0.559 7 0.895 7 1.56 0.16 2.06 Logistic H=a/[1+exp(b-ct)] 21.116 1 1.998 7 0.300 3 0.886 2 1.65 0.21 2.15 Gompertz H=aexp[-bexp(-ct)] 22.161 8 2.670 6 0.198 8 0.894 4 1.57 0.17 2.07 Schumacher H=aexp(-b/t) 27.757 8 5.748 0 0.886 5 1.68 0.19 2.14 说明:H优势高,t年龄;a,b和c为模型参数;R2,EAMR,ERMR和ERMSE分别为决定系数、平均绝对误差、平均相对误差以及均方根误差 表 3 广西大青山西南桦人工林立地指数表
Table 3. Site index table of Betula alnoides at Daqing Mountain, Guangxi
年龄/a 立地指数/m 16.0 18.0 20.0 22.0 24.0 26.0 3 2.9~4.0 4.0~5.1 5.1~6.3 6.3~7.4 7.4~8.5 8.5~9.7 4 4.4~5.7 5.7~6.9 6.9~8.2 8.2~9.4 9.4~10.7 10.7~11.9 5 5.9~7.3 7.3~8.6 8.6~10.0 10.0~11.4 11.4~12.7 12.7~14.1 6 7.2~8.7 8.7~10.1 10.1~11.6 11.6~13.0 13.0~14.5 14.5~15.9 7 8.6~10.1 10.1~11.6 11.6~13.2 13.2~14.7 14.7~16.2 16.2~17.7 8 9.7~11.3 11.3~12.9 12.9~14.5 14.5~16.1 16.1~17.7 17.7~19.3 9 10.7~12.3 12.3~14.0 14.0~15.7 15.7~17.4 17.4~19.0 19.0~20.7 10 11.7~13.4 13.4~15.1 15.1~16.8 16.8~18.6 18.6~20.3 20.3~22.0 11 12.5~14.3 14.3~16.1 16.1~17.9 17.9~19.7 19.7~21.5 21.5~23.3 12 13.2~15.1 15.1~16.9 16.9~18.8 18.8~20.6 20.6~22.5 22.5~24.3 13 13.9~15.8 15.8~17.7 17.7~19.6 19.6~21.5 21.5~23.4 23.4~25.3 14 14.5~16.5 16.5~18.4 18.4~20.4 20.4~22.3 22.3~24.3 24.3~26.2 15 15.0~17.0 17.0~19.0 19.0~21.0 21.0~23.0 23.0~25.0 25.0~27.0 16 15.5~17.5 17.5~19.6 19.6~21.6 21.6~23.7 23.7~25.7 25.7~27.8 17 15.9~18.0 18.0~20.1 20.1~22.2 22.2~24.3 24.3~26.4 26.4~28.5 18 16.2~18.4 18.4~20.5 20.5~22.6 22.6~24.8 24.8~26.9 26.9~29.1 19 16.5~18.7 18.7~20.9 20.9~23.1 23.1~25.3 25.3~27.4 27.4~29.6 20 16.9~19.1 19.1~21.3 21.3~23.5 23.5~25.7 25.7~28.0 28.0~30.2 21 17.1~19.3 19.3~21.6 21.6~23.9 23.9~26.1 26.1~28.4 28.4~30.6 22 17.3~19.6 19.6~21.9 21.9~24.2 24.2~26.5 26.5~28.8 28.8~31.0 23 17.4~19.8 19.8~22.1 22.1~24.4 24.4~26.7 26.7~29.1 29.1~31.4 24 17.7~20.0 20.0~22.4 22.4~24.7 24.7~27.1 27.1~29.5 29.5~31.8 25 17.8~20.2 20.2~22.6 22.6~25.0 25.0~27.4 27.4~29.8 29.8~32.2 26 17.8~20.3 20.3~22.7 22.7~25.1 25.1~27.5 27.5~30.0 30.0~32.4 27 17.9~20.4 20.4~22.9 22.9~25.3 25.3~27.8 27.8~30.3 30.3~32.8 28 18.0~20.5 20.5~23.0 23.0~25.5 25.5~28.0 28.0~30.5 30.5~33.0 说明:基准年龄为15 a,级距为20 m;表中数据为上限排外 表 4 立地指数表显著性和预报精度检验
Table 4. Significance and prediction accuracy of site index table
年龄/a m=16.0 m=20.0 m=24.0 Si Hi16 Ho16 Hi20 Ho20 Hi24 Ho24 3 5.6 19.8 4.7 18.2 6.7 21.7 1.36 4 7.7 20.3 6.4 18.1 8.7 21.9 1.55 5 9.0 19.5 7.8 17.8 11.0 22.4 1.05 6 10.2 19.1 9.2 17.8 14.2 24.7 1.19 7 11.6 19.0 10.4 17.3 15.6 24.3 1.10 8 12.5 18.5 11.8 17.6 16.9 24.0 0.74 9 13.0 17.8 13.2 18.0 18.1 23.9 0.50 10 13.2 16.8 14.2 17.9 19.4 23.9 0.82 11 13.7 16.3 15.4 18.2 20.3 23.6 0.97 12 14.6 16.5 16.5 18.5 21.2 23.6 0.87 13 15.3 16.5 17.4 18.7 21.7 23.2 0.84 14 15.7 16.3 18.3 18.9 22.6 23.3 0.99 15 16.6 16.6 19.3 19.3 23.2 23.2 0.95 16 17.2 16.7 19.9 19.3 23.8 23.1 0.90 17 18.3 17.3 24.5 23.2 0.43 18 19.3 17.9 25.0 23.2 0.07 19 20.0 18.2 25.0 22.8 0.30 20 21.1 18.8 25.0 22.4 0.81 21 21.2 18.7 25.1 22.1 0.91 22 21.3 18.5 25.1 21.8 1.01 Hom 17.9 18.3 23.1 χ2 1.71 0.26 0.59 - Sz 1.27 0.61 0.85 - 说明:Him为第i龄阶第m指数级的树高;Hom为基准年龄时第m指数级的树高值(即立地指数);Si为立地指数估计误差 -
[1] PRETZSCH H. Forest Dynamics, Growth and Yield:from Measurement to Model[M]. Berlin:Springer-Verlag, 2009:20-21. [2] GUZMÁN G, PUKKALA T, PALAHÍ M, et al. Predicting the growth and yield of Pinus radiata in Bolivia[J]. Ann For Sci, 2012, 69(3):335-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fde7c5f8c6ffbf345326264c7f5e4f9 [3] MOGUÉDEC G L, DHÔTE J F. Fagacées:a tree-centered growth and yield model for sessile oak (Quercus petraea L.) and common beech (Fagus sylvatica L.)[J]. Ann For Sci, 2012, 69(2):257-269. [4] KIMBERLEY M O, LEDGARD N J. Site index curves for Pinus nigra grown in the South Island high country, New Zealand[J]. New Zealand J For Sci, 1998, 28(3):389-399. [5] 张瑜, 贾黎明, 郑聪慧, 等.秦岭地区栓皮栎天然次生林地位指数表的编制[J].林业科学, 2014, 50(4):47-54. http://d.old.wanfangdata.com.cn/Thesis/Y2622418 ZHANG Yu, JIA Liming, ZHENG Conghui, et al. Establishment of a site index table for Quercus variabilis natural secondary stand in Qinling Mountains[J]. Sci Silv Sin, 2014, 50(4):47-54. http://d.old.wanfangdata.com.cn/Thesis/Y2622418 [6] 吴恒, 党坤良, 田相林, 等.秦岭林区天然次生林与人工林立地质量评价[J].林业科学, 2015, 51(4):78-88. http://d.old.wanfangdata.com.cn/Periodical/lykx201504010 WU Heng, DANG Kunliang, TIAN Xianglin, et al. Evaluating site quality for secondary forests and plantation in Qinling Mountains[J]. Sci Silv Sin, 2015, 51(4):78-88. http://d.old.wanfangdata.com.cn/Periodical/lykx201504010 [7] KITIKIDOU K, MILIOS E, TSIREKIS E, et al. Site quality assessment of degraded Quercus frainetto stands in central Greece[J]. iFor Biogeosci For, 2015, 8(1):53-58. doi: 10.3832/ifor1069-007 [8] 曾杰.西南桦丰产栽培技术问答[M].北京:中国林业出版社, 2010:2-3. [9] WANG Chunsheng, ZHAO Zhigang, HEIN S, et al. Effect of planting density on knot attributes and branch occlusion of Betula alnoides under natural pruning in southern China[J]. Forests, 2015, 6(4):1343-1361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=forests-06-01343 [10] SUR T K, PANDIT S, BATTACHARYYA D, et al. Studies on the antiinflammatory activity of Betula alnoides bark[J]. Phytother Res, 2002, 16(7):669-671. doi: 10.1002/(ISSN)1099-1573 [11] RAJ D A, MALARVILI T, VELAVAN S. Restorative effect of Betula alnoides bark on hepatic metabolism in high fat diet fed Wistar rats[J]. Int J Pharm Bio Sci, 2015, 6(3):B1281-B1288. [12] 曾杰, 郭文福, 赵志刚, 等.我国西南桦研究的回顾与展望[J].林业科学研究, 2006, 19(3):379-384. doi: 10.3321/j.issn:1001-1498.2006.03.022 ZENG Jie, GUO Wenfu, ZHAO Zhigang, et al. Domestication of Betula alnoides in China:current status and perspectives[J]. For Res, 2006, 19(3):379-384. doi: 10.3321/j.issn:1001-1498.2006.03.022 [13] 孟宪宇.测树学[M].北京:中国林业出版社, 2006:106-107. [14] 段爱国, 张建国.杉木人工林优势高生长模拟及多形地位指数方程[J].林业科学, 2004, 40(6):13-19. doi: 10.3321/j.issn:1001-7488.2004.06.003 DUAN Aiguo, ZHANG Jianguo. Modeling of dominant height growth and building of polymorphic site index equations of Chinese fir plantation[J]. Sci Silv Sin, 2004, 40(6):13-19. doi: 10.3321/j.issn:1001-7488.2004.06.003 [15] 赵磊, 倪成才, NIGH G.加拿大哥伦比亚省美国黄松广义代数差分型地位指数模型[J].林业科学, 2012, 48(3):74-81. http://d.old.wanfangdata.com.cn/Periodical/lykx201203012 ZHAO Lei, NI Chengcai, NIGH G. Generalized algebraic difference site index model for ponderosa pine in British Columbia, Canada[J]. Sci Silv Sin, 2012, 48(3):74-81. http://d.old.wanfangdata.com.cn/Periodical/lykx201203012 [16] 段劼, 马履一, 贾黎明, 等.北京低山地区油松人工林立地指数表的编制及应用[J].林业科学, 2009, 45(3):7-12. doi: 10.3321/j.issn:1001-7488.2009.03.002 DUAN Jie, MA Lüyi, JIA Liming, et al. Establishment and application of site index table for Pinus tabulaeformis plantation in the low elevation area of Beijing[J]. Sci Silv Sin, 2009, 45(3):7-12. doi: 10.3321/j.issn:1001-7488.2009.03.002 [17] 郑聪慧, 贾黎明, 段劼, 等.华北地区栓皮栎天然次生林地位指数表的编制[J].林业科学, 2013, 49(2):79-85. http://d.old.wanfangdata.com.cn/Periodical/lykx201302012 ZHENG Conghui, JIA Liming, DUAN Jie, et al. Establishment of site index table for Quercus variabilis natural secondary forest in north China[J]. Sci Silv Sin, 2013, 49(2):79-85. http://d.old.wanfangdata.com.cn/Periodical/lykx201302012 [18] 魏晓慧, 孙玉军, 马炜.基于Richards方程的杉木树高生长模型[J].浙江农林大学学报, 2012, 29(5):661-666. doi: 10.11833/j.issn.2095-0756.2012.05.004 WEI Xiaohui, SUN Yujun, MA Wei. A height growth model for Cunninghamia lanceolata based on Richards' equation[J]. J Zhejiang A&F Univ, 2012, 29(5):661-666. doi: 10.11833/j.issn.2095-0756.2012.05.004 [19] ESSE C, DONOSO P J, GERDING V, et al. Modelling dominant height and site index in different edaphoclimatic zones of secondary forest in the Andes of south-central Chile[J]. South For J For Sci, 2014, 76(4):221-228. doi: 10.2989/20702620.2014.956026 [20] 郑海水, 黎明, 汪炳根, 等.西南桦造林密度与林木生长的关系[J].林业科学研究, 2003, 16(1):81-86. doi: 10.3321/j.issn:1001-1498.2003.01.014 ZHENG Haishui, LI Ming, WANG Bingen, et al. Effect of initial planting spacing on the growth of Betula alnoides[J]. For Res, 2003, 16(1):81-86. doi: 10.3321/j.issn:1001-1498.2003.01.014 [21] 王春胜, 赵志刚, 曾冀, 等.广西凭祥西南桦中幼林林木生长过程与造林密度的关系[J].林业科学研究, 2013, 26(2):257-262. doi: 10.3969/j.issn.1001-1498.2013.02.020 WANG Chunsheng, ZHAO Zhigang, ZENG Ji, et al. Relationship between planting density and tree growth process of Betula alnoides mid-young plantations in Pingxiang, Guangxi[J]. For Res, 2013, 26(2):257-262. doi: 10.3969/j.issn.1001-1498.2013.02.020 [22] ALLEN Ⅱ M G, BURKHART H E. A comparison of alternative data sources for modeling site index in loblolly pine plantations[J]. Can J For Res, 2015, 45(8):1026-1033. doi: 10.1139/cjfr-2014-0346 [23] RAULIER F, LAMBERT M C, POTHIER D, et al. Impact of dominant tree dynamics on site index curves[J]. For Ecol Manage, 2003, 184(1/3):65-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41571a4b863739a9ed2ffdd0b1ea6ec8 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.04.024